Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99731
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor單秋成zh_TW
dc.contributor.advisorChow-Shing Shinen
dc.contributor.author侯羿廷zh_TW
dc.contributor.authorYi-Ting Houen
dc.date.accessioned2025-09-17T16:30:43Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citation1. Hollaway, L. C. (2010). A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Construction and Building Materials, 24(12), 2419–2445. https://doi.org/10.1016/j.conbuildmat.2010.04.062
2. Bank, L. C. (2006). Composites for construction: Structural design with FRP materials. Wiley. https://doi.org/10.1002/9780470121429
3. Jiang, S., Yao, W., Chen, J., & Tao, S. (2018). Time dependent behavior of FRP-strengthened RC beams subjected to preload: Experimental study and finite element modeling. Composite Structures, 200, 599–613. https://doi.org/10.1016/j.compstruct.2018.05.110
4. Zhu, Y., Chen, Z., Jiang, Y., Zhao, T., Li, Y., Chen, J., & Fang, D. (2020). Design, fabrication and stiffness analysis of a novel GFRP sandwiched pipe with stiffened core. Thin-Walled Structures, 156, 106982. https://doi.org/10.1016/j.tws.2020.106982
5. Zalkin, H., & Murphy, T. (1975). Utilization of ammonia for tryptophan synthesis. Biochemical and Biophysical Research Communications, 67(4), 1370–1377. https://doi.org/10.1016/0006-291x(75)90178-3
6. Selzer, R., & Friedrich, K. (1997). Mechanical properties and failure behaviour of carbon fibre-reinforced polymer composites under the influence of moisture. Composites Part A: Applied Science and Manufacturing, 28(6), 595–604. https://doi.org/10.1016/S1359-835X(96)00154-6
7. Hassani, S., Mousavi, M., & Gandomi, A. H. (2021). Structural health monitoring in composite structures: A comprehensive review. Sensors, 22(1), 153. https://doi.org/10.3390/s22010153
8. Giurgiutiu, V. (2005). Tuned Lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring. Journal of Intelligent Material Systems and Structures, 16(4), 291–305. https://doi.org/10.1177/1045389X05050106
9. Thostenson, E. T., & Chou, T.-W. (2006). Carbon nanotube networks: Sensing of distributed strain and damage for life prediction and self healing. Advanced Materials, 18(21), 2837–2841. https://doi.org/10.1002/adma.200600977
10. Chung, D. D. L. (2001). Structural health monitoring by electrical resistance measurement. Smart Materials and Structures, 10(4), 624–636. https://doi.org/10.1088/0964-1726/10/4/305
11. Suresh Kumar, C., Arumugam, V., Kenned, J. J., Karthikeyan, R., & Jac Fredo, A. R. (2020). Experimental investigation on the effect of glass fiber orientation on impact damage resistance under cyclic indentation loading using AE monitoring. Nondestructive Testing and Evaluation, 35(4), 408–426. https://doi.org/10.1080/10589759.2019.1684491
12. Mallick, P. K. (2007). Fiber-reinforced composites: Materials, manufacturing, and design (3rd ed.). CRC Press. https://doi.org/10.1201/9781420005981
13. Karataş, M. A., & Gökkaya, H. (2018). A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Defence Technology, 14(4), 318–326. https://doi.org/10.1016/j.dt.2018.02.001
14. Ganesh Gupta, K. B. N. V. S., Hiremath, M. M., Ray, B. C., & Prusty, R. K. (2021). Improved mechanical responses of GFRP composites with epoxy-vinyl ester interpenetrating polymer network. Polymer Testing, 93, 107008. https://doi.org/10.1016/j.polymertesting.2020.107008
15. Hofmann, M., Shahid, A. T., Machado, M., Garrido, M., Bordado, J. C., & Correia, J. R. (2022). GFRP biocomposites produced with a novel high-performance bio-based unsaturated polyester resin. Composites Part A: Applied Science and Manufacturing, 161, 107098. https://doi.org/10.1016/j.compositesa.2022.107098
16. Madenci, E., Özkılıç, Y. O., & Gemi, L. (2020). Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations. Composite Structures, 254, 112806. https://doi.org/10.1016/j.compstruct.2020.112806
17. Kumar, P., Garg, A., & Agarwal, B. D. (1986). Dynamic compressive behaviour of unidirectional GFRP for various fibre orientations. Materials Letters, 4(2), 111–116. https://doi.org/10.1016/0167-577X(86)90061-3
18. Blümel, T., Sahr, R. K., Krimmer, A., & Bardenhagen, A. (2024). Investigation and calculation of the longitudinal compressive strength of unidirectional glass fiber reinforced polymer considering the fiber orientation distribution. Composites Part C: Open Access, 14, 100480. https://doi.org/10.1016/j.jcomc.2024.100480
19. Karvanis, K., Rusnáková, S., Žaludek, M., & Čapka, A. (2018). Preparation and dynamic mechanical analysis of glass or carbon fiber/polymer composites. IOP Conference Series: Materials Science and Engineering, 362, 012005. https://doi.org/10.1088/1757-899X/362/1/012005
20. Gao, Q., Xin, H., & Zhang, Y. (2023). Experimental investigation on transverse tension-tension fatigue behavior of pultruded glass-fiber reinforced polymer (GFRP) unidirectional lamina. Construction and Building Materials, 399, 132527. https://doi.org/10.1016/j.conbuildmat.2023.132527
21. Alajarmeh, O., Manalo, A., Ferdous, W., Almasabha, G., Tarawneh, A., Awwad, K. E., Safonov, A., Zeng, X., & Schubel, P. (2023). Fatigue behavior of unidirectional fiber‐reinforced pultruded composites with high volume fiber fraction. Fatigue & Fracture of Engineering Materials & Structures, 46(6), 2034–2048. https://doi.org/10.1111/ffe.13979
22. Kedari, V. R., Farah, B. I., & Hsiao, K.-T. (2011). Effects of vacuum pressure, inlet pressure, and mold temperature on the void content, volume fraction of polyester/e-glass fiber composites manufactured with VARTM process. Journal of Composite Materials, 45(26), 2727–2742. https://doi.org/10.1177/0021998311415442
23. Hsiao, K.-T., & Heider, D. (2012). Vacuum assisted resin transfer molding (VARTM) in polymer matrix composites. In Manufacturing Techniques for Polymer Matrix Composites (PMCs) (pp. 310–347). Elsevier. https://doi.org/10.1533/9780857096258.3.310

24. Agwa, M., Youssef, S. M., Ali-Eldin, S. S., & Megahed, M. (2022). Integrated vacuum assisted resin infusion and resin transfer molding technique for manufacturing of nano-filled glass fiber reinforced epoxy composite. Journal of Industrial Textiles, 51(3_suppl), 5113S–5144S. https://doi.org/10.1177/1528083720932337
25. Rafiee, M., Fallah, A., Hosseini Rad, S., & Labrosse, M. R. (2025). Compression, impact and residual strength after impact properties of graphene/fiberglass/epoxy multiscale composites. Composites Communications, 53, 102254. https://doi.org/10.1016/j.coco.2025.102254
26. Liu, Q., Shi, Z., & Liu, X. (2025). Transverse compressive properties of unidirectional GFRP composites: Size effect, elevated temperature, and cyclic freezing-hydrothermal aging. Construction and Building Materials, 460, 139860. https://doi.org/10.1016/j.conbuildmat.2025.139860
27. Khaneghahi, M. H., Pournamazian Najafabadi, E., Bazli, M., Vatani Oskouei, A., & Zhao, X.-L. (2020). The effect of elevated temperatures on the compressive section capacity of pultruded GFRP profiles. Construction and Building Materials, 249, 118725. https://doi.org/10.1016/j.conbuildmat.2020.118725
28. Wu, J., & Zhang, C. (2024). Modified constitutive models and mechanical properties of GFRP after high-temperature cooling. Buildings, 14(2), 439. https://doi.org/10.3390/buildings14020439
29. Zhang, L., Liu, W., Wang, L., & Ling, Z. (2020). On-axis and off-axis compressive behavior of pultruded GFRP composites at elevated temperatures. Composite Structures, 236, 111891. https://doi.org/10.1016/j.compstruct.2020.111891
30. Fulmali, A. O., Patnaik, S., Rathore, D. K., Bhattacharjee, D., Gwalani, B., Ray, B. C., & Prusty, R. K. (2023). Enhanced extreme temperature bending and delamination resistance of GFRP composites through Z-directional aligned nano-reinforcement: Emphasizing the effects of CNT functionalization. Composites Science and Technology, 244, 110272. https://doi.org/10.1016/j.compscitech.2023.110272
31. Zhang, Y., Liu, Y., Hou, S., Geng, J., & Wang, P. (2024). Study on moisture absorption characteristics of glass fibre‐reinforced epoxy resin material for composite insulators based on the 3D‐Fick model. High Voltage, 9(4), 888–901. https://doi.org/10.1049/hve2.12433
32. Wang, X., Wang, B., Zhang, Y., Suo, Y., Jia, P., & Huang, F. (2022). Dispersion of mechanical properties of high-strength glass fibre composites in hygrothermal environment. Polymers, 14(17), 3514. https://doi.org/10.3390/polym14173514
33. Svetlik-Haley, S., & Karbhari, V. M. (2025). Humidity and immersion based hygrothermal aging of pultruded GFRP composites: Moisture uptake and diffusion. Journal of Composite Materials, 59(8), 991–1011. https://doi.org/10.1177/00219983241303420
34. Morăraş, C., Barsanescu, P. D., & Tugui, C. A. (2020). Some aspects regarding the influence of humidity on the tensile characteristics of GFRP composite material. IOP Conference Series: Materials Science and Engineering, 997(1), 012100. https://doi.org/10.1088/1757-899X/997/1/012100
35. Narongdej, P., Tseng, D., Gomez, R., Barjasteh, E., & Moghtadernejad, S. (2025). Hygrothermal aging of glass fiber-reinforced benzoxazine composites. Eng, 6(3), 60. https://doi.org/10.3390/eng6030060
36. Wang, K., Chen, Y., Long, H., Baghani, M., Rao, Y., & Peng, Y. (2021). Hygrothermal aging effects on the mechanical properties of 3D printed composites with different stacking sequence of continuous glass fiber layers. Polymer Testing, 100, 107242. https://doi.org/10.1016/j.polymertesting.2021.107242
37. Kumar, V., Elen, M., Sushmita, K., Overman, N. R., Nickerson, E., Murdy, P., Presuel‐Moreno, F., & Fifield, L. S. (2025). Hygrothermal aging and recycling effects on mechanical and thermal properties of recyclable thermoplastic glass fiber composites. Polymer Composites, 46(5), 4332–4349. https://doi.org/10.1002/pc.29242


38. Hussnain, S. M., Shah, S. Z. H., Megat‐Yusoff, P. S. M., Choudhry, R. S., & Hussain, M. Z. (2024). Hygrothermal effects on the durability of resin‐infused thermoplastic E‐glass fiber‐reinforced composites in marine environment. Polymer Composites, 45(15), 13901–13923. https://doi.org/10.1002/pc.28743
39. Bérot, O.-S., Hassoune-Rhabbour, B., Acheritobehere, H., Laforet, C., Canot, H., Durand, P., & Nassiet, V. (2025). Study of the hygrothermal aging of a phenolic matrix and glass fiber composite. Journal of Composite Materials. https://doi.org/10.1177/00219983251331731
40. Liu, P., Jin, Z., Chen, Y., Chen, Z., Li, Y., Xu, H., Zhao, Z., et al. (2023). Lifetime prediction and aging mechanism of glass fiber reinforced acrylate‐styrene‐acrylonitrile/polycarbonate composite under hygrothermal conditions. Macromolecular Materials and Engineering, 308(12), 2300167. https://doi.org/10.1002/mame.202300167
41. Angrizani, C. C., De Oliveira, B. F., Lorandi, N. P., Ornaghi, H. L., & Amico, S. C. (2022). Combined hygrothermal aging and mechanical loading effect on unidirectional glass/epoxy composites. Polymers and Polymer Composites, 30, 09673911221095261. https://doi.org/10.1177/09673911221095261
42. Liao, D., Gu, T., Yan, J., Yu, Z., Dou, J., Hu, M., Zhao, F., Liu, J., & Wang, J. (2024). Study on the effect of multi-factor compound action on long-term tensile performance of GFRP composite pipe and life prediction analysis. Composite Structures, 348, 118478. https://doi.org/10.1016/j.compstruct.2024.118478
43. Krauklis, A. E., Starkova, O., Gibhardt, D., Kalinka, G., Aouissi, H. A., Burlakovs, J., Sabalina, A., & Fiedler, B. (2023). Reversible and irreversible effects on the epoxy GFRP fiber-matrix interphase due to hydrothermal aging. Composites Part C: Open Access, 12, 100395. https://doi.org/10.1016/j.jcomc.2023.100395
44. Arunkumar, T., Karthikeyan, R., Ram Subramani, R., Viswanathan, K., & Anish, M. (2020). Synthesis and characterisation of multi-walled carbon nanotubes (MWCNTs). International Journal of Ambient Energy, 41(4), 452–456. https://doi.org/10.1080/01430750.2018.1472657

45. Wang, M., Zhang, K., Dai, X.-X., Li, Y., Guo, J., Liu, H., Li, G.-H., et al. (2017). Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure. Nanoscale, 9(31), 11017–11026. https://doi.org/10.1039/C7NR02322G
46. Hong, C., Li, Q., Zhuang, Z., Xie, H., & Xu, S. (2024). Electrical and piezoresistive properties of ultra-high toughness cementitious composite incorporating multi-walled carbon nanotubes: Testing, analyzing, and phenomenological modeling. Cement and Concrete Composites, 154, 105757. https://doi.org/10.1016/j.cemconcomp.2024.105757
47. Penvern, N., Langlet, A., Gratton, M., Mansion, M., & Aït Hocine, N. (2020). Experimental characterization of the quasi-static and dynamic piezoresistive behavior of multi-walled carbon nanotubes/elastomer composites. Journal of Reinforced Plastics and Composites, 39(7–8), 299–310. https://doi.org/10.1177/0731684420901754
48. Tsai, H.-J., Li, W.-C., & Hsu, W.-K. (2021). Excellent piezoresistivity of composites made from networked carbon nanotubes and polydimethylsiloxane: An intertube barrier driven strain sensing. Journal of Science: Advanced Materials and Devices, 6(4), 538–542. https://doi.org/10.1016/j.jsamd.2021.07.001
49. Panchagnula, K. K., & Kuppan, P. (2019). Improvement in the mechanical properties of neat GFRPs with multi-walled CNTs. Journal of Materials Research and Technology, 8(1), 366–376. https://doi.org/10.1016/j.jmrt.2018.02.009
50. Jung, Y.-T., Roh, H. D., Lee, I.-Y., & Park, Y.-B. (2020). Strain sensing and progressive failure monitoring of glass-fiber-reinforced composites using percolated carbon nanotube networks. Functional Composites and Structures, 2(1), 015006. https://doi.org/10.1088/2631-6331/ab7bc4


51. He, D., Fan, B., Zhao, H., Lu, X., Yang, M., Liu, Y., & Bai, J. (2017). Design of electrically conductive structural composites by modulating aligned CVD-grown carbon nanotube length on glass fibers. ACS Applied Materials & Interfaces, 9(3), 2948–2958. https://doi.org/10.1021/acsami.6b13397
52. Lian, B., Chen, L., Liu, M., Fang, T., Hu, J., & Li, H. (2020). The quantitative analysis for the formation of carbon fiber paper and its influencing factors. Journal of Materials Science, 55(15), 6566–6580. https://doi.org/10.1007/s10853-020-04465-1
53. Li, L., Wang, Y., Lei, T., Xie, Z., & Liang, Y. (2024). Structure and properties of carbon fiber paper with gradient porous structure. Journal of Porous Materials, 31(3), 887–895. https://doi.org/10.1007/s10934-024-01566-z
54. Huang, S., Ye, J., Su, M., Zhang, Y., Meng, Y., Meng, X., & Xia, X. (2024). Efficient preparation and characterization of carbon fiber paper using phenolic resin in-pulp addition method. International Journal of Hydrogen Energy, 71, 506–514. https://doi.org/10.1016/j.ijhydene.2024.05.150
55. Wang, L., & Aslani, F. (2021). Mechanical properties, electrical resistivity and piezoresistivity of carbon fibre-based self-sensing cementitious composites. Ceramics International, 47(6), 7864–7879. https://doi.org/10.1016/j.ceramint.2020.11.133
56. Chung, D. D. L. (2023). A review to elucidate the multi-faceted science of the electrical-resistance-based strain/temperature/damage self-sensing in continuous carbon fiber polymer-matrix structural composites. Journal of Materials Science, 58(2), 483–526. https://doi.org/10.1007/s10853-022-08106-7
57. Chung, D. D. L. (2020). A critical review of piezoresistivity and its application in electrical-resistance-based strain sensing. Journal of Materials Science, 55(32), 15367–15396. https://doi.org/10.1007/s10853-020-05099-z
58. Wang, X., Wang, B., Lu, S., Zhang, L., Fan, X., Cui, X., Ma, C., & Du, Y. (2024). Comparative analysis for strain response and life monitoring of composite using carbon-based nanosensors. Sensors and Actuators A: Physical, 366, 115021. https://doi.org/10.1016/j.sna.2024.115021
59. Buggisch, C., Gibhardt, D., Felmet, N., Tetzner, Y., & Fiedler, B. (2021). Strain sensing in GFRP via fully integrated carbon nanotube epoxy film sensors. Composites Part C: Open Access, 6, 100191. https://doi.org/10.1016/j.jcomc.2021.100191
60. Al-Sabagh, A., Taha, E., Kandil, U., Awadallah, A., Nasr, G.-A., & Taha, M. R. (2017). Monitoring moisture damage propagation in GFRP composites using carbon nanoparticles. Polymers, 9(3), 94. https://doi.org/10.3390/polym9030094
61. Çelik, M., Noble, T., Haseeb, A., Maguire, J., Robert, C., & Ó Brádaigh, C. M. (2022). Contact resistance heating of unidirectional carbon fibre tows in a powder-epoxy towpregging line. Plastics, Rubber and Composites, 51(8), 383–392. https://doi.org/10.1080/14658011.2022.2108982
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99731-
dc.description.abstract玻璃纖維強化高分子複合材料(Glass Fiber Reinforced Polymer, GFRP)因具備高強度、耐腐蝕與輕量化等優勢,廣泛應用於工程結構中。然而長期服役於海水等濕熱環境下,其機械性質易隨時間劣化,為提升其健康監測能力,本研究透過結構健康監測(Structural Health Monitoring, SHM),監測試片在機械負載和濕熱環境影響下的劣化程度。本研究以真空輔助樹脂轉注(Vacuum Assisted Resign Transfer, VARTM)製程製作GFRP試片,並探討在材料基材中將奈米碳管混入環氧樹脂,另外製作玻璃纖維布疊層中加入碳纖維紙疊層之GFRP試片,探討兩種試片對電性監測之幫助。
為了解試片在濕熱老化的拉伸與疲勞破壞情況,對試片在濕熱環境中進行不同天數的環境處理,並同時進行導電性監測,探討不同濕熱環境下的機械性質與監測電壓之間的相關性並透過對機械試驗破壞之試片的微觀觀察探討其關聯性,最後比較在機械試驗之監控上、濕熱老化的監控上,在GFRP的疊層中加入碳纖維紙能否更好的監控試片破壞與老化。
實驗結果顯示,加入碳纖維紙的GFRP在濕熱環境中的電壓監測值隨時間增加,且與拉伸強度與疲勞壽命有一定關聯性,相較單純混入奈米碳管的 GFRP,更好的監控了試片之濕熱老化與破壞。
總體來說,本研究發現濕熱環境對玻璃纖維複合材料的弱化,並運用導電性監測、機械試驗性質來探討兩者的相互關係。進而得知加入碳纖維紙在GFRP 結構健康度監控中可作為提升複合材料感測能力之方法。然而,量化破壞的程度才是能真正運用在實體的結構健康監測上,需更了解進濕熱老化、機械性質、與導電性材料的關係,以提高對複合材料結構性能監測的準確度。
zh_TW
dc.description.abstractGlass Fiber Reinforced Polymer (GFRP) composites are widely used in engineering structures due to their advantages such as high strength, corrosion resistance, and lightweight characteristics. However, when subjected to long-term service in hygrothermal environments such as seawater, their mechanical properties tend to degrade over time. To enhance their health monitoring capabilities, this study applies Structural Health Monitoring (SHM) to evaluate the degradation behavior of GFRP specimens under mechanical loading and hygrothermal conditions.
The GFRP specimens were fabricated using the Vacuum Assisted Resin Transfer Molding (VARTM) process. Two types of conductive GFRP composites were prepared: (1) epoxy resin mixed with carbon nanotubes (CNTs), and (2) GFRP laminates with embedded carbon fiber paper layers. This study investigates how these conductive modifications contribute to electrical signal-based monitoring.
To understand the tensile and fatigue failure behavior under hygrothermal aging, specimens underwent environmental conditioning for varying durations. During this process, electrical conductivity monitoring was conducted to explore the relationship between mechanical properties and voltage responses under different hygrothermal conditions. Fractured specimens from mechanical testing were further analyzed microscopically to examine the failure mechanisms. The effectiveness of carbon fiber paper in monitoring mechanical damage and environmental degradation in GFRP laminates was then compared.
Experimental results show that the voltage signals of GFRP specimens embedded with carbon fiber paper increased with time under hygrothermal aging, and these changes correlated with tensile strength and fatigue life. Compared to GFRP specimens modified only with CNTs, those with carbon fiber paper demonstrated improved monitoring capability for both aging and failure behavior.
In summary, this study confirms that hygrothermal environments weaken the performance of GFRP composites. By integrating electrical conductivity monitoring and mechanical testing, the correlation between material degradation and sensing responses was established. The inclusion of carbon fiber paper is shown to be a promising method for enhancing the sensing capability of GFRP in applications. However, quantitative evaluation of damage severity remains essential for practical SHM deployment. Further investigation into the interplay among hygrothermal aging, mechanical behavior, and conductive networks is necessary to improve the accuracy of structural health assessments for composite materials.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:30:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:30:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審查書 I
致謝 II
摘要 III
ABSTRACT IV
目次 VI
圖次 XI
表次 XV
1 第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
2 第二章 文獻回顧 3
2.1 GFRP 3
2.2 真空轉注 3
2.3 複合材料之濕熱老化機制 4
2.3.1 溫度之影響 4
2.3.2 濕度之影響 4
2.3.3 玻纖複合材料之濕熱老化機制 5
2.3.4 SEM微觀角度分析濕熱老化 6
2.4 以導電性監測複合材料之破壞 6
2.4.1 多壁奈米碳管 6
2.4.2 奈米碳管導電原理與性質 7
2.4.3 奈米碳管複合材料 7
2.4.4 奈米碳管應用於玻纖複合材料健康度監測 7
2.4.5 碳纖維紙 8
2.4.6 碳纖維紙導電原理與性質 8
2.4.7 碳纖維紙應用於玻纖複合材料導電性 9
2.5 總結 9
3 第三章 實驗設備與材料 10
3.1 製作玻璃纖維複材之材料 10
3.1.1 單向玻璃纖維布 10
3.1.2 碳纖維紙 10
3.1.3 環氧樹脂 11
3.1.4 多壁奈米碳管 12
3.1.5 雙導電銅箔膠帶 12
3.1.6 墊片 13
3.2 製作玻璃纖維複材之設備 13
3.2.1 真空幫浦 13
3.2.2 切割圓鋸機 14
3.2.3 熱風循環烘箱 14
3.2.4 砂帶機 15
3.3 混合樹脂之設備 15
3.3.1 電磁加熱攪拌器 15
3.3.2 超音波打碎機 16
3.3.3 高速均質機 16
3.3.4 真空脫泡系統 17
3.3.5 攪拌器 17
3.4 濕熱老化之設備 18
3.4.1 恆溫水槽 18
3.4.2 恆溫恆濕箱 18
3.5 實驗設備 19
3.5.1 萬能材料試驗機 19
3.5.2 電子天平 20
3.5.3 NI-6009訊號擷取器 20
3.5.4 NI-6215訊號擷取器 21
3.5.5 電源供應器 21
3.6 觀測破壞之設備 22
3.6.1 掃描式電子顯微鏡 22
4 第四章 實驗流程 23
4.1 玻璃纖維試片製作 23
4.1.1 真空輔助轉注步驟: 23
4.1.2 混合樹脂步驟 25
4.1.3 固化後處理方式: 26
4.2 試片的疊層與材料參數 27
4.2.1 試片參數 27
4.2.2 疊層 27
4.3 濕熱老化環境控制處理 28
4.3.1 實驗參數 28
4.3.2 電壓監測 28
4.3.3 高溫高濕吸水重量變化率 28
4.4 機械性質試驗 28
4.4.1 拉伸試驗 28
4.4.2 疲勞試驗 29
4.5 電壓監控健康度 29
4.6 微觀結構觀察 29
4.6.1 表面結構觀察 29
4.7 試片分類編號 30
4.8 實驗架構 31
4.8.1 純乾燥試片之機械性質與破壞監控 31
4.8.2 濕熱老化之監測與機械性質、電性之關係 31
4.8.3 加入碳纖維紙對於玻璃纖維複合材料破壞監測的幫助 31
4.9 純乾燥&濕熱老化機械性質試驗前置流程 32
5 第五章 結果與討論 33
5.1 試片品質控管結果 34
5.2 純乾燥試片之機械性質與電壓監測 35
5.2.1 純乾燥拉伸試驗 35
5.2.2 純乾燥疲勞試驗 35
5.2.3 電性監測結果 37
5.3 高溫高濕試片吸水重量變化率 41
5.4 濕熱老化電壓監測 42
5.4.1 高溫高濕 42
5.4.2 高溫低濕 44
5.5 濕熱老化拉伸試驗與電壓監測 45
5.5.1 高溫高濕拉伸強度 45
5.5.2 拉伸強度與電性監測之關係 46
5.5.3 高溫低濕拉伸強度 48
5.5.4 高溫低濕電性監測 49
5.6 濕熱老化疲勞試驗與電壓監測 50
5.6.1 高溫高濕疲勞壽命 50
5.6.2 疲勞壽命與電性監測之關係 51
5.6.3 高溫低濕疲勞壽命 51
5.7 GFRP加入碳纖維紙對健康度監控之幫助 52
5.7.1 拉伸試驗 52
5.7.2 疲勞試驗 53
5.7.3 濕熱老化健康度監測 54
5.7.4 GFRP加入碳纖維紙對健康度監控之幫助 54
5.8 SEM微觀特徵 55
5.8.1 濕熱老化的破壞機制 55
5.8.2 表面構造變化 55
5.8.3 SEM總結 65
6 第六章 結論與未來展望 67
6.1 結論 67
6.2 未來展望 67
REFERENCE 69
附錄 78
-
dc.language.isozh_TW-
dc.subject濕熱老化zh_TW
dc.subject機械性質zh_TW
dc.subject真空輔助轉注zh_TW
dc.subject結構健康監測zh_TW
dc.subject玻璃纖維複合材料加入碳纖維紙zh_TW
dc.subject玻璃纖維複合材料zh_TW
dc.subject環氧樹脂混合奈米碳管zh_TW
dc.subjectVacuum Assisted Resin Transfer Molding (VARTM)en
dc.subjectMechanical Propertiesen
dc.subjectHygrothermal Agingen
dc.subjectStructural Health Monitoring (SHM)en
dc.subjectGFRP with Carbon Fiber Paperen
dc.subjectEpoxy Resin with Carbon Nanotubes (CNTs)en
dc.subjectGlass Fiber Reinforced Polymer (GFRP)en
dc.title碳纖維紙對玻璃纖維複材於濕熱老化監測性能之影響zh_TW
dc.titleEffect of Carbon Fiber Paper on Hygrothermal Aging Monitoring Performance of Glass Fiber Compositesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee任貽明;林志郎zh_TW
dc.contributor.oralexamcommitteeYi-Ming Jen;Chih-Lang Linen
dc.subject.keyword濕熱老化,機械性質,真空輔助轉注,結構健康監測,玻璃纖維複合材料加入碳纖維紙,玻璃纖維複合材料,環氧樹脂混合奈米碳管,zh_TW
dc.subject.keywordGlass Fiber Reinforced Polymer (GFRP),Vacuum Assisted Resin Transfer Molding (VARTM),Epoxy Resin with Carbon Nanotubes (CNTs),GFRP with Carbon Fiber Paper,Structural Health Monitoring (SHM),Hygrothermal Aging,Mechanical Properties,en
dc.relation.page152-
dc.identifier.doi10.6342/NTU202502708-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2030-07-28-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-07-28
67.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved