請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99740完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉雅瑄 | zh_TW |
| dc.contributor.advisor | Sofia Ya-Hsuan Liou | en |
| dc.contributor.author | 李冠儒 | zh_TW |
| dc.contributor.author | Guan-Ru Li | en |
| dc.date.accessioned | 2025-09-17T16:32:32Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-03 | - |
| dc.identifier.citation | Al Fatih, A. N. F., Kurniawan, A., & Koentjoro, M. P. (2025). Correlation between Average Microplastic Abundance and Water Quality Parameters in Sendang Biru Waters, Malang Regency. Jurnal Penelitian Pendidikan IPA, 11(4), 123–131. https://doi.org/10.29303/jppipa.v11i4.9794
Al-Azzawi, M. S. M., Kefer, S., Weißer, J., Reichel, J., Schwaller, C., Glas, K., Knoop, O., & Drewes, J. E. (2020). Validation of Sample Preparation Methods for Microplastic Analysis in Wastewater Matrices—Reproducibility and Standardization. Water, 12(9), 2445. https://doi.org/10.3390/w12092445 Alfaro-Núñez, A., Astorga, D., Cáceres-Farías, L., Bastidas, L., Soto Villegas, C., Macay, K., & Christensen, J. H. (2021). Microplastic pollution in seawater and marine organisms across the Tropical Eastern Pacific and Galápagos. Scientific reports, 11(1), 6424. https://doi.org/10.1038/s41598-021-85939-3 Almeida, D., Copp, G. H., Masson, L., Miranda, R., Murai, M., & Sayer, C. D. (2012). Changes in the diet of a recovering Eurasian otter population between the 1970s and 2010. Aquatic Conservation: Marine and Freshwater Ecosystems, 22(1), 26-35. https://doi.org/10.1002/aqc.1241 Andrady, A. L. (2011). Microplastics in the marine environment. Marine pollution bulletin, 62(8), 1596-1605. https://doi.org/10.1016/j.marpolbul.2011.05.030 Arthur, Courtney et al. (2009). Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, September 9-11, 2008, University of Washington Tacoma, Tacoma, WA, USA. Avery-Gomm, S., Provencher, J. F., Liboiron, M., Poon, F. E., & Smith, P. A. (2018). Plastic pollution in the Labrador Sea: an assessment using the seabird northern fulmar Fulmarus glacialis as a biological monitoring species. Marine pollution bulletin, 127, 817-822. https://doi.org/10.1016/j.marpolbul.2017.10.001 Ben Ismail S, Costa E, Jaziri H, Morgana S, Boukthir M, Ben Ismail MA, Minetti R, Montarsolo A, Narizzano R, Sammari C, Faimali M and Garaventa F (2022). Evolution of the distribution and dynamic of microplastic in water and biota: A study case from the Gulf of Gabes (Southern Mediterranean Sea). Frontiers in Marine Science, 9, 786026. https://doi.org/10.3389/fmars.2022.786026 Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of microplastic on shorelines woldwide: sources and sinks. Environmental science & technology, 45(21), 9175-9179. https://doi.org/10.1021/es201811s Buglione, M., Petrelli, S., Troiano, C., Notomista, T., Rivieccio, E., & Fulgione, D. (2020). The diet of otters (Lutra lutra) on the Agri river system, one of the most important presence sites in Italy: a molecular approach. PeerJ, 8, e9606. https://doi.org/10.7717/peerj.9606 Chanda, M., Bathi, J. R., Khan, E., Katyal, D., & Danquah, M. (2024). Microplastics in ecosystems: Critical review of occurrence, distribution, toxicity, fate, transport, and advances in experimental and computational studies in surface and subsurface water. Journal of Environmental Management, 370, 122492. https://doi.org/10.1016/j.jenvman.2024.122492 Chen, C. F., Ju, Y. R., Lim, Y. C., Hsu, N. H., Lu, K. T., Hsieh, S. L., Dong, C. D. & Chen, C. W. (2020). Microplastics and their affiliated PAHs in the sea surface connected to the southwest coast of Taiwan. Chemosphere, 254, 126818. https://doi.org/10.1016/j.chemosphere.2020.126818 Chen, J. Y. S., Lee, Y. C., & Walther, B. A. (2020). Microplastic contamination of three commonly consumed seafood species from Taiwan: A pilot study. Sustainability, 12(22), 9543. https://doi.org/10.3390/su12229543 Chen, M. C., & Chen, T. H. (2020). Spatial and seasonal distribution of microplastics on sandy beaches along the coast of the Hengchun Peninsula, Taiwan. Marine pollution bulletin, 151, 110861. https://doi.org/10.1016/j.marpolbul.2019.110861 Chen, Y., Niu, J., Xu, D., Zhang, M., Sun, K., & Gao, B. (2023). Wet deposition of globally transportable microplastics (< 25 μm) hovering over the megacity of Beijing. Environmental science & technology, 57(30), 11152-11162. https://doi.org/10.1021/acs.est.3c03474 Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., & Galloway, T. S. (2013). Microplastic ingestion by zooplankton. Environmental science & technology, 47(12), 6646-6655. https://doi.org/10.1021/es400663f Cutroneo, L., Reboa, A., Geneselli, I., & Capello, M. (2021). Considerations on salts used for density separation in the extraction of microplastics from sediments. Marine Pollution Bulletin, 166, 112216. https://doi.org/10.1016/J.MARPOLBUL.2021.112216 D’Souza, J. M., Windsor, F. M., Santillo, D., & Ormerod, S. J. (2020). Food web transfer of plastics to an apex riverine predator. Global change biology, 26(7), 3846-3857. https://doi.org/10.1111/gcb.15139 Deng, Y., Zhang, Y., Lemos, B., & Ren, H. (2017). Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Scientific reports, 7(1), 46687. https://doi.org/10.1038/srep46687 Dettori, E. E., Balestrieri, A., Zapata-Perez, V. M., Bruno, D., Rubio-Saura, N., & Robledano-Aymerich, F. (2021). Distribution and diet of recovering Eurasian otter (Lutra lutra) along the natural-to-urban habitat gradient (river Segura, SE Spain). Urban Ecosystems, 1-10. https://doi.org/10.1007/s11252-021-01109-3 Di, M., & Wang, J. (2018). Microplastics in surface waters and sediments of the Three Gorges Reservoir, China. Science of the Total Environment, 616, 1620-1627. https://doi.org/10.1016/j.scitotenv.2017.10.150 Ding, J.; Jiang, F.; Li, J.; Wang, Z.; Sun, C.; Wang, Z.; Fu, L.; Ding, N.X.; He, C. (2019). Microplastics in the coral reef systems from Xisha Islands of South China Sea. Environmental Science & Technology, 53(14), 8036-8046. https://doi.org/10.1021/acs.est.9b01452 Ding, L., fan Mao, R., Guo, X., Yang, X., Zhang, Q., & Yang, C. (2019). Microplastics in surface waters and sediments of the Wei River, in the northwest of China. Science of the Total Environment, 667, 427-434. https://doi.org/10.1016/j.scitotenv.2019.02.332 Duis, K., & Coors, A. (2016). Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe, 28(1), 2. https://doi.org/10.1186/s12302-015-0069-y Eerkes-Medrano, D., Thompson, R. C., & Aldridge, D. C. (2015). Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water research, 75, 63-82. https://doi.org/10.1016/j.watres.2015.02.012 Eriksen, M.; Lebreton, L.C.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. (2014). Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PloS one, 9(12), e111913. https://doi.org/10.1371/journal.pone.0111913 Fan, C., Huang, Y. Z., Lin, J. N., & Li, J. (2021). Microplastic constituent identification from admixtures by Fourier-transform infrared (FTIR) spectroscopy: The use of polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and nylon (NY) as the model constituents. Environmental Technology & Innovation, 23, 101798. https://doi.org/10.1016/j.eti.2021.101798 Fischer, E. K., Paglialonga, L., Czech, E., & Tamminga, M. (2016). Microplastic pollution in lakes and lake shoreline sediments–a case study on Lake Bolsena and Lake Chiusi (central Italy). Environmental pollution, 213, 648-657. https://doi.org/10.1016/j.envpol.2016.03.012 Frank, Y., Ershova, A., Batasheva, S., Vorobiev, E., Rakhmatullina, S., Vorobiev, D., & Fakhrullin, R. (2022). Microplastics in freshwater: a focus on the Russian inland waters. Water, 14(23), 3909. https://doi.org/10.3390/w14233909 Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782 Guo, M., Noori, R., & Abolfathi, S. (2024). Microplastics in freshwater systems: Dynamic behaviour and transport processes. Resources, Conservation and Recycling, 205, 107578. https://doi.org/10.1016/j.resconrec.2024.107578 Haave, M., Gomiero, A., Schönheit, J., Nilsen, H., & Olsen, A. B. (2021). Documentation of microplastics in tissues of wild coastal animals. Frontiers in Environmental Science, 9, 575058. https://doi.org/10.3389/fenvs.2021.575058 Han, M., Niu, X., Tang, M., Zhang, B. T., Wang, G., Yue, W., Kong, X., & Zhu, J. (2020). Distribution of microplastics in surface water of the lower Yellow River near estuary. Science of the total environment, 707, 135601. https://doi.org/10.1016/j.scitotenv.2019.135601 Haribowo, R., Rubiantoro, P., Fadhilah, A., Denindya, Z. A. P., Kristanti, Y. A., Rismiati, W., & Arsal, M. A. (2023). Assessment of Small-Scale Microplastics Abundance and Characterization in Urban River: A Case Study in Metro River, Indonesia. Journal of Engineering & Technological Sciences, 55(2). DOI: 10.5614/j.eng.technol.sci.2023.55.2.6 Hartmann, N.B., Huffer, T., Thompson, R.C., Hassellöv, M., Verschoor, A., Daugaard, A.E., Rist, S., Karlsson, T., Brennholt, N., Cole, M., Herrling, M.P., Hess, M.C., Ivleva, N.P., Lusher, A.L., & Wagner, M. (2019). Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environmental Science & Technology 53, 1039-1047. DOI: 10.1021/acs.est.8b05297 Helm, P. A. (2017). Improving microplastics source apportionment: a role for microplastic morphology and taxonomy?. Analytical Methods, 9(9), 1328-1331. DOI: 10.1039/C7AY90016C Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the marine environment: a review of the methods used for identification and quantification. Environmental science & technology, 46(6), 3060-3075. https://doi.org/10.1021/es2031505 Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the total environment, 586, 127-141. https://doi.org/10.1016/j.scitotenv.2017.01.190 Hung, C.-M., Li, S.-H., & Lee, L.-L. (2004). Faecal DNA typing to determine the abundance and spatial organisation of otters (Lutra lutra) along two stream systems in Kinmen. Animal Conservation, 7(3), 301–311. https ://doi.org/10.1017/S1367943004001453 Hung, N., & Law, C. J. (2016). Lutra lutra (Carnivora: Mustelidae). Mammalian Species, 48(940), 109-122. https://doi.org/10.1093/mspecies/sew011 Hurley, R. R., Lusher, A. L., Olsen, M., & Nizzetto, L. (2018). Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices. Environmental science & technology, 52(13), 7409-7417. https://doi.org/10.1021/acs.est.8b01517 Imbulana, S., Tanaka, S., Moriya, A., & Oluwoye, I. (2024). Inter-event and intra-event dynamics of microplastic emissions in an urban river during rainfall episodes. Environmental Research, 243, 117882. https://doi.org/10.1016/j.envres.2023.117882 Jiang, J. J., Hanun, J. N., Chen, K. Y., Hassan, F., Liu, K. T., Hung, Y. H., & Chang, T. W. (2023). Current levels and composition profiles of microplastics in irrigation water. Environmental Pollution, 318, 120858. https://doi.org/10.1016/j.envpol.2022.120858 Jin, M., Wang, X., Ren, T., Wang, J., & Shan, J. (2021). Microplastics contamination in food and beverages: Direct exposure to humans. Journal of Food Science, 86(7), 2816-2837. https://doi.org/10.1111/1750-3841.15802 Julienne, F., Lagarde, F., & Delorme, N. (2019). Influence of the crystalline structure on the fragmentation of weathered polyolefines. Polymer Degradation and Stability, 170, 109012. https://doi.org/10.1016/j.polymdegradstab.2019.109012 Kao, J. C., Cho, C. C., & Kao, R. H. (2021). A study on transboundary marine governance of floating marine debris—taking Kinmen–Xiamen waters between China and Taiwan as an example. Sustainability, 13(24), 14063. https://doi.org/10.3390/su132414063 Khan, F. R., Catarino, A. I., & Clark, N. J. (2022). The ecotoxicological consequences of microplastics and co-contaminants in aquatic organisms: a mini-review. Emerging topics in life sciences, 6(4), 339-348. https://doi.org/10.1042/ETLS20220014 Kunz, A., Schneider, F., Anthony, N., & Lin, H. T. (2023). Microplastics in rivers along an urban-rural gradient in an urban agglomeration: correlation with land use, potential sources and pathways. Environmental Pollution, 321, 121096. https://doi.org/10.1016/j.envpol.2023.121096 Kunz, A., Walther, B. A., Löwemark, L., & Lee, Y. C. (2016). Distribution and quantity of microplastic on sandy beaches along the northern coast of Taiwan. Marine Pollution Bulletin, 111(1-2), 126-135. https://doi.org/10.1016/j.marpolbul.2016.07.022 Laskar, N., & Kumar, U. (2019). Plastics and microplastics: A threat to environment. Environmental Technology and Innovation, 14, 100352. https://doi.org/10.1016/J.ETI.2019.100352 Lebreton, L. C., Van Der Zwet, J., Damsteeg, J. W., Slat, B., Andrady, A., & Reisser, J. (2017). River plastic emissions to the world’s oceans. Nature communications, 8(1), 15611. https://doi.org/10.1038/ncomms15611 Li, C., Busquets, R., & Campos, L. C. (2020). Assessment of microplastics in freshwater systems: A review. Science of the Total Environment, 707, 135578. https://doi.org/10.1016/j.scitotenv.2019.135578 Li, J., Liu, H., & Chen, J. P. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water research, 137, 362-374. https://doi.org/10.1016/j.watres.2017.12.056 Li, R., Yu, L., Chai, M., Wu, H., & Zhu, X. (2020). The distribution, characteristics and ecological risks of microplastics in the mangroves of Southern China. Science of the Total Environment, 708, 135025. https://doi.org/10.1016/j.scitotenv.2019.135025 Li, W. C., Tse, H. F., & Fok, L. (2016). Plastic waste in the marine environment: A review of sources, occurrence and effects. Science of The Total Environment, 566, 333–349. https://doi.org/10.1016/J.SCITOTENV.2016.05.084 Liao, C. P., Chiu, C. C., & Huang, H. W. (2021). Assessment of microplastics in oysters in coastal areas of Taiwan. Environmental Pollution, 286, 117437. https://doi.org/10.1016/j.envpol.2021.117437 Lin, M. W., Wu, V. C., & Lin, C. S. (2024). Prevalence of environmental microplastics in Taiwan and its impact on the seafood safety: An integrative review. Journal of Food Safety, 4(3), e13148. https://doi.org/10.1111/jfs.13148 Linnaeus, C. (1789). Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species; cum characteribus, differentiis, synonymis, locis (Vol. 1). apud JB Delamolliere. Lithner, D., Larsson, Å., & Dave, G. (2011). Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Science of the total environment, 409(18), 3309-3324. https://doi.org/10.1016/j.scitotenv.2011.04.038 Liu, P., Shao, L., Zhang, Y., Silvonen, V., Oswin, H., Cao, Y., Guo, Z., Ma, X., & Morawska, L. (2024). Atmospheric microplastic deposition associated with GDP and population growth: Insights from megacities in northern China. Journal of Hazardous Materials, 469, 134024. https://doi.org/10.1016/j.jhazmat.2024.134024 Lusher, A. L., Mchugh, M., & Thompson, R. C. (2013). Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Marine pollution bulletin, 67(1-2), 94-99. https://doi.org/10.1016/j.marpolbul.2012.11.028 Lutra Lutra. The IUCN Red List of Threatened Species 2015: E. T12419A21935287. (n.d.).https://doi.org/http://dx.doi.org/10.2305/IUCN.UK.2015-2.RLTS.T12419A21935287.en Ma, H. Y., Kao, J. C., & Rui-Hsin, K. (2022). A study on transboundary governance The case of marine waste. International Journal of Sustainable Development & World Ecology, 29(4), 323-337. https://doi.org/10.1080/13504509.2021.2013975 Ma, H. Y., Kao, J. C., Kao, R. H., Chiang, N. T., & Cho, C. C. (2024). A study on transboundary governance of marine plastic debris—the case of an adjacent waters between China and Taiwan. Environmental Science and Pollution Research, 31(8), 11842-11856. https://doi.org/10.1007/s11356-024-31876-3 Mani, T., Hauk, A., Walter, U., & Burkhardt-Holm, P. (2015). Microplastics profile along the Rhine River. Scientific reports, 5(1), 17988. https://doi.org/10.1038/srep17988 Marmara, D., Katsanevakis, S., Brundo, M. V., Tiralongo, F., Ignoto, S., & Krasakopoulou, E. (2023). Microplastics ingestion by marine fauna with a particular focus on commercial species: a systematic review. Frontiers in Marine Science, 10, 1240969. https://doi.org/10.3389/fmars.2023.1240969 McNeish, R., Kim, L., Barrett, H., Mason, S., Kelly, J., & Hoellein, T. (2018). Microplastic in riverine fish is connected to species traits. Scientific reports, 8(1), 11639. https://doi.org/10.1038/s41598-018-29980-9 Mutuku, J., Yanotti, M., Tocock, M., & Hatton MacDonald, D. (2024). The Abundance of Microplastics in the World’s Oceans: A Systematic Review. Oceans, 5(3), 398-428. https://doi.org/10.3390/oceans5030024 Nandiyanto, A. B. D., Ragadhita, R., & Fiandini, M. (2023). Interpretation of Fourier transform infrared spectra (FTIR): A practical approach in the polymer/plastic thermal decomposition. Indonesian Journal of Science and Technology, 8(1), 113-126. https://doi.org/10.17509/ijost.v8i1.53297 Nash, R., Joyce, H., Pagter, E., Frias, J., Guinan, J., Healy, L., Kavanagh, F., Deegan, M.,& O’Sullivan, D. (2022). Deep sea microplastic pollution extends out to sediments in the Northeast Atlantic Ocean margins. Environmental Science & Technology, 57(1), 201-213. https://doi.org/10.1021/acs.est.2c05926 Nelms, S. E., Barnett, J., Brownlow, A., Davison, N. J., Deaville, R., Galloway, T. S., Lindeque, P. K., Santillo, D.,& Godley, B. J. (2019). Microplastics in marine mammals stranded around the British coast: ubiquitous but transitory?. Scientific Reports, 9(1), 1075. https://doi.org/10.1038/s41598-018-37428-3 Nelms, S. E., Galloway, T. S., Godley, B. J., Jarvis, D. S., & Lindeque, P. K. (2018). Investigating microplastic trophic transfer in marine top predators. Environmental pollution, 238, 999-1007. https://doi.org/10.1016/j.envpol.2018.02.016 Nithin, A., Sundaramanickam, A., Iswarya, P., & Babu, O. G.(2022) Hazard index of microplastics contamination in various fishes collected off Parangipettai, Southeast coast of India. Chemosphere, 307, 136037. https://doi.org/10.1016/j.chemosphere.2022.136037 Nopp-Mayr, U., Layendecker, S., Sittenthaler, M., Philipp, M., Kägi, R., & Weinberger, I. (2024). Microplastic loads in Eurasian otter (Lutra lutra) feces—targeting a standardized protocol and first results from an alpine stream, the River Inn. Environmental Monitoring and Assessment, 196(8), 707. https://doi.org/10.1007/s10661-024-12791-z O'Connor, J. D., Lally, H. T., Koelmans, A. A., Mahon, A. M., O'Connor, I., Nash, R., O'Sullivan, J. J., Bruen, M., Heerey, L., & Murphy, S. (2022). Modelling the transfer and accumulation of microplastics in a riverine freshwater food web. Environmental Advances, 8, 100192. https://doi.org/10.1016/j.envadv.2022.100192 O'Connor, J. D., Lally, H. T., Mahon, A. M., O'Connor, I., Nash, R., O'Sullivan, J. J., Bruen, M., Heerey, L., Koelmans, A. A., Marnell, F., & Murphy, S. (2022). Microplastics in Eurasian otter (Lutra lutra) spraints and their potential as a biomonitoring tool in freshwater systems. Ecosphere, 13(7), e3955. https://doi.org/10.1002/ecs2.3955 O'Connor, J. D., Mahon, A. M., Ramsperger, A. F., Trotter, B., Redondo‐Hasselerharm, P. E., Koelmans, A. A., Lally, H. T., & Murphy, S. (2020). Microplastics in freshwater biota: a critical review of isolation, characterization, and assessment methods. Global challenges, 4(6), 1800118. https://doi.org/10.1002/gch2.201800118 OECD (2022), Global Plastics Outlook: Policy Scenarios to 2060, OECD Publishing, Paris, https://doi.org/10.1787/aa1edf33-en. Okamoto, K., Nomura, M., Horie, Y., & Okamura, H. (2022). Color preferences and gastrointestinal-tract retention times of microplastics by freshwater and marine fishes. Environmental Pollution, 304, 119253. https://doi.org/10.1016/j.envpol.2022.119253 Oleynikov, A., Savage, M., Loy, A., Roos, A., Duplaix, N., & Kranz, A. (2020). IUCN Red List of Threatened Species: Lutra lutra. https://dx.doi.org/10.2305/IUCN.UK.2022-2.RLTS.T12419A218069689.en Pal, D., Prabhakar, R., Barua, V. B., Zekker, I., Burlakovs, J., Krauklis, A., Hogland, W., & Vincevica-Gaile, Z. (2025). Microplastics in aquatic systems: A comprehensive review of its distribution, environmental interactions, and health risks. Environmental Science and Pollution Research, 32(1), 56-88. https://doi.org/10.1007/s11356-024-35741-1 Patidar, K., Ambade, B., Younis, A. M., & Alluhayb, A. H. (2024). Characteristics, fate, and sources of microplastics contaminant in surface water and sediments of river water. Physics and Chemistry of the Earth, Parts a/B/C, 134, 103596. https://doi.org/10.1016/j.pce.2024.103596 Peters, C. A., & Bratton, S. P. (2016). Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA Environmental pollution, 210, 380-387. https://doi.org/10.1016/j.envpol.2016.01.018 Plastics Europe (2021). Plastics – the Facts 2021. https://plasticseurope.org Prata, J. C., da Costa, J. P., Girão, A. V., Lopes, I., Duarte, A. C., & Rocha-Santos, T. (2019). Identifying a quick and efficient method of removing organic matter without damaging microplastic samples. Science of the total environment, 686, 131-139. https://doi.org/10.1016/j.scitotenv.2019.05.456 Protection, J. & Kershaw, P.(2015). Sources, Fate, and Effects of Microplastics in the Marine Environment: A Global Assessment, UNESCO: United Nations Educational, Scientific and Cultural Organisation. COI: 20.500.12592/63vw7s. Qi, H., Liu, M., Ye, J., Wang, J., Cui, Y., Zhou, Y., Chen, P., Ke, H., Wang, C.,& Cai, M. (2023). Microplastics in the Taiwan Strait and adjacent sea: Spatial variations and lateral transport. Marine Environmental Research, 191, 106182. https://doi.org/10.1016/j.marenvres.2023.106182 Raju, M., Gandhimathi, R., & Nidheesh, P. V. (2023). The cause, fate and effect of microplastics in freshwater ecosystem: Ways to overcome the challenge. Journal of Water Process Engineering, 55, 104199. https://doi.org/10.1016/j.jwpe.2023.104199 Ramzanipour, M., & Vajargah, M. F. (2023). An Overview on Lutra lutra. Journal of Biomedical Research & Environmental Sciences, 4(4), 714–718. https://doi.org/10.37871/jbres1728 Rathore, C., Saha, M., Gupta, P., Kumar, M., Naik, A., & De Boer, J. (2023). Standardization of micro-FTIR methods and applicability for the detection and identification of microplastics in environmental matrices. Science of The Total Environment, 888, 164157. https://doi.org/10.1016/j.scitotenv.2023.164157 Rochman, C. M., Hoh, E., Kurobe, T., & Teh, S. J. (2013). Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Scientific reports, 3(1), 3263. https://doi.org/10.1038/srep03263 Roos, A., Greyerz, E., Olsson, M., & Sandegren, F. (2001). The otter (Lutra lutra) in Sweden—population trends in relation to ΣDDT and total PCB concentrations during 1968–99. Environmental Pollution, 111(3), 457-469. https://doi.org/10.1016/S0269-7491(00)00085-3 Ross M.S., Loutan A., Groeneveld T., Molenaar D., Kroetch K., Bujaczek T., Kolter S., Moon S., Huynh A., Khayam R., Franczak B.C., Camm E., Arnold V.I.,& Ruecker N.J .(2023). Estimated discharge of microplastics via urban stormwater during individual rain events. Front. Environ. Sci. 11:1090267. https://doi.org/10.3389/fenvs.2023.1090267 Saad, D., Ramaremisa, G., Ndlovu, M., & Chimuka, L. (2024). Morphological and chemical characteristics of microplastics in surface water of the Vaal River, South Africa. Environmental Processes, 11(1), 16. https://doi.org/10.1007/s40710-024-00693-8 Sacco, V. A., Zuanazzi, N. R., Selinger, A., da Costa, J. H. A., Lemunie, É. S., Comelli, C. L., Abilhoa, V., de Sousa, F. C., Fávaro, L. F., Rios Mendoza, L. M., de Castilhos Ghisi, N..,& Delariva, R. L. (2024). What are the global patterns of microplastic ingestion by fish? A scientometric review. Environmental Pollution, 123972. https://doi.org/10.1016/j.envpol.2024.123972 Sahoo, M. M. (2024). Microplastic pollution in surface sediments of Coromandel coastline, South-East Coast, India: Diversity index, carbonyl index, pollution load index, risk fraction and MPs inventory. Environmental Pollution, 355, 124179. https://doi.org/10.1016/j.envpol.2024.124179 Scherer, C., Weber, A., Stock, F., Vurusic, S., Egerci, H., Kochleus, C., Arendt, N., Foeldi, C., Dierkes, G., Wagner, M., Brennholt, N.,& Reifferscheid, G. (2020). Comparative assessment of microplastics in water and sediment of a large European river. Science of the Total Environment, 738, 139866. https://doi.org/10.1016/j.scitotenv.2020.139866 Semmouri, I., Vercauteren, M., Van Acker, E., Pequeur, E., Asselman, J., & Janssen, C. (2023). Distribution of microplastics in freshwater systems in an urbanized region: a case study in Flanders (Belgium). Science of The Total Environment, 872, 162192. https://doi.org/10.1016/j.scitotenv.2023.162192 Simpson, E. H. (1949). Measurement of diversity. nature, 163(4148), 688-688. https://doi.org/10.1038/163688a0 Smiroldo, G., Balestrieri, A., Pini, E., & Tremolada, P. (2019). Anthropogenically altered trophic webs: alien catfish and microplastics in the diet of Eurasian otters. Mammal Research, 64, 165-174. https://doi.org/10.1007/s13364-018-00412-3 Smit, M. D., Leonards, P. E., de Jongh, A. W., & van Hattum, B. G. (1998). Polychlorinated biphenyls in the Eurasian otter (Lutra lutra). Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews, 95-130. https://doi.org/10.1007/978-1-4612-0625-5_4 So, M. W. K., Vorsatz, L. D., Cannicci, S., & Not, C. (2022). Fate of plastic in the environment: from macro to nano by macrofauna. Environmental Pollution, 300, 118920. https://doi.org/10.1016/j.envpol.2022.118920 Somasundaram, R., & Radhakrishnan, N. (2023). Establishment the relationship between water quality parameter and micro plastic concentration for Adyar and Cooum estuary. Environmental Quality Management, 33(1), 121-133. https://doi.org/10.1002/tqem.22028 Tagg, A. S., Harrison, J. P., Ju-Nam, Y., Sapp, M., Bradley, E. L., Sinclair, C. J., & Ojeda, J. J. (2017). Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater. Chemical Communications, 53(2), 372–375. https://doi.org/10.1039/C6CC08798A Tanaka, K., & Takada, H. (2016). Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Scientific reports, 6(1), 34351. https://doi.org/10.1038/srep34351 Thomas, D., Schütze, B., Heinze, W. M., & Steinmetz, Z. (2020). Sample Preparation Techniques for the Analysis of Microplastics in Soil—A Review. Sustainability, 12(21), 9074. https://doi.org/10.3390/su12219074 Thompson, R. C., Courtene‐Jones, W., Boucher, J., Pahl, S., Raubenheimer, K., & Koelmans, A. A. (2024). Twenty years of microplastics pollution research—what have we learned? Science. https://doi.org/10.1126/science.adl2746 Thompson, R. C., Olsen, Y. S., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W. G., McGonigle, D. F., & Russell, A. E. (2004). Lost at sea: where is all the plastic? Science, 304(5672), 838. https://doi.org/10.1126/SCIENCE.1094559 Tien, C. J., Wang, Z. X., & Chen, C. S. (2020). Microplastics in water, sediment and fish from the Fengshan River system: Relationship to aquatic factors and accumulation of polycyclic aromatic hydrocarbons by fish. Environmental Pollution, 265, 114962. https://doi.org/10.1016/j.envpol.2020.114962 Wang, W., Ndungu, A. W., Li, Z., & Wang, J. (2017). Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Science of the Total Environment, 575, 1369-1374. https://doi.org/10.1016/j.scitotenv.2016.09.213 Wang, Z., Zhang, Y., Kang, S., Yang, L., Shi, H., Tripathee, L., & Gao, T. (2021). Research progresses of microplastic pollution in freshwater systems. Science of the Total Environment, 795, 148888. https://doi.org/10.1016/j.scitotenv.2021.148888 Wong, G., Löwemark, L., & Kunz, A. (2020). Microplastic pollution of the Tamsui River and its tributaries in northern Taiwan: spatial heterogeneity and correlation with precipitation. Environmental Pollution, 260, 113935. https://doi.org/10.1016/j.envpol.2020.113935 Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: a review. Environmental pollution, 178, 483-492. https://doi.org/10.1016/j.envpol.2013.02.031 Wu, Q., Liu, S., Chen, P., Liu, M., Cheng, S. Y., Ke, H., Huang, P., Ding, Y., & Cai, M. (2021). Microplastics in seawater and two sides of the Taiwan Strait: Reflection of the social-economic development. Marine Pollution Bulletin, 169, 112588. https://doi.org/10.1016/j.marpolbul.2021.112588 Yan, M., Nie, H., Xu, K., He, Y., Hu, Y., Huang, Y., & Wang, J. (2019). Microplastic abundance, distribution and composition in the Pearl River along Guangzhou city and Pearl River estuary, China. Chemosphere, 217, 879-886. https://doi.org/10.1016/j.chemosphere.2018.11.093 Zantis, L. J., Carroll, E. L., Nelms, S. E., & Bosker, T. (2021). Marine mammals and microplastics: A systematic review and call for standardisation. Environmental Pollution, 269, 116142. https://doi.org/10.1016/j.envpol.2020.116142 Zhang, X., Chen, Y., Li, X., Zhang, Y., Gao, W., Jiang, J., Mo, A., & He, D. (2022). Size/shape-dependent migration of microplastics in agricultural soil under simulative and natural rainfall. Science of the Total Environment, 815, 152507. https://doi.org/10.1016/j.scitotenv.2021.152507 Zhang, Y., Pu, S., Lv, X., Gao, Y., & Ge, L. (2020). Global trends and prospects in microplastics research: A bibliometric analysis. Journal of Hazardous Materials, 400, 123110. https://doi.org/10.1016/J.JHAZMAT.2020.123110 Zheng, K., Fan, Y., Zhu, Z., Chen, G., Tang, C., & Peng, X. (2019). Occurrence and species‐specific distribution of plastic debris in wild freshwater fish from the Pearl River catchment, China. Environmental Toxicology and Chemistry, 38(7), 1504-1513. https://doi.org/10.1002/etc.4437 Zou, Y.-D., Xu, Q., Zhang, G., Li, F., & Li, F. (2022). Impact of six digestion methods on the measurement of polystyrene microplastics in organisms using fluorescence intensity. Advances in Analytic Science, 3(1). https://doi.org/10.54517/aas.v3i1.1968 毛振泰(2020)。離島水資源現況及未來展望。國土及公共治理季刊,8(2),60-75。https://www.airitilibrary.com/Article/Detail?DocID=P20150327001-202006-202006180006-202006180006-60-75 林育仲(2021)。台灣西南沿海沉積物塑膠微粒分布與組成。﹝碩士論文。國立高雄科技大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/8un9bj。 國情介紹(2024年3月29日)。行政院內政部。https://www.ey.gov.tw/state/4447F4A951A1EC45/094b1d53-de8d-4393-bde6-ab092969cce4 張廖年鴻、李玲玲(2020年5月4日)。歐亞水獺金門家。臺北市立動物園保育網。https://www.zoo.gov.tw/baoyucg/hd-detail.aspx?id=10435 張廖年鴻、黃浩銘、張馨予(2023)。金門地區歐亞水獺族群監測及族群動態調查計畫,金門縣政府委託報告。 張廖年鴻、黃浩銘、張馨予(2024)。金門歐亞水獺食性生態調查(1/3),內政部國家公園署金門國家公園管理處委託辦理報告。 陳建匡(2022)。臺灣西部海域塑膠微粒在表層海水、海域底質及生物體內的分布及其相關性探討。﹝碩士論文。國立清華大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/xf6xj5。 認識金門(2021年5月7日)。金門縣政府。https://www.kinmen.gov.tw/cp.aspx?n=B602E31F7317F1AA 歐亞水獺(2023年7月31日)。農業部林業及自然保育署自然保育網。 鄭錫奇、張簡琳玟、林瑞興、楊正雄、張仕緯(2017)。2017臺灣陸域哺乳類紅皮書名錄。行政院農業委員會特有生物研究保育中心、行政院農業委員會林務局。南投。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99740 | - |
| dc.description.abstract | 金門位於臺灣海峽中段,受洋流與季風的雙重影響,沿岸經常堆積來自中國沿海城市及東亞地區的海漂垃圾,其中以塑膠廢棄物為主。這些廢棄物在自然環境中風化與降解後,進一步形成直徑小於5毫米的塑膠微粒(microplastics)。大量海洋廢棄物已對當地生態系統造成衝擊,並對金門特有之保育類物種—歐亞水獺(Lutra lutra)的棲地構成潛在威脅。本研究自2023年7月起,每季定期採集金門地區歐亞水獺排遺及其棲地水域樣本,進行塑膠微粒污染分析。樣本經化學消化、密度分離與過濾處理後,透過顯微傅立葉轉換紅外光譜儀(Micro-Fourier Transform Infrared Spectroscopy, Micro-FTIR)進行聚合物識別,並輔以儀器內建光譜資料庫與OpenSpecy線上光譜庫進行比對驗證。後續依據塑膠微粒的材質、顏色、形狀與尺寸分類,進行定性與定量探討。結合統計分析與資料視覺化方法,描繪金門地區塑膠微粒污染的時空分布特性,並透過塑膠微粒綜合多樣性指數(Microplastic Diversity Integrated Index, MDII)與聚合物危害指數(Polymer Hazard Index, PHI)評估其潛在生態風險。
本研究共採集八季歐亞水獺排遺樣本,檢出塑膠微粒共68個,材質以低密度聚乙烯(47.1%)、聚丙烯與聚乙烯為主;形狀則呈碎片、顆粒與纖維三者分布均衡;顏色以透明(55.1%)與紅色(18.8%)為主。紅色塑膠可能因顏色鮮明而被水獺誤認為獵物,亦可能經由食物鏈傳遞所致。同期亦進行四季河水樣本採集,共檢出213個塑膠微粒,主要材質為聚丙烯(52.6%)、聚乙烯與低密度聚乙烯;形狀以碎片為主(52.8%);顏色則以透明(48.8%)與綠色(17.8%)最常見。綠色塑膠多分布於金門西部市區,推測可能與漁業活動或特定塑膠製品的棄置有關。兩類樣本在尺寸分布上皆呈現尺寸越小、數量越多的趨勢,反映塑膠經環境中機械作用後易破碎為微小尺寸。 在時空分布方面,水獺排遺與河水樣本的塑膠微粒豐度並未呈現顯著差異,顯示金門地區整體塑膠污染分布相對均勻。然而,排遺樣本在金沙溪與湖尾溪流域的檢出頻率與總量較高,顯示此處為潛在污染熱區;河水樣本則以穿越市區的浯江溪流域豐度最高,顯示塑膠微粒污染與人為活動高度相關。此外,MDII與PHI數值較高者,集中於東北部的金沙溪水系與東南部的太湖流域,可能與高密度人為活動與水獺活動範圍重疊有關,突顯此區域的潛在生態風險。本研究揭示金門地區水獺及其棲地水體普遍受到塑膠微粒污染,且污染表現具有地域性差異,提供未來生態健康監測與塑膠污染治理策略的重要參考依據。 | zh_TW |
| dc.description.abstract | Kinmen Island, located in the central Taiwan Strait, is subject to the dual influence of ocean currents and monsoons, resulting in frequent accumulation of marine debris along its coastlines—primarily plastic waste originating from coastal cities in China and the broader East Asia region. As these plastics undergo weathering and degradation in the natural environment, they gradually break down into microplastics (particles <5 mm in diameter). The influx of marine debris has already impacted the local ecosystem and poses a potential threat to the habitat of the Eurasian otter (Lutra lutra), a protected species unique to Kinmen. Beginning in July 2023, this study conducted seasonal sampling of Eurasian otter feces and surrounding freshwater habitats in Kinmen to assess microplastic pollution. After undergoing chemical digestion, density separation, and filtration, samples were analyzed using Micro-Fourier Transform Infrared Spectroscopy (Micro-FTIR) to identify polymer types. Spectral identification was verified using both the instrument’s internal library and the OpenSpecy online database. Subsequently, microplastics were categorized and analyzed based on their material, color, shape, and size. Statistical analyses and data visualization techniques were employed to illustrate the spatiotemporal distribution of microplastic pollution in Kinmen. Furthermore, the potential ecological risks were evaluated using the Microplastic Diversity Integrated Index (MDII) and the Polymer Hazard Index (PHI).
A total of eight seasonal collections of otter fecal samples yielded 68 microplastic particles. The dominant polymer type was low-density polyethylene (LDPE, 47.1%), followed by polypropylene (PP) and polyethylene (PE). In terms of shape, fragments, granules, and fibers were evenly distributed. The most common colors were transparent (55.1%) and red (18.8%). The prevalence of red plastics may be due to their visual attractiveness, leading to mistaken ingestion by otters or bioaccumulation through the food chain. Concurrently, four rounds of river water sampling detected 213 microplastics, primarily composed of PP (52.6%), PE, and LDPE. Fragments accounted for the majority (52.8%), with transparent (48.8%) and green (17.8%) as the predominant colors. Green plastics were mainly distributed in the island’s western urban area, potentially linked to fishing activities or specific plastic products. Both otter and river water samples exhibited a trend of higher counts in smaller particle size classes, indicating extensive fragmentation due to environmental mechanical forces. No significant differences in microplastic abundance were observed across sampling periods or regions, suggesting a relatively uniform distribution of microplastic pollution across Kinmen. However, elevated detection frequencies and quantities in otter feces were found in the Jinsha River and Huyi River, highlighting them as potential pollution hotspots. Among river water samples, the Wujian River, which flows through the urban center, showed the highest microplastic abundance, indicating strong correlations with human activity. Notably, higher MDII and PHI values were concentrated in the northeastern Jinsha River system and the southeastern Taihu Basin, where dense human activity coincides with otter habitat, suggesting elevated ecological risk. This study demonstrates that both the Eurasian otters and their freshwater habitats in Kinmen are widely affected by microplastic contamination, with region-specific patterns. The findings provide a scientific basis for future ecological health monitoring and the development of targeted pollution management strategies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:32:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:32:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iv Abstract vi 目次 viii 圖次 xi 表次 xiii 第一章 緒論 1 1-1 研究緣起 1 1-2研究目的與架構 3 第二章 文獻回顧 4 2-1塑膠微粒 4 2-1-1 塑膠微粒基本介紹 4 2-1-2 水體中的塑膠微粒 6 2-1-3 生物體內的塑膠微粒 8 2-2臺灣的塑膠微粒污染現況 11 2-2-1 臺灣的塑膠微粒相關研究 11 2-2-2 金門環境概況 12 2-3 歐亞水獺 16 2-3-1 歐亞水獺基本介紹 16 2-3-2 歐亞水獺體內的塑膠微粒 17 第三章 採樣與研究方法 19 3-1樣本採集 19 3-1-1 採集時間與地點 19 3-1-2 採樣方法 21 3-2 前處理 24 3-2-1 冷凍乾燥 24 3-2-2 化學消化 24 3-3 密度分離 26 3-4 儀器分析 27 3-5 品質保證與品質控制 28 3-5-1 汙染控制與空白樣本 28 3-5-2 塑膠標準品實驗 28 3-6 樣本資料分類 30 3-7 資料分析 31 3-7-1 相關性分析(Correlation Analysis) 31 3-7-2 集群分析(Cluster Analysis) 31 3-7-3 塑膠微粒綜合多樣性指數(Microplastic Diversity Integrated Index, MDII) 32 3-7-4 聚合物危害指數(Polymer Hazard Index, PHI) 33 第四章 結果與討論 34 4-1 塑膠標準品驗證結果 34 4-2 塑膠微粒豐度 36 4-2-1 水獺排遺樣本豐度時空分析 36 4-2-2 河水樣本豐度時空分析 41 4-3 塑膠微粒種類 45 4-3-1 水獺排遺樣本 45 4-3-2 河水樣本 47 4-4 塑膠微粒顏色 50 4-4-1 水獺排遺樣本 50 4-4-2 河水樣本 52 4-5 塑膠微粒形狀 54 4-5-1 水獺排遺樣本 54 4-5-2 河水樣本 56 4-6 塑膠微粒尺寸 58 4-6-1 水獺排遺樣本 58 4-6-2 河水樣本 60 4-7 環境因素與河水樣本塑膠微粒之關係 62 4-7-1 水質參數 62 4-7-2 降雨量 64 4-8 樣本性質綜合探討 68 4-8-1 樣本資料統計分析 68 4-8-2 塑膠微粒常見型態 75 4-9 水獺棲地生態風險與汙染 79 4-9-1 塑膠微粒的多樣性 79 4-9-2 個體鑑定與食性比對 82 4-9-3 生態風險 86 第五章 結論與建議 91 5-1 結論 91 5-2 建議 93 參考文獻 94 附錄 111 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 歐亞水獺 | zh_TW |
| dc.subject | 塑膠微粒 | zh_TW |
| dc.subject | 聚合物危害指數 | zh_TW |
| dc.subject | 塑膠微粒綜合多樣性指數 | zh_TW |
| dc.subject | 顯微傅立葉轉換紅外光譜儀 | zh_TW |
| dc.subject | Micro-Fourier Transform Infrared Spectroscopy (Micro-FTIR) | en |
| dc.subject | Microplastic Diversity Integrated Index(MDII) | en |
| dc.subject | Polymer Hazard Index(PHI) | en |
| dc.subject | Eurasian otter(Lutra lutra) | en |
| dc.subject | Microplastics | en |
| dc.title | 塑膠微粒污染於金門地區歐亞水獺與棲地水域關聯性之研究 | zh_TW |
| dc.title | Relationships among Microplastics, Eurasian Otter (Lutra Lutra), and Aquatic Habitats: A study in Kinmen, Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 高立誠;楊汶達;林逸彬;柯佳吟 | zh_TW |
| dc.contributor.oralexamcommittee | Li-Cheng Kao;Wen-Ta Yang;Yi-Pin Lin;Chia-Ying Ko | en |
| dc.subject.keyword | 塑膠微粒,歐亞水獺,顯微傅立葉轉換紅外光譜儀,塑膠微粒綜合多樣性指數,聚合物危害指數, | zh_TW |
| dc.subject.keyword | Microplastics,Eurasian otter(Lutra lutra),Micro-Fourier Transform Infrared Spectroscopy (Micro-FTIR),Microplastic Diversity Integrated Index(MDII),Polymer Hazard Index(PHI), | en |
| dc.relation.page | 148 | - |
| dc.identifier.doi | 10.6342/NTU202503425 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地質科學系 | - |
| dc.date.embargo-lift | 2028-01-01 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2028-01-01 | 9.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
