Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 重點科技研究學院
  3. 奈米工程與科學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99733
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林啟萬zh_TW
dc.contributor.advisorChii-Wann Linen
dc.contributor.author郭昌儒zh_TW
dc.contributor.authorChang-Ru Guoen
dc.date.accessioned2025-09-17T16:31:10Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation[1] A. P. Turner, "Biosensors: sense and sensibility," Chemical Society Reviews, vol. 42, no. 8, pp. 3184-3196, 2013.
[2] M. D. Mukherjee et al., "Wearable Biosensors in Modern Healthcare: Emerging Trends and Practical Applications," Talanta Open, p. 100486, 2025.
[3] J. Homola, "Surface plasmon resonance sensors for detection of chemical and biological species," Chemical reviews, vol. 108, no. 2, pp. 462-493, 2008.
[4] M. Piliarik and J. Homola, "Surface plasmon resonance (SPR) sensors: approaching their limits?," Optics express, vol. 17, no. 19, pp. 16505-16517, 2009.
[5] J. D. J. Homola, "Springer Ser Chem Sens Biosens (2006) 4: 191–206," Surface Plasmon Resonance Based Sensors, vol. 4, pp. 191-206, 2006.
[6] C. Dincer et al., "Disposable sensors in diagnostics, food, and environmental monitoring," Advanced materials, vol. 31, no. 30, p. 1806739, 2019.
[7] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, "Biosensing with plasmonic nanosensors," Nature materials, vol. 7, no. 6, pp. 442-453, 2008.
[8] D. Capelli, V. Scognamiglio, and R. Montanari, "Surface plasmon resonance technology: Recent advances, applications and experimental cases," TrAC Trends in Analytical Chemistry, vol. 163, p. 117079, 2023.
[9] M. Soler, M.-C. Estevez, R. Villar-Vazquez, J. I. Casal, and L. M. Lechuga, "Label-free nanoplasmonic sensing of tumor-associate autoantibodies for early diagnosis of colorectal cancer," Analytica chimica acta, vol. 930, pp. 31-38, 2016.
[10] B. Dubois et al., "Preclinical Alzheimer's disease: definition, natural history, and diagnostic criteria," Alzheimer's & Dementia, vol. 12, no. 3, pp. 292-323, 2016.
[11] M. P. Murphy and H. LeVine III, "Alzheimer's disease and the amyloid-β peptide," Journal of Alzheimer’s disease, vol. 19, no. 1, pp. 311-323, 2010.
[12] M.-I. Aguilar and D. H. Small, "Surface plasmon resonance for the analysis of β-amyloid interactions and fibril formation in Alzheimer’s disease research," Neurotoxicity research, vol. 7, no. 1, pp. 17-27, 2005.
[13] S. Palani et al., "Multispectral localized surface plasmon resonance (msLSPR) reveals and overcomes spectral and sensing heterogeneities of single gold nanoparticles," ACS nano, vol. 17, no. 3, pp. 2266-2278, 2023.
[14] N. Bhalla and A. Q. Shen, "Localized surface plasmon resonance sensing and its interplay with fluidics," Langmuir, vol. 40, no. 19, pp. 9842-9854, 2024.
[15] L. Song et al., "Amplifying the signal of localized surface plasmon resonance sensing for the sensitive detection of Escherichia coli O157: H7," Scientific reports, vol. 7, no. 1, p. 3288, 2017.
[16] M. Sistani et al., "Plasmon-Driven Hot Electron Transfer at Atomically Sharp Metal–Semiconductor Nanojunctions," ACS photonics, vol. 7, no. 7, pp. 1642-1648, 2020.
[17] M. L. Brongersma, N. J. Halas, and P. Nordlander, "Plasmon-induced hot carrier science and technology," Nature nanotechnology, vol. 10, no. 1, pp. 25-34, 2015.
[18] C. Ng et al., "Hot carrier extraction with plasmonic broadband absorbers," Acs Nano, vol. 10, no. 4, pp. 4704-4711, 2016.
[19] R. W. Wood, "XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 4, no. 21, pp. 396-402, 1902.
[20] U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves)," Journal Of The Optical Society Of America, vol. 31, no. 3, pp. 213-222, 1941.
[21] R. H. Ritchie, "Plasma losses by fast electrons in thin films," Physical review, vol. 106, no. 5, p. 874, 1957.
[22] R. H. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, "Surface-plasmon resonance effect in grating diffraction," Physical review letters, vol. 21, no. 22, p. 1530, 1968.
[23] E. Kretschmann and H. Raether, "Radiative decay of non radiative surface plasmons excited by light," Zeitschrift für Naturforschung A, vol. 23, no. 12, pp. 2135-2136, 1968.
[24] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik A Hadrons and nuclei, vol. 216, no. 4, pp. 398-410, 1968.
[25] S. A. Maier, Plasmonics: fundamentals and applications. Springer, 2007.
[26] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," nature, vol. 424, no. 6950, pp. 824-830, 2003.
[27] L. Novotny and B. Hecht, Principles of nano-optics. Cambridge university press, 2012.
[28] G. Allison et al., "A Fabry-Pérot cavity coupled surface plasmon photodiode for electrical biomolecular sensing," Nature communications, vol. 12, no. 1, p. 6483, 2021.
[29] Z. Sun and Y. Fang, "Fabry-Pérot interference cavity length tuned by plasmonic nanoparticle metasurface for nanophotonic device design," ACS Applied Nano Materials, vol. 3, no. 11, pp. 10732-10738, 2020.
[30] F. Xiao, G. Li, K. Alameh, and A. Xu, "Fabry–Pérot-based surface plasmon resonance sensors," Optics letters, vol. 37, no. 22, pp. 4582-4584, 2012.
[31] F. Kadhum, S. Kafi, A. Karam, A. Al-Zuky, M. Al-Kadhemy, and A. Al Saleh, "Simulation of surface plasmon resonance (SPR) layers of gold with silicon nitride as a Bi-layer biosensor," Digest Journal of Nanomaterials & Biostructures (DJNB), vol. 17, no. 2, 2022.
[32] J. C. Gomes and L. C. Oliveira, "A novel simulador for agile and graphical modeling of surface plasmon resonance based sensors," Scientific Reports, vol. 13, no. 1, p. 18920, 2023.
[33] Y. W. Fen and W. M. Mat Yunus, "Optical characterization of multi layer thin films using surface plasmon resonance method: From electromagnetic theory to sensor application," in AIP Conference Proceedings, 2012, vol. 1482, no. 1: American Institute of Physics, pp. 132-135.
[34] X. Guo, "Surface plasmon resonance based biosensor technique: a review," Journal of biophotonics, vol. 5, no. 7, pp. 483-501, 2012.
[35] M. M. Miller and A. A. Lazarides, "Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment," The Journal of Physical Chemistry B, vol. 109, no. 46, pp. 21556-21565, 2005.
[36] B. Liedberg, C. Nylander, and I. Lunström, "Surface plasmon resonance for gas detection and biosensing," Sensors and actuators, vol. 4, pp. 299-304, 1983.
[37] P. Englebienne, "Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes," Analyst, vol. 123, no. 7, pp. 1599-1603, 1998.
[38] K. M. Mayer and J. H. Hafner, "Localized surface plasmon resonance sensors," Chemical reviews, vol. 111, no. 6, pp. 3828-3857, 2011.
[39] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles. John Wiley & Sons, 2008.
[40] P. Jahanshahi, M. Ghomeishi, and F. R. M. Adikan, "Study on dielectric function models for surface plasmon resonance structure," The scientific world journal, vol. 2014, no. 1, p. 503749, 2014.
[41] J.-J. Greffet, "Introduction to surface plasmon theory," in Plasmonics: From Basics to Advanced Topics: Springer, 2012, pp. 105-148.
[42] B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, "LSPR-based nanobiosensors," Nano today, vol. 4, no. 3, pp. 244-251, 2009.
[43] Y. Hong, Y.-M. Huh, D. S. Yoon, and J. Yang, "Nanobiosensors based on localized surface plasmon resonance for biomarker detection," Journal of Nanomaterials, vol. 2012, no. 1, p. 759830, 2012.
[44] J. Gwamuri, D. Güney, and J. Pearce, "Advances in Plasmonic Light Trapping in Thin‐Film Solar Photovoltaic Devices," Solar cell nanotechnology, pp. 241-269, 2013.
[45] H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices," Nature materials, vol. 9, no. 3, pp. 205-213, 2010.
[46] X. Fan, W. Zheng, and D. J. Singh, "Light scattering and surface plasmons on small spherical particles," Light: Science & Applications, vol. 3, no. 6, pp. e179-e179, 2014.
[47] F. Alzoubi, A. A. Ahmad, I. A. Aljarrah, A. Migdadi, and Q. M. Al-Bataineh, "Localize surface plasmon resonance of silver nanoparticles using Mie theory," Journal of Materials Science: Materials in Electronics, vol. 34, no. 32, p. 2128, 2023.
[48] A. Subhan and A.-H. I. Mourad, "Plasmonic metal nanostructures as performance enhancers in emerging solar cells: A review," Next Materials, vol. 6, p. 100509, 2025.
[49] H. Lee, Y. Park, K. Song, and J. Y. Park, "Surface plasmon-induced hot carriers: generation, detection, and applications," Accounts of Chemical Research, vol. 55, no. 24, pp. 3727-3737, 2022.
[50] H. Lee, Y. K. Lee, E. Hwang, and J. Y. Park, "Enhanced surface plasmon effect of Ag/TiO2 nanodiodes on internal photoemission," The Journal of Physical Chemistry C, vol. 118, no. 11, pp. 5650-5656, 2014.
[51] X. T. Kong, Z. Wang, and A. O. Govorov, "Plasmonic nanostars with hot spots for efficient generation of hot electrons under solar illumination," Advanced Optical Materials, vol. 5, no. 15, 2017.
[52] T. P. Rossi, P. Erhart, and M. Kuisma, "Hot-carrier generation in plasmonic nanoparticles: the importance of atomic structure," ACS nano, vol. 14, no. 8, pp. 9963-9971, 2020.
[53] P. K. Jain and M. A. El-Sayed, "Plasmonic coupling in noble metal nanostructures," Chemical Physics Letters, vol. 487, no. 4-6, pp. 153-164, 2010.
[54] P. K. Jain and M. A. El-Sayed, "Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells," Nano letters, vol. 7, no. 9, pp. 2854-2858, 2007.
[55] N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, "Plasmons in strongly coupled metallic nanostructures," Chemical reviews, vol. 111, no. 6, pp. 3913-3961, 2011.
[56] M. Ahlawat, D. Mittal, and V. Govind Rao, "Plasmon-induced hot-hole generation and extraction at nano-heterointerfaces for photocatalysis," Communications materials, vol. 2, no. 1, p. 114, 2021.
[57] C. J. Papachristou, "The physical meaning of Fermi-Dirac statistics."
[58] D. A. Neamen and D. Biswas, Semiconductor physics and devices. McGraw-Hill higher education New York, 2011.
[59] S. M. Sze, Y. Li, and K. K. Ng, Physics of semiconductor devices. John wiley & sons, 2021.
[60] Y. Zhu, M. B. Raschke, D. Natelson, and L. Cui, "Molecular scale nanophotonics: hot carriers, strong coupling, and electrically driven plasmonic processes," Nanophotonics, vol. 13, no. 13, pp. 2281-2322, 2024.
[61] L. Zhou, Q. Huang, and Y. Xia, "Plasmon-induced hot electrons in nanostructured materials: generation, collection, and application to photochemistry," Chemical Reviews, vol. 124, no. 14, pp. 8597-8619, 2024.
[62] R. Singh, M. Kumar, U. Kim, and H. Seo, "Self‐Powered and High‐Performance Alternating Current Photodetectors to enhance Broadband Photodetection," Advanced Electronic Materials, vol. 8, no. 10, p. 2200392, 2022.
[63] C. Clavero, "Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices," Nature Photonics, vol. 8, no. 2, pp. 95-103, 2014.
[64] Y. Liu et al., "Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions," Nature, vol. 557, no. 7707, pp. 696-700, 2018.
[65] R. T. Tung, "The physics and chemistry of the Schottky barrier height," Applied Physics Reviews, vol. 1, no. 1, 2014.
[66] J. Bardeen, "Surface states and rectification at a metal semi-conductor contact," Physical review, vol. 71, no. 10, p. 717, 1947.
[67] M. L. Cohen, "Schottky and Bardeen limits for Schottky barriers," Journal of Vacuum Science Technology, vol. 16, no. 5, pp. 1135-1136, 1979.
[68] W. Spicer, N. Newman, C. Spindt, Z. Liliental‐Weber, and E. Weber, "‘‘Pinning’’and Fermi level movement at GaAs surfaces and interfaces," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 8, no. 3, pp. 2084-2089, 1990.
[69] L. J. Brillson and Y. Lu, "ZnO Schottky barriers and Ohmic contacts," Journal of Applied Physics, vol. 109, no. 12, 2011.
[70] O. W. Richardson, The emission of electricity from hot bodies. Longmans, Green and Company, 1916.
[71] C. Herring and M. Nichols, "Thermionic emission," Reviews of modern physics, vol. 21, no. 2, p. 185, 1949.
[72] B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, "Distinguishing between plasmon-induced and photoexcited carriers in a device geometry," Nature communications, vol. 6, no. 1, p. 7797, 2015.
[73] P. Wang et al., "Modulating the Schottky barrier heights of plasmonic metal/semiconductor heterojunctions by graphene substrates for boosting photocatalytic water oxidation," Applied Surface Science, vol. 642, p. 158561, 2024.
[74] K. Song, Y. Roh, H. Park, and J. Y. Park, "Plasmonic Hot Carrier‐Driven Photoelectrochemical Processes: Principle, Detection and Application," Advanced Materials Interfaces, vol. 12, no. 4, p. 2400273, 2025.
[75] A. Yadav, S. Kumar, A. Kumar, and P. Sharan, "Effect of 2-D nanomaterials on sensitivity of plasmonic biosensor for efficient urine glucose detection," Frontiers in Materials, vol. 9, p. 1106251, 2023.
[76] V. Sharma, A. Kumar, S. Saharan, and S. Semwal, "Graphene/Au/MIP-coated D-shaped optical fiber–based SPR sensor for ethanol detection," Plasmonics, vol. 18, no. 5, pp. 1639-1649, 2023.
[77] C. Wang, "Metal-Dielectric-Metal Structure Based Schottky Barrier Surface Plasmon Resonance Biosensor: Design, Fabrication, and Verification," Master's thesis, National Taiwan University, Taipei, Taiwan, 2017.
[78] C. Wang, L.-Q. Chen, Y.-M. Chen, and C.-W. Lin, "Hot electron based surface plasmon resonance sensor with Au-TiO2-Ti planar micro comb-structure Schottky diodes," in Plasmonics in Biology and Medicine XVI, 2019, vol. 10894: SPIE, pp. 159-164.
[79] Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, "Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes," Nano letters, vol. 11, no. 10, pp. 4251-4255, 2011.
[80] Y.-H. Liao, "Localized Surface Plasmon Resonance Biosensor Based On Schottky Nanodiode and Rapid Thermal Annealing," Master's thesis, National Taiwan University, Taipei, Taiwan, 2022.
[81] T. Tsukagoshi, Y. Kuroda, K. Noda, N. Binh-Khiem, T. Kan, and I. Shimoyama, "Compact surface plasmon resonance system with Au/Si schottky barrier," Sensors, vol. 18, no. 2, p. 399, 2018.
[82] C.-Y. CHIEN, "Design, Fabrication, and Characterization of a USB Interface N-doped Si/Au Schottky Barrier Surface Plasmon Resonance Sensor," Master's thesis, National Taiwan University, Taipei, Taiwan, 2025.
[83] "EVERBEING Int’l Corp., EB-050 Micropositioner." [Online]. Available: https://www.probestation.tw/product/37 (accessed.
[84] "KEITHLEY 6487 Picoammeter/Voltage Source." Tektronix. [Online]. Available: https://www.tek.com/en/datasheet/series-6400-picoammeters/6487-picoammeter-voltage-source (accessed.
[85] "ADVANCE RIKO, Inc., MILA-5050." [Online]. Available: https://www.advanceriko.com/product/mila-5050/ (accessed.
[86] O. Y. Olikh, "Review and test of methods for determination of the Schottky diode parameters," Journal of Applied Physics, vol. 118, no. 2, 2015.
[87] A. Tataroğlu and F. Pür, "The Richardson constant and barrier inhomogeneity at Au/Si3N4/n-Si (MIS) Schottky diodes," Physica Scripta, vol. 88, no. 1, p. 015801, 2013.
[88] S. Cheung and N. Cheung, "Extraction of Schottky diode parameters from forward current‐voltage characteristics," Applied physics letters, vol. 49, no. 2, pp. 85-87, 1986.
[89] S. E. Ltd, "1N60P 1N60S Point Contact Germanium Diode," 2003.
[90] A. Keffous et al., "Effect of series resistance on the performance of high resistivity silicon Schottky diode," Applied surface science, vol. 218, no. 1-4, pp. 337-343, 2003.
[91] J. Nicholls, S. Dimitrijev, P. Tanner, and J. Han, "Description and verification of the fundamental current mechanisms in silicon carbide Schottky barrier diodes," Scientific reports, vol. 9, no. 1, p. 3754, 2019.
[92] X. Hu, H. Wang, M. Wang, and Z. Zang, "Interfacial defects passivation using fullerene-polymer mixing layer for planar-structure perovskite solar cells with negligible hysteresis," Solar Energy, vol. 206, pp. 816-825, 2020.
[93] J.-H. Cho et al., "Recrystallization and grain growth of cold-drawn gold bonding wire," Metallurgical and Materials Transactions A, vol. 34, no. 5, pp. 1113-1125, 2003.
[94] T. Arizumi, M. Hirose, and N. Altaf, "Au-Ag alloy-silicon Schottky barriers," Japanese Journal of Applied Physics, vol. 7, no. 8, p. 870, 1968.
[95] G. Kurtuldu and F. Krogh, "Insight into crystallization paths in Au–Si eutectic alloy through the energy-temperature diagram," Materialia, vol. 16, p. 101093, 2021.
[96] T. Ano et al., "Controlling the Schottky barrier at the Pt/TiO2 interface by intercalation of a self-assembled monolayer with oriented dipole moments," The Journal of Physical Chemistry C, vol. 125, no. 25, pp. 13984-13989, 2021.
[97] C. Wang and X. Li, "Interface dipole induced threshold voltage shift in the Al2O3/GaN heterostructure," Applied Surface Science, vol. 622, p. 156954, 2023.
[98] A. Mutlu, M. Can, and C. Tozlu, "Self-assembly monolayer impact on Schottky diode electrical properties," Physica B: Condensed Matter, vol. 696, p. 416686, 2025.
[99] K. Yap, K. D. Krantzman, and R. J. Lavrich, "Inductive effects on intramolecular hydrogen bond strength: An investigation of the effect of an electron-withdrawing CF3 group adjacent to an alcohol hydrogen bond donor," The Journal of Physical Chemistry A, vol. 127, no. 38, pp. 7892-7897, 2023.
[100] M. C. Elliott, C. E. Hughes, P. J. Knowles, and B. D. Ward, "Alkyl groups in organic molecules are NOT inductively electron-releasing," Organic & Biomolecular Chemistry, vol. 23, no. 2, pp. 352-359, 2025.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99733-
dc.description.abstract本研究聚焦於金/矽(Au/n-Si)金屬–半導體異質接面在不同介質環境下之光電特性與載子傳輸行為,透過理論推導、數值模擬與實驗驗證進行多層次分析。初步以傳輸矩陣法與米氏理論探討表面電漿共振與侷域式共振模態,並透過多物理場模擬分析空氣與水中場型分佈,揭示折射率與結構非對稱性之影響。
實驗方面,製作金/矽晶片並量測其電流–電壓特性,結果顯示經熱退火處理可有效提升導通性,使導通電流提升逾 200%。裝置於 850 奈米光源下展現穩定微安培等級光電流,並於溶液環境中驗證光響應隨折射率升高而下降,符合侷域式表面電漿子共振感測原理。
進一步引入甲基化與去甲基化 HOXB6 DNA 分子進行分子修飾,形成具偶極性之自組裝單層。其偶極場除促進熱載子注入、增強光電流外,亦可能降低界面缺陷密度,進一步改善元件導通與感測表現。
綜上所述,本研究成功建立電流型侷域式表面電漿子共振感測平台,具微型化與生醫感測潛力,未來可應用於穿戴式與智慧型感測元件之開發。
zh_TW
dc.description.abstractThis study presents a systematic investigation of Au/n-Si metal–semiconductor heterojunctions for current-mode localized surface plasmon resonance (LSPR) sensing. Through theoretical modeling, numerical simulation, and experimental validation, we analyze how dielectric environment and surface modification affect optoelectronic properties. Using the transfer matrix method and Mie theory, we model SPR and LSPR characteristics and field distributions, revealing that water induces leaky modes while air enhances confinement.
Experiments confirm diode-like behavior with enhanced current after thermal annealing. Under 850 nm illumination, the devices generate stable microampere-scale photocurrent. Refractive index sensing with DI water, NaCl, and glucose shows a decreasing trend in photocurrent as refractive index increases, consistent with LSPR mechanisms. Moreover, self-assembled monolayers of methylated and unmethylated HOXB6 DNA introduce interfacial dipoles aligned with the built-in electric field. Although Schottky barrier height slightly increases, the dipole-induced field assists hot carrier injection, enhancing photocurrent. DNA adsorption may also passivate interfacial defects.
These results demonstrate the feasibility of integrating LSPR and Schottky barrier effects for label-free biosensing, with potential applications in wearable and miniaturized diagnostic platforms.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:31:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:31:10Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目錄
誌謝 i
摘要 iii
Abstract iv
目次 v
圖次 ix
表次 xvii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.2.1 光學式SPR生物感測器 2
1.2.2 以電訊號量測取代光學量測之可行性與優勢 3
1.3 論文架構 4
第二章 基本原理與文獻回顧 5
2.1 表面電漿子共振基本原理 5
2.2 多層傅涅耳理論與其在SPR模擬之應用 12
2.3 局部表面電漿子共振(LSPR)基本原理 19
2.4 熱載子產生之半導體能階模型與能量轉移機制 28
2.4.1 半導體能帶理論與費米能階 29
2.4.2 摻雜效應對費米能階與載子濃度之影響 32
2.4.3 準費米能階與非平衡條件 34
2.5 金屬–半導體接面與蕭特基勢壘模型 36
2.5.1 蕭特基勢壘形成機制 37
2.5.2 蕭特基勢壘整流特性 40
2.5.3 熱載子傳輸機制與理想二極體行為 42
2.6 基於 LSPR 熱載子效應之蕭特基感測原理 45
2.7 實驗室前人研究 48
2.7.1 Au–TiO₂–Ti 角度調變型 SPR 熱載子感測晶片 48
2.7.2 熱退火處理Au-TiO₂-Ti 結構之LSPR 感測晶片 50
2.7.3 Au/n-Silicon結構之SPR 熱載子感測晶片 52
第三章 研究材料與方法 55
3.1 研究材料 55
3.2 研究儀器 55
3.3 實驗架構 56
3.4 晶片製程 60
3.4.1 晶圓切割 60
3.4.2 晶圓清洗流程 60
3.4.3 金屬蒸鍍流程 61
3.4.4 退火實驗流程 62
3.4.5 電流-電壓曲線與光電流量測流程 63
3.4.6 物質檢測實驗量測流程 64
3.5 電學參數分析方法 65
3.5.1 半對數曲線擬合法分析理想二極體行為 65
3.5.2 Cheung 方法分析金屬–半導體接面之電性參數 66
3.6 理論模擬 68
3.6.1 表面電漿子共振光學模擬流程與參數設定 68
3.6.2 有限元素法於多物理場模擬之方法與分析架構 69
3.6.3 局部表面電漿子共振奈米結構電場響應之模擬探討 71
第四章 研究結果與討論 74
4.1 理論模擬結果分析 74
4.1.1 表面電漿子共振光學模擬分析 74
4.1.2 有限元素法於多物理場之模擬與分析 77
4.1.2.1 平面結構表面電漿子共振光學模擬 78
4.1.2.2 局部表面電漿子共振奈米結構電場響應模擬 82
4.2 晶片電學性質量測 87
4.2.1 電學量測系統測試 88
4.2.2 48 nm Au/n-Silicon電學性質量測 88
4.2.2.1 電流–電壓(I–V)特性測試 88
4.2.2.2 理想二極體方程式數值擬合 90
4.3 不同退火溫度對晶片之影響 91
4.3.1 不同退火溫度樣品之電學特性測試 91
4.3.2 數值擬合 93
4.3.2.1 200度退火處理之48 nm Au/n-Si 樣品 94
4.3.2.2 300度退火處理之48 nm Au/n-Si 樣品 95
4.3.2.3 400度退火處理之48 nm Au/n-Si 樣品 96
4.3.3 光電流響應測試 98
4.3.4 Cheung 方法數值擬合 100
4.4 物質檢測實驗 101
4.4.1 葡萄糖溶液檢測 102
4.4.2 食鹽水溶液檢測 103
4.4.3 DNA序列檢測應用 106
4.5 本研究與前人研究結果比較 109
第五章 結論與未來展望 110
參考文獻 112
附錄一 MATLAB模擬角度調變下表面電漿子共振程式 120
附錄二 MATLAB 擬合理想二極體電流–電壓特性之程式碼 122
附錄三 Cheung's Method擬合理想二極體電流–電壓特性之程式碼 124
-
dc.language.isozh_TW-
dc.subject生物感測器zh_TW
dc.subject表面電漿子共振zh_TW
dc.subject侷域式表面電漿子共振zh_TW
dc.subject蕭特基二極體zh_TW
dc.subject快速熱退火處理zh_TW
dc.subjectSchottky diodeen
dc.subjectbiosensoren
dc.subjectsurface plasmon resonance (SPR)en
dc.subjectlocalized surface plasmon resonance (LSPR)en
dc.subjectrapid thermal annealing (RTA)en
dc.title熱退火金/n型矽蕭特基侷域式表面電漿子共振感測器之製作與光電特性分析zh_TW
dc.titleFabrication and Optoelectronic Characterization of a Thermal-Annealed Au/n-Silicon Schottky Junction for Localized Surface Plasmon Resonance Sensing Applicationsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林致廷;許聿翔zh_TW
dc.contributor.oralexamcommitteeChih-Ting Lin;Yu-Hsiang Hsuen
dc.subject.keyword生物感測器,表面電漿子共振,侷域式表面電漿子共振,蕭特基二極體,快速熱退火處理,zh_TW
dc.subject.keywordbiosensor,surface plasmon resonance (SPR),localized surface plasmon resonance (LSPR),Schottky diode,rapid thermal annealing (RTA),en
dc.relation.page125-
dc.identifier.doi10.6342/NTU202503026-
dc.rights.note未授權-
dc.date.accepted2025-08-09-
dc.contributor.author-college重點科技研究學院-
dc.contributor.author-dept奈米工程與科學學位學程-
dc.date.embargo-liftN/A-
顯示於系所單位:奈米工程與科學學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
9.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved