請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99735完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂明璋 | zh_TW |
| dc.contributor.advisor | Ming-Chang Lu | en |
| dc.contributor.author | 洪簡揚 | zh_TW |
| dc.contributor.author | Jian-Yang Hong | en |
| dc.date.accessioned | 2025-09-17T16:31:31Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | 1. Chen, H., et al., Continuous directional water transport on the peristome surface of Nepenthes alata. Nature, 2016. 532(7597): p. 85-89.
2. Zheng, Y., et al., Directional water collection on wetted spider silk. Nature, 2010. 463(7281): p. 640-643. 3. Ju, J., et al., A multi-structural and multi-functional integrated fog collection system in cactus. Nature Communications, 2012. 3(1): p. 1247. 4. Tian, Y., et al., Large-scale water collection of bioinspired cavity-microfibers. Nature Communications, 2017. 8(1): p. 1080. 5. Abdelgawad, M. and A.R. Wheeler, The Digital Revolution: A New Paradigm for Microfluidics. Advanced Materials, 2009. 21(8): p. 920-925. 6. deMello, A.J., Control and detection of chemical reactions in microfluidic systems. Nature, 2006. 442(7101): p. 394-402. 7. Nishimoto, S. and B. Bhushan, Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Advances, 2013. 3(3): p. 671-690. 8. Zhang, L., et al., Functional and versatile superhydrophobic coatings via stoichiometric silanization. Nature Communications, 2021. 12(1): p. 982. 9. Zhu, T., et al., A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning. Chemical Engineering Journal, 2020. 399: p. 125746. 10. Miljkovic, N., et al., Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces. Nano Letters, 2013. 13(1): p. 179-187. 11. Panão, M.R.O. and A.L.N. Moreira, Thermo- and fluid dynamics characterization of spray cooling with pulsed sprays. Experimental Thermal and Fluid Science, 2005. 30(2): p. 79-96. 12. Seon Ahn, H. and M. Hwan Kim, A Review on Critical Heat Flux Enhancement With Nanofluids and Surface Modification. Journal of Heat Transfer, 2011. 134(2). 13. Liang, G. and I. Mudawar, Review of pool boiling enhancement by surface modification. International Journal of Heat and Mass Transfer, 2019. 128: p. 892-933. 14. Mori, S. and Y. Utaka, Critical heat flux enhancement by surface modification in a saturated pool boiling: A review. International Journal of Heat and Mass Transfer, 2017. 108: p. 2534-2557. 15. Song, Y.-y., et al., Bioinspired Fabrication of one dimensional graphene fiber with collection of droplets application. Scientific Reports, 2017. 7(1): p. 12056. 16. Ju, J., et al., Bioinspired Conical Copper Wire with Gradient Wettability for Continuous and Efficient Fog Collection. Advanced Materials, 2013. 25(41): p. 5937-5942. 17. Tenjimbayashi, M. and K. Manabe, A review on control of droplet motion based on wettability modulation: principles, design strategies, recent progress, and applications. Sci Technol Adv Mater, 2022. 23(1): p. 473-497. 18. Nie, J., et al., Self-Powered Microfluidic Transport System Based on Triboelectric Nanogenerator and Electrowetting Technique. ACS Nano, 2018. 12(2): p. 1491-1499. 19. Dai, H., et al., Controllable High-Speed Electrostatic Manipulation of Water Droplets on a Superhydrophobic Surface. Advanced Materials, 2019. 31(43): p. 1905449. 20. Tang, X. and L. Wang, Loss-Free Photo-Manipulation of Droplets by Pyroelectro-Trapping on Superhydrophobic Surfaces. ACS Nano, 2018. 12(9): p. 8994-9004. 21. Zhao, Y., et al., Magnetic Liquid Marbles: Manipulation of Liquid Droplets Using Highly Hydrophobic Fe3O4 Nanoparticles. Advanced Materials, 2010. 22(6): p. 707-710. 22. Kavokine, N., et al., Light-Driven Transport of a Liquid Marble with and against Surface Flows. Angewandte Chemie International Edition, 2016. 55(37): p. 11183-11187. 23. Linke, H., et al., Self-Propelled Leidenfrost Droplets. Physical Review Letters, 2006. 96(15): p. 154502. 24. Dupeux, G., et al., Viscous mechanism for Leidenfrost propulsion on a ratchet. EPL (Europhysics Letters), 2011. 96(5): p. 58001. 25. Ok, J.T., et al., Propulsion of droplets on micro- and sub-micron ratchet surfaces in the Leidenfrost temperature regime. Microfluidics and Nanofluidics, 2011. 10(5): p. 1045-1054. 26. Leidenfrost, J.G., On the fixation of water in diverse fire. International Journal of Heat and Mass Transfer, 1966. 9(11): p. 1153-1166. 27. Quéré, D., Leidenfrost Dynamics. Annual Review of Fluid Mechanics, 2013. 45(1): p. 197-215. 28. Carey, V.P., Liquid-vapor phase-change phenomena : an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment. 2nd ed. Liquid-vapor phase-change phenomena : an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment. 2008, New York, ;: Taylor & Francis. 29. Rayleigh, L., On the pressure developed in a liquid during the collapse of a spherical cavity: Philosophical Magazine Series 6, 34, 94–98. 1917. 30. Mikic, B.B., W.M. Rohsenow, and P. Griffith, On bubble growth rates. International Journal of Heat and Mass Transfer, 1970. 13(4): p. 657-666. 31. Lamb, H., Hydrodynamics. 1924: University Press. 32. Pohlhausen, K., Zur näherungsweisen integration der differentialgleichung der iaminaren grenzschicht. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1921. 1(4): p. 252-290. 33. van Stralen, S.J.D., et al., Bubble growth rates in pure and binary systems: Combined effect of relaxation and evaporation microlayers. International Journal of Heat and Mass Transfer, 1975. 18(3): p. 453-467. 34. Van Stralen, S., et al., Bubble growth rates in nucleate boiling of water at subatmospheric pressures. International Journal of Heat and Mass Transfer, 1975. 18(5): p. 655-669. 35. Fritz, W., Berechnung des maximalvolumes von dampfblasen. Physik. Zeitschr, 1935. 36: p. 379-384. 36. Zuber, N., Hydrodynamic aspects of boiling heat transfer. 1959: United States Atomic Energy Commission, Technical Information Service. 37. Ruckenstein, E., A physical model for nucleate boiling heat transfer. International Journal of Heat and Mass Transfer, 1964. 7(2): p. 191-198. 38. Cole, R., Bubble frequencies and departure volumes at subatmospheric pressures. AIChE Journal, 1967. 13(4): p. 779-783. 39. Cole, R. and W.M. Rohsenow. Correlation of bubble departure diameters for boiling of saturated liquids. in Chem. Eng. Prog. Symp. Ser. 1969. 211 213. 40. Kutateladze, S. and I. Gogonin, Growth rate and detachment diameter of a vapor bubble in free convection boiling of a saturated liquid. Teplofizika Vysokikh Temperatur, 1979. 17: p. 792-797. 41. Stephan, K., Heat transfer in condensation and boiling. 1992: Springer. 42. Borishanskiy, V., et al., Correlation of data on heat transfer in, and elementary characteristics of the nucleate boiling mechanism. 1981. 43. Jensen, M.K. and G.J. Memmel. Evaluation of bubble departure diameter correlations. in International Heat Transfer Conference Digital Library. 1986. Begel House Inc. 44. Chou, C.-Y., Superb Mobility of a Janus Droplet (thesis), in Department of Mechanical Engineering. 2019, National Chiao Tung University. 45. Sahoo, V., et al., Elongated Bouncing and Reduced Contact Time of a Drop in the Janus State. Langmuir, 2018. 34(37): p. 10874-10879. 46. Li, J., et al., Directional transport of high-temperature Janus droplets mediated by structural topography. Nature Physics, 2016. 12(6): p. 606-612. 47. Otsu, N., A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 1979. 9(1): p. 62-66. 48. Lagubeau, G., et al., Leidenfrost on a ratchet. Nature Physics, 2011. 7(5): p. 395-398. 49. Marín, Á.G., et al., Capillary droplets on Leidenfrost micro-ratchets. Physics of Fluids, 2012. 24(12). 50. Kruse, C., et al., Self-propelled droplets on heated surfaces with angled self-assembled micro/nanostructures. Microfluidics and Nanofluidics, 2015. 18(5): p. 1417-1424. 51. Arter, J.M., et al., Self-propelling Leidenfrost droplets on a variable topography surface. Applied Physics Letters, 2018. 113(24). 52. Bouillant, A., et al., Leidenfrost wheels. Nature Physics, 2018. 14(12): p. 1188-1192. 53. Dodd, L.E., et al., Low-Friction Self-Centering Droplet Propulsion and Transport Using a Leidenfrost Herringbone-Ratchet Structure. Physical Review Applied, 2019. 11(3): p. 034063. 54. Cheng, Z., et al., Designable and unidirectional motion of Leidenfrost droplets on heated asymmetric microgrooves written by femtosecond laser. Applied Physics Letters, 2024. 124(6). 55. Hoerner, S.F., Fluid Dynamic Drag, published by the author. Midland Park, NJ, 1965: p. 16-35. 56. Wang, S., et al., A Simplified Model for the Study of Film-Boiling Droplet Motion on Microscale Ratchets. Applied Mechanics, 2024. 5(1): p. 91-101. 57. Nukiyama, S., The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. International Journal of Heat and Mass Transfer, 1966. 9(12): p. 1419-1433. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99735 | - |
| dc.description.abstract | 高速、長距離且定向的液滴自推進現象,對於微尺度熱管理與高效熱交換等應用具有重要價值。現有研究多利用萊頓弗洛斯特狀態下所形成的低阻力蒸氣層與週期性結構(如棘齒表面),實現液滴的自發與高速運動。然而,蒸氣層亦大幅降低了液滴與加熱表面間的熱交換效率,限制其在高效熱傳領域的應用。因此,本研究旨在開發兼具高速自推進與高效熱交換功能之新型週期性表面,以突破現有技術瓶頸。
本論文設計並製備出矽/白金混合V型微溝槽表面(PTVM),並驗證其可同時產生接觸沸騰與萊頓弗洛斯特現象。此機制使液滴在接觸沸騰區域獲得顯著推力的同時,亦可藉由萊頓弗洛斯特現象有效減少其所受之阻力,進而促使自推進亞努斯液滴於表面上實現高速、定向且長距離之運動。藉由接觸沸騰的發生,液滴於運動過程中能與加熱表面進行高效熱交換,有效改善傳統棘齒表面熱傳效率低落之問題。 本研究結合紅外線與高速攝影技術,量測液滴運動行為及表面溫度分布,並利用ANSYS暫態熱傳系統計算液滴與PTVM間的接觸熱通量。實驗結果顯示,當表面溫度達239 °C時,液滴可達最高瞬時速度0.67 m/s;於255 °C時,液滴與表面間之熱通量可達4.5 MW/m²,展現本設計於提升液滴運動效率與熱傳性能上的雙重優勢。進一步之動力學與理論分析證實,液滴驅動力主要來自不對稱結構引發的非對稱氣泡動量力,理論模型與實驗結果於亞努斯區域呈現良好一致性,確立了主要驅動機制。 本研究不僅突破傳統棘齒表面無法兼顧高速液滴運動與高效熱傳的限制,亦為微尺度熱管理、快速冷卻與智慧液滴操控等應用領域帶來嶄新解決方案,具備重要學術價值與應用潛力。 | zh_TW |
| dc.description.abstract | High-speed, long-distance, and directional self-propelled droplet motion holds great potential for applications in microscale thermal management and efficient heat exchange. Previous studies have primarily utilized the low resistance vapor layer formed under the Leidenfrost state, together with periodic structures such as ratchet surfaces, to achieve spontaneous and rapid droplet motion. However, the presence of the vapor layer also greatly reduces the heat exchange efficiency between the droplet and the heated surface, limiting practical applications in high-performance heat transfer. Therefore, this study aims to develop a novel periodic surface that combines both high-speed self-propulsion and efficient heat exchange, overcoming the limitations of existing techniques.
In this work, a silicon/platinum hybrid V-shaped microgroove surface (PTVM) was designed and fabricated. It was demonstrated that this surface can simultaneously induce both contact boiling and the Leidenfrost effect. This mechanism enables the droplet to gain significant propulsion in the contact boiling region while effectively reducing resistance through the Leidenfrost phenomenon, resulting in high-speed, directional, and long-distance motion of self-propelled Janus droplets on the surface. The occurrence of contact boiling further allows efficient heat exchange between the moving droplet and the heated surface, effectively improving the low heat transfer efficiency seen in traditional ratchet surfaces. Infrared thermography and high-speed imaging were used to measure droplet dynamics and surface temperature distribution, while calculations of the contact heat flux between the droplet and the PTVM were performed using the ANSYS Transient Thermal System. Experimental results showed that at a surface temperature of 239 °C, the maximum instantaneous velocity of the droplet reached 0.67 m/s, and at 255 °C, the heat flux between the droplet and the surface reached 4.5 MW/m², demonstrating the dual advantages of the proposed design in enhancing both droplet mobility and heat transfer performance. Further dynamic and theoretical analysis confirmed that the driving force of the droplet mainly originates from asymmetric bubble momentum induced by the structured surface, with the theoretical model and experimental results showing good consistency in the Janus region, thus clarifying the main propulsion mechanism. This study not only overcomes the limitation of conventional ratchet surfaces in simultaneously achieving high-speed droplet motion and efficient heat transfer, but also offers novel solutions for microscale thermal management, rapid cooling, and smart droplet manipulation, demonstrating significant academic value and application potential. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:31:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:31:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目次 v 圖次 vii 表次 x 符號表 xi 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究目標與論文編排 3 第二章 理論原理 8 2.1 異質成核 8 2.1.1 慣性控制成長 9 2.1.2 熱傳控制成長 11 2.1.3 通用方程式 13 2.1.4 氣泡脫離直徑 14 2.2 氣泡動量力 17 第三章 表面設計與實驗系統 20 3.1 表面設計 20 3.1.1 表面製備 20 3.2 實驗系統 21 3.2.1 紅外線攝影機之校正 21 3.2.2 萊頓弗洛斯特溫度實驗 22 3.2.3 液滴動態及熱傳實驗 24 第四章 液滴動態分析 31 4.1 萊頓弗洛斯特溫度實驗 31 4.2 液滴動態實驗 31 4.2.1 高速攝影機影像處理 31 4.2.2 液滴之位移與速度 32 4.2.3 液滴受力分析 33 4.2.4 合力分析 35 4.2.5 非對稱氣泡動量力 36 第五章 液滴熱傳分析 57 5.1 液滴熱傳實驗 57 5.1.1 紅外線攝影機影像處理 57 5.1.2 ANSYS計算設定 58 5.1.3 ANSYS計算結果 60 5.1.4 非對稱氣泡動量力 61 5.2 結果比較 62 第六章 總結與未來工作 75 6.1 總結 75 6.2 未來工作 75 參考文獻 77 附錄 81 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 萊頓弗洛斯特現象 | zh_TW |
| dc.subject | 微溝槽結構 | zh_TW |
| dc.subject | 液滴自推 | zh_TW |
| dc.subject | 氣泡動量力 | zh_TW |
| dc.subject | 過熱表面 | zh_TW |
| dc.subject | Leidenfrost effect | en |
| dc.subject | Superheated surface | en |
| dc.subject | Bubble momentum force | en |
| dc.subject | Droplet self-propulsion | en |
| dc.subject | Microgroove structure | en |
| dc.title | 微溝槽表面上自推進亞努斯液滴之動力學 | zh_TW |
| dc.title | Dynamics of Self-Propelled Janus Droplets on Microgroove Surface | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王安邦;李明蒼 | zh_TW |
| dc.contributor.oralexamcommittee | An-Bang Wang;Ming-Tsang Lee | en |
| dc.subject.keyword | 萊頓弗洛斯特現象,微溝槽結構,液滴自推,氣泡動量力,過熱表面, | zh_TW |
| dc.subject.keyword | Leidenfrost effect,Microgroove structure,Droplet self-propulsion,Bubble momentum force,Superheated surface, | en |
| dc.relation.page | 91 | - |
| dc.identifier.doi | 10.6342/NTU202503489 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 7.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
