請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99762完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏宏宇 | zh_TW |
| dc.contributor.advisor | Hung-Yu Wei | en |
| dc.contributor.author | 楊詮鏞 | zh_TW |
| dc.contributor.author | Chuan-Yung Yang | en |
| dc.date.accessioned | 2025-09-17T16:36:31Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-26 | - |
| dc.identifier.citation | [1] International Energy Agency. Global ev outlook 2025, 2025. Available: https://www.iea.org/reports/global-ev-outlook-2025 [Accessed: Jul. 21, 2025].
[2] Electreon. Electreon wireless charging technology, 2025. Available: https://electreon.com/technology [Accessed: Jul. 21, 2025]. [3] S. Zhang and J. J. Q. Yu. Electric vehicle dynamic wireless charging system: Optimal placement and vehicle-to-grid scheduling. IEEE Internet of Things Journal, 9(8):6047–6057, April 2022. [4] J. Wang, K. Zhu, and E. Hossain. Green internet of vehicles (iov) in the 6g era: Toward sustainable vehicular communications and networking. IEEE Transactions on Green Communications and Networking, 6(1):391–423, March 2022. [5] S. Han, S. Han, and K. Sezaki. Development of an optimal vehicle-to-grid aggregator for frequency regulation. IEEE Transactions on Smart Grid, 1(1):65–72, June 2010. [6] X. Zhu, B. Mather, and P. Mishra. Grid impact analysis of heavy-duty electric vehicle charging stations. In 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 2020. [7] M. M. Rana et al. Comprehensive review on the charging technologies of electric vehicles (ev) and their impact on power grid. IEEE Access, 13:35124–35156, 2025. [8] B. Dande, P.-Y. Chen, and H.-Y. Wei. An integrated charging and computation scheduling of electric vehicles in edge computing system. IEEE Transactions on Intelligent Transportation Systems, 26(1):916–934, January 2025. [9] V. Chamola, A. Sancheti, S. Chakravarty, N. Kumar, and M. Guizani. An iot and edge computing based framework for charge scheduling and ev selection in v2g systems. IEEE Transactions on Vehicular Technology, 69(10):10569–10580, 2020. [10] R. Wang, H. Min, W. Sun, R. Jiang, and Z. Liu. Real‐time optimized dispatching control strategy for ev v2g based on dynamic tou price. In 2024 3rd International Conference on Energy and Electrical Power Systems (ICEEPS), 2024. [11] Y. Li et al. A new coil structure and its optimization design with constant output voltage and current for dynamic wireless ev charging. IEEE Transactions on Industrial Informatics, 15(9):5244–5256, September 2019. [12] R. Tavakoli and Z. Pantic. Analysis, design, and demonstration of a 25‐kw dynamic wireless charging system for roadway electric vehicles. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6(3):1378–1393, September 2018. [13] I. Hwang, Y. J. Jang, Y. D. Ko, and M. S. Lee. System optimization for dynamic wireless charging evs in a multiple‐route environment. IEEE Transactions on Intelligent Transportation Systems, 19(6):1709–1726, June 2018. [14] A. Zaheer, M. Neath, H. Z. Z. Beh, and G. A. Covic. A dynamic ev charging system for slow moving traffic applications. IEEE Transactions on Transportation Electrification, 3(2):354–369, June 2017. [15] D. Kosmanos et al. Route optimization of electric vehicles based on dynamic wireless charging. IEEE Access, 6:42551–42565, 2018. [16] H. Zhang, F. Lu, and C. Mi. An electric roadway system leveraging dynamic capacitive wireless charging. IEEE Electrification Magazine, 8(2):52–60, June 2020. [17] P. Liu et al. Joint route selection and charging/discharging scheduling of evs in v2g energy network. IEEE Transactions on Vehicular Technology, 69(10):10630–10641, October 2020. [18] M. S. Abdulaal et al. Solving the multivariant ev routing problem incorporating v2g and g2v options. IEEE Transactions on Transportation Electrification, 3(1):238–248, 2017. [19] Z. Li, Y. Wei, and J. H. Park. An improved bilevel algorithm based on aco and alns for routing and charging scheduling of evs. IEEE Transactions on Transportation Electrification, 11(1):934–944, February 2025. [20] J. Hao et al. Integrated ev charging path planning considering traffic network and power grid. In 2022 4th Asia Energy and Electrical Engineering Symposium (AEEES), 2022. [21] D. Ding et al. Electric vehicle charging warning and path planning method based on spark. IEEE Access, 8:8543–8553, 2020. [22] S. Zhang and J. J. Q. Yu. Online joint ride-sharing and dynamic v2g coordination for connected ev system. IEEE Transactions on Transportation Electrification, 10(1):1194–1206, March 2024. [23] Y. Cao et al. Joint routing and wireless charging scheduling for evs with shuttle services. IEEE Internet of Things Journal, 10(16):14810–14819, August 2023. [24] H. Al-Alwash and E. Borcoci. Optimal charging scheme for evs in sdn-based vehicular network. In 2022 14th International Conference on Communications (COMM), Bucharest, Romania, 2022. [25] Y. Xiang et al. Routing optimization of evs for charging with event-driven pricing strategy. IEEE Transactions on Automation Science and Engineering, 19(1):7–20, January 2022. [26] A. Fathollahi et al. Optimal siting and sizing of wireless ev charging infrastructures. IEEE Access, 10:117105–117117, 2022. [27] Y. Cao et al. Joint routing and charging optimization of electric passenger vehicles. IEEE Internet of Things Journal, 11(10):18180–18192, May 2024. [28] V. Gupta et al. Electric vehicle driver response evaluation in multiaggregator charging management. IEEE Transactions on Industry Applications, 56(6):6914–6924, November 2020. [29] X. Tang, S. Bi, and Y.-J. A. Zhang. Distributed routing and charging scheduling optimization for internet of evs. IEEE Internet of Things Journal, 6(1):136–148, February 2019. [30] J. Liu et al. Collaborative ev routing and charging scheduling with power distribution and traffic network interaction. IEEE Transactions on Power Systems, 37(5):3923–3936, September 2022. [31] W. Kempton and J. Tomic. Vehicle-to-grid power fundamentals: Calculating capacity and net revenue. Journal of Power Sources, 144(1):268–279, 2005. [32] SAE Standard J2954. Wireless power transfer for light-duty plug-in/electric vehicles and alignment methodology. Technical report, SAE International, November 2017. [33] J. Dai and D. C. Ludois. A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications. IEEE Transactions on Power Electronics, 30(11):6017–6029, November 2015. [34] A. Ahmad, M. S. Alam, and R. Chabaan. A comprehensive review of wireless charging technologies for electric vehicles. IEEE Transactions on Transportation Electrification, 4(1):38–63, March 2018. [35] H. Tu, H. Feng, S. Srdic, and S. Lukic. Extreme fast charging of electric vehicles: A technology overview. IEEE Transactions on Transportation Electrification, 5(4):861–878, December 2019. [36] M. Dorigo, G. D. Caro, and L. M. Gambardella. Ant algorithms for discrete optimization. Artificial Life, 5(2):137–172, April 1999. [37] C. Xu S. Su, X. Ju and Y. Dai. Collaborative motion planning based on the improved ant colony algorithm for multiple autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems, 25(3):2792–2802, March 2024. [38] D. W. Sari, S. Dwijayanti, and B. Y. Suprapto. Path planning for an autonomous vehicle based on the ant colony algorithm: A review. In 2023 International Workshop on Artificial Intelligence and Image Processing (IWAIIP), Yogyakarta, Indonesia, 2023. [39] OpenStreetMap. Taiwan's national road network data, October 2024. Available: https://www.openstreetmap.org/. [40] Taiwan Ministry of Transportation and Communications. Taiwan's traffic flow data, March 2024. Available: https://www.thb.gov.tw/cl.aspx?n=349. [41] Tesla, Inc. Model 3 and model y performance, October 2024. Available: https://www.tesla.com/. [42] Tesla, Inc. Tesla mobile connector, March 2025. Available: https://shop.tesla.com/product/mobile-connector. [43] Tesla, Inc. Tesla superchargers in taiwan, October 2024. Available: https://www.plugshare.com/tw. [44] Taipower. Power load data, October 2024. Available: https://www.taipower.com.tw/. [45] P. A. Lopez et al. Microscopic traffic simulation using sumo. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 2018. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99762 | - |
| dc.description.abstract | 電動車(EV)的快速普及,為交通系統與電力電網帶來了顯著的挑戰與機會。為有效管理EV移動性、動態無線充電、固定式充電基礎設施,以及車輛對電網(V2G)運作之間的複雜交互,本研究提出一套完整的二階段最佳化架構。第一階段利用螞蟻族群最佳化演算法(ACO),考量用戶限制、即時電價及充電設施的時空分布,生成高效的EV路徑與充電規劃。第二階段則設計一種創新的啟發式負載平衡排程器(HLBS),可動態協調EV放電行為,以緩解區域負載不均並提升電網頻率穩定性。於台灣實際大型道路網進行的1,500筆EV行程模擬結果顯示,本方法能顯著降低總能源成本,將電網負載變異度減少約70%,並在頻率穩定性上優於現有基準方法。所提出之架構能有效結合多元EV用戶需求與電網管理策略,為未來智慧城市與智慧電網應用提供具規模化潛力的解決方案。 | zh_TW |
| dc.description.abstract | The rapid adoption of electric vehicles (EVs) introduces significant challenges and opportunities for both transportation systems and electricity grids. To effectively manage the complex interactions between EV mobility, dynamic wireless charging, stationary charging infrastructure, and vehicle-to-grid (V2G) operations, we propose a comprehensive two-stage optimization framework. The first stage employs Ant Colony Optimization (ACO) to generate efficient EV routing and charging plans, considering user constraints, real-time pricing, and the spatial-temporal distribution of charging infrastructure. In the second stage, a novel Heuristic Load-Balancing Scheduler (HLBS) dynamically coordinates EV discharging actions, mitigating regional load imbalances and enhancing grid frequency stability. Evaluations conducted on a realistic, large-scale Taiwan road network involving 1,500 EV trips demonstrate that our approach significantly reduces total energy costs, decreases grid load variance by approximately 70%, and ensures superior frequency stability compared to baseline methods. The proposed framework effectively integrates diverse EV user needs with robust grid management strategies, offering scalable solutions for future smart city and smart grid implementations. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:36:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:36:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
Page Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xv Denotation xvii Chapter 1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Challenges in EV–Grid Integration . . . . . . . . . . . . . . . . . . 2 1.1.2 Opportunities of Dynamic Wireless Charging . . . . . . . . . . . . 2 1.2 Gaps in Existing Literature . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Proposed Framework and Contributions . . . . . . . . . . . . . . . . 5 Chapter 2 Related Work 7 2.1 Integration of Stationary and Dynamic Charging with V2G . . . . . . 7 2.2 Electricity Price Modeling Approaches . . . . . . . . . . . . . . . . 8 2.3 Network Scale and Real-World Deployment . . . . . . . . . . . . . . 8 Chapter 3 System Model 11 3.1 Electric Vehicles (EVs) . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Intelligent Transportation System (ITS) . . . . . . . . . . . . . . . . 13 3.2.1 Road Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2.2 Power Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2.3 Charging Stations . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.4 System Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Regional Smart Grid . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Chapter 4 Proposed Method 17 4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Two-stage Solution Approach . . . . . . . . . . . . . . . . . . . . . 23 4.2.1 Stage I: Route and Charge Scheduling via ACO . . . . . . . . . . . 23 4.2.2 Stage II: Discharging (V2G) Coordination via HLBS . . . . . . . . 28 4.3 The Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . 31 4.4 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . 32 4.4.1 Stage I: Ant Colony Optimization (ACO) . . . . . . . . . . . . . . 33 4.4.2 Stage II: Heuristic Load-Balancing Scheduler (HLBS) . . . . . . . . 33 Chapter 5 Simulation and Evaluation 35 5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.2 Scenario for Comparison . . . . . . . . . . . . . . . . . . . . . . . . 37 5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.3.1 Energy Cost Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.3.2 Grid Stability and SOC Accuracy . . . . . . . . . . . . . . . . . . . 39 5.3.3 Grid Frequency Impact . . . . . . . . . . . . . . . . . . . . . . . . 40 5.3.4 Practical Feasibility and Robustness Evaluation with SUMO . . . . 40 Chapter 6 Conclusion 45 References 47 | - |
| dc.language.iso | en | - |
| dc.subject | 電動車 | zh_TW |
| dc.subject | 動態無線充電 | zh_TW |
| dc.subject | 車輛對電網排程 | zh_TW |
| dc.subject | 路徑規劃 | zh_TW |
| dc.subject | 智慧電網 | zh_TW |
| dc.subject | 人工智慧最佳化 | zh_TW |
| dc.subject | Vehicle-to-Grid (V2G) Scheduling | en |
| dc.subject | Electric Vehicles | en |
| dc.subject | AI Optimization | en |
| dc.subject | Smart Grid | en |
| dc.subject | Routing | en |
| dc.subject | Dynamic Wireless Charging | en |
| dc.title | 結合動態無線與固定充電之電動車路徑與車輛對電網排程 | zh_TW |
| dc.title | Joint Routing and Vehicle-to-Grid Scheduling for Electric Vehicles under Dynamic Wireless and Stationary Charging | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王志宇;孫士勝 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Yu Wang;Shi-Sheng Sun | en |
| dc.subject.keyword | 電動車,動態無線充電,車輛對電網排程,路徑規劃,智慧電網,人工智慧最佳化, | zh_TW |
| dc.subject.keyword | Electric Vehicles,Dynamic Wireless Charging,Vehicle-to-Grid (V2G) Scheduling,Routing,Smart Grid,AI Optimization, | en |
| dc.relation.page | 52 | - |
| dc.identifier.doi | 10.6342/NTU202502205 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-27 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 6.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
