Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99775
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor賴育英zh_TW
dc.contributor.advisorYu-Ying Laien
dc.contributor.author宋囿徵zh_TW
dc.contributor.authorYu-Jen Sungen
dc.date.accessioned2025-09-17T16:38:50Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-02-
dc.identifier.citation1. Geyer, R., J.R. Jambeck, and K.L. Law, Production, use, and fate of all plastics ever made. Science advances, 2017. 3(7): p. e1700782.
2. Wang, J., et al., Catalytic pyrolysis of polystyrene in different reactors: Effects of operating conditions on distribution and composition of products. Journal of Analytical and Applied Pyrolysis, 2024. 177: p. 106366.
3. Onwudili, J.A., N. Insura, and P.T. Williams, Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. Journal of Analytical and Applied Pyrolysis, 2009. 86(2): p. 293-303.
4. Zayoud, A., et al., Pyrolysis of end-of-life polystyrene in a pilot-scale reactor: Maximizing styrene production. Waste Management, 2022. 139: p. 85-95.
5. Ojha, D.K. and R. Vinu, Resource recovery via catalytic fast pyrolysis of polystyrene using zeolites. Journal of analytical and applied pyrolysis, 2015. 113: p. 349-359.
6. Ylitervo, P. and T. Richards, Gaseous products from primary reactions of fast plastic pyrolysis. Journal of Analytical and Applied Pyrolysis, 2021. 158: p. 105248.
7. Miandad, R., et al., Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts. Waste Management, 2017. 69: p. 66-78.
8. Palanivelrajan, A. and M. Feroskhan, Comparison of various catalysts in pyrolysis process: a review. Materials Today: Proceedings, 2023. 84: p. 47-56.
9. Çelikgöğüs, Ç. and A. Karaduman, Thermal-catalytic pyrolysis of polystyrene waste foams in a semi-batch reactor. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2015. 37(23): p. 2507-2513.
10. Uthpalani, P., et al., Pyrolysis as a value added method for plastic waste management: A review on converting LDPE and HDPE waste into fuel. Ceylon Journal of Science, 2023. 52(3).
11. Aguado, R., et al., Kinetics of polystyrene pyrolysis in a conical spouted bed reactor. Chemical Engineering Journal, 2003. 92(1-3): p. 91-99.
12. Artetxe, M., et al., Styrene recovery from polystyrene by flash pyrolysis in a conical spouted bed reactor. Waste management, 2015. 45: p. 126-133.
13. Balema, V.P., et al., Depolymerization of polystyrene under ambient conditions. New Journal of Chemistry, 2021. 45(6): p. 2935-2938.
14. Yang, L., et al., Phosphate-enabled mechanochemical PFAS destruction for fluoride reuse. Nature, 2025: p. 1-7.
15. Sun, C., et al., Heterogeneous oxidative upcycling of polystyrene plastics to benzoic acid under air conditions. Catalysis Science & Technology, 2024. 14(22): p. 6584-6591.
16. Wang, M., et al., Selective Degradation of Styrene‐Related Plastics Catalyzed by Iron under Visible Light. ChemSusChem, 2021. 14(22): p. 5049-5056.
17. Oh, S. and E.E. Stache, Mechanistic insights enable divergent product selectivity in catalyst-controlled photooxidative degradation of polystyrene. ACS Catalysis, 2023. 13(16): p. 10968-10975.
18. Li, T., et al., Bridging plastic recycling and organic catalysis: photocatalytic deconstruction of polystyrene via a C–H oxidation pathway. ACS catalysis, 2022. 12(14): p. 8155-8163.
19. Huang, Z., et al., Chemical recycling of polystyrene to valuable chemicals via selective acid-catalyzed aerobic oxidation under visible light. Journal of the American Chemical Society, 2022. 144(14): p. 6532-6542.
20. Qin, Y., et al., Integrated strategy for the synthesis of aromatic building blocks via upcycling of real-life plastic wastes. Chem, 2022. 8(9): p. 2472-2484.
21. Nikitas, N.F., et al., Photochemical aerobic upcycling of polystyrene plastics to commodity chemicals using anthraquinone as the photocatalyst. Green Chemistry, 2023. 25(12): p. 4750-4759.
22. Peng, Z., R. Chen, and H. Li, Heterogeneous photocatalytic oxidative cleavage of polystyrene to aromatics at room temperature. ACS Sustainable Chemistry & Engineering, 2023. 11(29): p. 10688-10697.
23. Skolia, E., O.G. Mountanea, and C.G. Kokotos, Photochemical aerobic upcycling of polystyrene plastics. ChemSusChem, 2024. 17(20): p. e202400174.
24. Ong, A., et al., Organocatalytic aerobic oxidative degradation of polystyrene to aromatic acids. ACS Sustainable Chemistry & Engineering, 2023. 11(34): p. 12514-12522.
25. Jiao, X., et al., Direct polyethylene photoreforming into exclusive liquid fuel over charge-asymmetrical dual sites under mild conditions. Nano Letters, 2022. 22(24): p. 10066-10072.
26. Jose, T.S., et al., Accelerated photodegradation of polystyrene by TiO2-polyaniline photocatalyst under UV radiation. European Polymer Journal, 2021. 153: p. 110493.
27. Feng, H.-M., et al., Photoassisted Fenton degradation of polystyrene. Environmental science & technology, 2011. 45(2): p. 744-750.
28. Su, A., et al., Anthraquinone and its Derivatives as a Recyclable Photocatalyst for Efficient Photocatalytic Degradation of Rhodamine B in Water under Visible Light. ChemistrySelect, 2024. 9(25): p. e202401313.
29. Davit, P., et al., Adsorption and photocatalytic degradation of acetonitrile: FT-IR investigation. Journal of Molecular Catalysis A: Chemical, 2003. 204: p. 693-701.
30. Augugliaro, V., et al., Photocatalytic oxidation of acetonitrile in aqueous suspension of titanium dioxide irradiated by sunlight. Advances in Environmental Research, 2004. 8(3-4): p. 329-335.
31. Jordan, A., et al., Replacement of less-preferred dipolar aprotic and ethereal solvents in synthetic organic chemistry with more sustainable alternatives. Chemical reviews, 2022. 122(6): p. 6749-6794.
32. Li, C., et al., Upcycling of non-biodegradable plastics by base metal photocatalysis. Chem, 2023. 9(9): p. 2683-2700.
33. Oh, S. and E.E. Stache, Recent advances in oxidative degradation of plastics. Chemical Society Reviews, 2024. 53(14): p. 7309-7327.
34. Liao, S., et al., 2-Bromoanthraquinone as a highly efficient photocatalyst for the oxidation of sec-aromatic alcohols: experimental and DFT study. RSC advances, 2020. 10(61): p. 37014-37022.
35. Chang, L., et al., Resurgence and advancement of photochemical hydrogen atom transfer processes in selective alkane functionalizations. Chemical Science, 2023. 14(25): p. 6841-6859.
36. Jing, L., et al., Influence of π–π interactions on organic photocatalytic materials and their performance. Chemical Society Reviews, 2025.
37. Liu, F., et al., Transfer channel of photoinduced holes on a TiO2 surface as revealed by solid-state nuclear magnetic resonance and electron spin resonance spectroscopy. Journal of the American Chemical Society, 2017. 139(29): p. 10020-10028.
38. Fu, F.-Y., et al., KSCN-induced interfacial dipole in black TiO2 for enhanced photocatalytic CO2 reduction. ACS Applied Materials & Interfaces, 2019. 11(28): p. 25186-25194.
39. Cui, T., et al., The key role of surface hydroxyls on the activity and selectivity in photocatalytic degradation of organic pollutants and NO removal. Journal of Alloys and Compounds, 2022. 921: p. 165931.
40. Lazanas, A.C. and M.I. Prodromidis, Electrochemical Impedance Spectroscopy─A Tutorial. ACS Measurement Science Au, 2023. 3(3): p. 162-193.
41. Yan, D., et al., A BiVO4 film photoanode with re-annealing treatment and 2D thin Ti3C2TX flakes decoration for enhanced photoelectrochemical water oxidation. Chemical Engineering Journal, 2019. 361: p. 853-861.
42. Trommer, H., et al., Role of ascorbic acid in stratum corneum lipid models exposed to UV irradiation. Pharmaceutical research, 2002. 19(7): p. 982-990.
43. Al-Madanat, O., et al., Application of EPR spectroscopy in TiO2 and Nb2O5 photocatalysis. Catalysts, 2021. 11(12): p. 1514.
44. Jiao, X., et al., Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions. Angewandte Chemie International Edition, 2020. 59(36): p. 15497-15501.
45. Buettner, G.R., Spin Trapping: ESR parameters of spin adducts 1474 1528V. Free radical biology and medicine, 1987. 3(4): p. 259-303.
46. Wilson Jr, W.E., A critical review of the gas‐phase reaction kinetics of the hydroxyl radical. Journal of Physical and Chemical Reference Data, 1972. 1(2): p. 535-573.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99775-
dc.description.abstract聚苯乙烯廢棄物對環境造成嚴重污染,因此將其轉化為有經濟價值的產物具有重要意義,其中光降解被認為是一種溫和、安全且經濟的解決方法。本研究針對聚苯乙烯的光催化降解,使用多種官能基修飾的蒽醌衍生物,系統性探討其對降解效率與產物選擇性的影響。研究結果顯示,2-溴蒽醌(AQBr)在多項指標上均表現最佳,不僅總轉化率最高,並少見的在光催化降解過程中觀察到苯乙烯單體的生成,凸顯其對C–C選擇性斷鍵的特殊活性。透過優化光照時間、光強度及催化劑濃度,發現延長照射時間至48小時可使總轉化率達81%以上,苯甲酸產率亦顯著提升,可達到30%。本研究進一步結合紫外-可見光吸收光譜、光致發光光譜、循環伏安法、瞬態光電流及電化學阻抗等技術,確認AQBr具備優異的光生電子-電洞分離與電荷傳輸效率。自由基捕捉實驗與電子順磁共振分析顯示,羥基自由基及超氧陰離子為主導光降解的主要活性氧物種。除了基礎聚苯乙烯樣品外,本研究亦將光催化策略應用於市售塑膠產品(塑膠杯蓋、保麗龍及塑膠湯匙)的降解,證實該方法對真實複雜塑膠廢棄物仍具有效性。實驗結果顯示,塑膠杯蓋降解最為顯著,產生較多氣相產物,保麗龍則經凝膠滲透層析分析確認分子鏈斷裂,而塑膠湯匙因表面處理影響而降解效果相對較低。綜合而言,本研究提出以無金屬光催化方式分解聚苯乙烯並生成高價值小分子化合物的策略,為未來塑膠廢棄物資源化與綠色循環利用提供新思路。zh_TW
dc.description.abstractPolystyrene (PS) waste poses a severe environmental threat, making its conversion into value-added products of significant importance. Among various approaches, photodegradation is considered a mild, safe, and economical solution. In this study, we systematically investigate the photocatalytic degradation of PS using a series of anthraquinone (AQ) derivatives with different functional group modifications, focusing on their effects on degradation efficiency and product selectivity. The results reveal that 2-bromoanthraquinone (AQBr) exhibits the best performance across multiple metrics. Notably, the generation of styrene monomers is validated during the photocatalytic process, highlighting AQBr’s unique ability for selective C–C bond cleavage. By optimizing the light irradiation time, light intensity, and catalyst concentration, the total conversion rate reaches over 81%, with benzoic acid yield significantly increased to 30% after 48 hours of irradiation. Furthermore, UV-Vis absorption spectroscopy, photoluminescence spectroscopy, cyclic voltammetry, transient photocurrent, and electrochemical impedance spectroscopy confirm that AQBr possesses excellent electron–hole separation and charge transfer efficiency. Radical scavenging experiments and EPR analyses identify hydroxyl radicals and superoxide radicals as the dominant reactive oxygen species in the photodegradation process. This study also applies the photocatalytic strategy to commercial PS products (plastic cup lids, polystyrene foam, and plastic spoons), demonstrating its effectiveness on real-life plastic waste. The results show that plastic cup lids exhibit the highest degradation extent with significant gas-phase product formation. Polystyrene foam displays clear molecular chain cleavage confirmed by GPC analysis, whereas plastic spoons show relatively lower degradation efficiency due to surface treatment. Overall, this study proposes a metal-free photocatalytic method capable of efficiently decomposing PS into valuable small-molecule compounds, providing new insights into plastic waste valorization and sustainable recycling.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:38:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:38:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目次 v
圖次 viii
表次 xi
第一章 緒論 1
1-1 聚苯乙烯降解 1
1-2 熱裂解 2
1-3 機械降解與化學降解 6
1-4 光降解 8
1-5 研究動機 14
第二章 結果與討論 18
2-1 光降解反應 18
2-1-1 AQ及其衍生物的效率探討 18
2-1-2 AQBr在不同光照時間、光強度與催化劑濃度下的影響 24
2-1-3 市售塑膠的降解 26
2-2 光學性質 28
2-2-1 吸收光譜分析 28
2-2-2光致發光光譜分析 30
2-3 電化學性質 31
2-3-1 循環伏安法 31
2-3-2 瞬態光電流 35
2-3-1 電化學阻抗 36
2-4 溶解度測試 39
2-5 機制探討 40
2-5-1 自由基捕捉劑對光催化反應機制之探討 40
2-5-2 自旋捕捉實驗分析 42
2-5-3 聚苯乙烯光降解機制 46
第三章 結論 49
第四章 實驗 50
4-1 化學藥劑列表 50
4-2 光降解實驗 50
4-2-1 聚苯乙烯光降解 50
4-2-2 市售聚苯乙烯光降解 52
4-2-3 苯甲酸純化 52
4-3 光降解反應之定量 53
4-3-1 一氧化碳及二氧化碳之定量 53
4-3-2 液態產物之定量 55
4-4 實驗儀器 55
4-4-1 紫外/可見光光譜儀 (UV/Vis Spectrophotometer, UV-Vis) 55
4-4-2 循環伏安儀 (Cyclic Voltammetry, CV) 56
4-4-3 瞬態光電流(Transient Photocurrent) 56
4-4-4 電化學阻抗儀 (Electrochemical Impedance Spectrometer, EIS) 56
4-4-5 氣相層析儀 (Gas Chromatography, GC) 57
4-4-6 核磁共振光譜儀 (Nuclear Magnetic Resonance Spectrometer, NMR) 57
4-4-7 高解析氣相層析質譜儀 (High Resolution Gas Chromatography Mass Spectrometer, GC-MS) 57
4-4-8 膠體滲透層析儀 (Gel Permeation Chromatography, GPC) 58
4-4-9 電子順磁共振光譜儀 (Electron Paramagnetic Resonance Spectrometer, EPR) 58
4-4-10 螢光光譜儀 (photoluminescence spectroscopy, PL) 58
參考文獻 60
-
dc.language.isozh_TW-
dc.subject蒽醌衍生物zh_TW
dc.subject聚苯乙烯光降解zh_TW
dc.subject市售塑膠產品zh_TW
dc.subject自由基機制zh_TW
dc.subject苯乙烯zh_TW
dc.subjectStyreneen
dc.subjectRadical mechanismen
dc.subjectCommercial plastic productsen
dc.subjectAnthraquinone derivativesen
dc.subjectPolystyrene photodegradationen
dc.title蒽醌衍生物於光催化降解聚苯乙烯之應用zh_TW
dc.titleApplication of Anthraquinone Derivatives in the Photocatalytic Degradation of Polystyreneen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee康敦彥;林靖衛zh_TW
dc.contributor.oralexamcommitteeDun-Yen Kang;Ching-Wei Linen
dc.subject.keyword聚苯乙烯光降解,蒽醌衍生物,苯乙烯,自由基機制,市售塑膠產品,zh_TW
dc.subject.keywordPolystyrene photodegradation,Anthraquinone derivatives,Styrene,Radical mechanism,Commercial plastic products,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202503111-
dc.rights.note未授權-
dc.date.accepted2025-08-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
dc.date.embargo-liftN/A-
Appears in Collections:高分子科學與工程學研究所

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
3.72 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved