請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99723完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李翔傑 | zh_TW |
| dc.contributor.advisor | Hsiang-Chieh Lee | en |
| dc.contributor.author | 王建智 | zh_TW |
| dc.contributor.author | Jian-Zhi Wang | en |
| dc.date.accessioned | 2025-09-17T16:29:16Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | 1. Huang, D., et al., Optical coherence tomography. Science, 1991. 254(5035): p. 1178-81.
2. De Boer, J.F., T.E. Milner, and J.S. Nelson, Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography. Optics letters, 1999. 24(5): p. 300-302. 3. Park, B.H., et al., In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. Journal of Biomedical Optics, 2001. 6(4): p. 474-479. 4. Yao, G. and L.V. Wang, Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography. Optics Letters, 1999. 24(8): p. 537-539. 5. Hee, M.R., et al., Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. Journal of the Optical Society of America B-Optical Physics, 1992. 9(6): p. 903-908. 6. De Boer, J.F., et al., Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Optics letters, 1997. 22(12): p. 934-936. 7. Hitzenberger, C.K., et al., Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Optics Express, 2001. 9(13): p. 780-790. 8. Götzinger, E., et al., Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography. Investigative ophthalmology & visual science, 2007. 48(8): p. 3551-3558. 9. Pircher, M., et al., Transversal phase resolved polarization sensitive optical coherence tomography. Physics in Medicine & Biology, 2004. 49(7): p. 1257. 10. Yamanari, M., et al., Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry. Journal of biomedical optics, 2008. 13(1): p. 014013-014013-10. 11. Cense, B., et al., Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography. Investigative ophthalmology & visual science, 2004. 45(8): p. 2606-2612. 12. Pircher, M., et al., Human macula investigated in vivo with polarization-sensitive optical coherence tomography. Investigative ophthalmology & visual science, 2006. 47(12): p. 5487-5494. 13. Pircher, M., et al., Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT. Optics Express, 2004. 12(24): p. 5940-5951. 14. Michels, S., et al., Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium. British Journal of Ophthalmology, 2008. 92(2): p. 204-209. 15. Miura, M., et al., Imaging polarimetry in age-related macular degeneration. Investigative ophthalmology & visual science, 2008. 49(6): p. 2661-2667. 16. Louie, T., et al., Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography. Lasers in surgery and medicine, 2010. 42(10): p. 898-905. 17. Fried, D., et al., Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography. Journal of biomedical optics, 2002. 7(4): p. 618-627. 18. Kiseleva, E., et al., Differential diagnosis of human bladder mucosa pathologies in vivo with cross-polarization optical coherence tomography. Biomedical Optics Express, 2015. 6(4): p. 1464-1476. 19. Nadkarni, S.K., et al., Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography. Journal of the American College of Cardiology, 2007. 49(13): p. 1474-1481. 20. Baumann, B., Polarization Sensitive Optical Coherence Tomography: A Review of Technology and Applications. Applied Sciences-Basel, 2017. 7(5): p. 34. 21. Everett, M., et al., Birefringence characterization of biological tissue by use of optical coherence tomography. Optics letters, 1998. 23(3): p. 228-230. 22. de Boer, J.F. and T.E. Milner, Review of polarization sensitive optical coherence tomography and Stokes vector determination. J Biomed Opt, 2002. 7(3): p. 359-71. 23. Adie, S.G., T.R. Hillman, and D.D. Sampson, Detection of multiple scattering in optical coherence tomography using the spatial distribution of Stokes vectors. Optics express, 2007. 15(26): p. 18033-18049. 24. Götzinger, E., et al., Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography. Optics Express, 2008. 16(21): p. 16410-16422. 25. Al-Qaisi, M.K. and T. Akkin, Polarization-sensitive optical coherence tomography based on polarization-maintaining fibers and frequency multiplexing. Optics express, 2008. 16(17): p. 13032-13041. 26. Gotzinger, E., et al., Polarization Maintaining Fiber Based Ultra-High Resolution Spectral Domain Polarization Sensitive Optical Coherence Tomography of the Human Retina. Investigative Ophthalmology & Visual Science, 2010. 51(13): p. 1050-1050. 27. Trasischker, W., et al., Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer. Biomedical Optics Express, 2014. 5(8): p. 2798-2809. 28. Lippok, N., et al., Single input state, single-mode fiber-based polarization-sensitive optical frequency domain imaging by eigenpolarization referencing. Optics letters, 2015. 40(9): p. 2025-2028. 29. Yamanari, M., et al., Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method. Optics Express, 2006. 14(14): p. 6502-6515. 30. Saxer, C.E., et al., High-speed fiber–based polarization-sensitive optical coherence tomography of in vivo human skin. Optics letters, 2000. 25(18): p. 1355-1357. 31. Park, B.H., et al., Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 mu m. Optics express, 2005. 13(11): p. 3931-3944. 32. Braaf, B., et al., Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions. Biomedical optics express, 2014. 5(8): p. 2736-2758. 33. Yu-Cheng, M., High-speed polarization-sensitive swept source optical coherence tomography system based on high-contrast grating VCSEL, in Graduate Institute of Photonics and Optoelectronics. 2022, National Taiwan University: Taipei. p. 60. 34. Zheng-Jie, W., A pilot study of developing a multimodal miniature image head for the semiautonomous laparoscopic surgery procedure, in Graduate Institute of Photonics and Optoelectronics. 2022, National Taiwan University: Taipei. p. 50. 35. Fercher, A.F., et al., Measurement of intraocular distances by backscattering spectral interferometry. Optics Communications, 1995. 117(1-2): p. 43-48. 36. Tucker, R.S., et al., Thermal noise and radiation pressure in MEMS Fabry-Perot tunable filters and lasers. Ieee Journal of Selected Topics in Quantum Electronics, 2002. 8(1): p. 88-97. 37. Pedrotti, F.L., L.M. Pedrotti, and L.S. Pedrotti, Introduction to Optics. 3 ed. 2017, Cambridge: Cambridge University Press. 38. Drexler, W. and J.G. Fujimoto, Optical coherence tomography: technology and applications. 2008: Springer Science & Business Media. 39. Brosseau, C., Fundamentals of polarized light: a statistical optics approach. 1998. 40. Shurcliff, W.A. and S.S. Ballard, Polarized light [by] William A. Shurcliff and Stanley S. Ballard. Van Nostrand momentum book print 7. 1964, Princeton, N.J: Published for the Commission on College Physics [by] D. Van Nostrand. 41. Huang, Y.-P., et al., A generic framework for Fourier-domain optical coherence tomography imaging: software architecture and hardware implementations. IEEE Access, 2020. 8: p. 191726-191736. 42. Walther, J., et al., In vivo imaging of human oral hard and soft tissues by polarization-sensitive optical coherence tomography. Journal of biomedical optics, 2017. 22(12): p. 121717-121717. 43. Harper, D.J., et al., Retinal analysis of a mouse model of Alzheimer’s disease with multicontrast optical coherence tomography. Neurophotonics, 2020. 7(1): p. 015006-015006. 44. Xiong, Q., et al., Single input state polarization-sensitive optical coherence tomography with high resolution and polarization distortion correction. Optics Express, 2019. 27(5): p. 6910-6924. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99723 | - |
| dc.description.abstract | 偏振靈敏光學同調斷層掃描術 (Polarization-sensitive optical coherence tomography, PS-OCT) 能夠針對樣本組織進行非侵入式掃描,並提供二維或三維的樣本斷層影像,除了這些一般光學同調斷層掃描術 (Optical Coherence Tomography, OCT) 也能提供的資訊外,PS-OCT 更針對偏振光 (Polarized light) 的偏振態 (Polarization state) 對於樣本組織的變化做進一步分析,得到如光偏振態、相位延遲 (Phase retardation)、光軸方向 (Optic axis orientation)、去偏振性 (Depolarization) 以及其它樣本與光偏振性相關的性質,將這些性質進行量化並以數值變化方式呈現在結果影像上,讓使用者能夠從斷層掃描的結構影像上得到其它額外資訊。
本篇論文針對實驗室中現有的單輸入偏振靈敏光學同調斷層掃描系統 (Single-Input PS-OCT) 進行復原並改良。由於大多數生物樣本的可量測深度都大於系統原本的影像深度,因此在系統硬體方面,針對用於同步光源掃頻與數位訊號擷取的光學時脈訊號 (Optical k-clock signal),加上額外的光學時脈頻率倍增模組 (Optical clock frequency doubling circuit module) 以提升取樣頻率,使得系統的影像深度提升為原本的兩倍。除此之外,在 PS-OCT理論方面提供了更加詳細的理論推導,也額外提供更多對於光學時脈頻率倍增模組應用在 OCT 系統上的分析演算法,並套用在實際樣本應用上。最後在實驗結果的部分,將利用量測系統的相關參數來驗證光學時脈頻率倍增模組於該 PS-OCT 系統上之可行性,並針對各式離體生物組織以及活體鼠眼睛視網膜樣本來進行量測,從 PS-OCT 的特殊結構影像來觀察這些樣本對於偏振光的特性。 | zh_TW |
| dc.description.abstract | Polarization-sensitive optical coherence tomography (PS-OCT) enables non-invasive imaging of biological tissues, yielding two-dimensional or three-dimensional cross-sectional images. In addition to the structural information provided by conventional optical coherence tomography (OCT), PS-OCT enables further analysis of changes in the polarization state of polarized light upon interaction with biological tissues. This enables the extraction of polarization-related properties, including polarization state, optic axis orientation, depolarization, and other polarization-associated characteristics. These properties are quantified and visualized in the resulting images, offering additional contrast and complementary information beyond structural features.
This study focuses on restoring and enhancing an existing single-input PS-OCT system previously developed in the laboratory. Because the imaging depth of the original system was insufficient for most biological samples, a hardware modification was implemented to extend its axial imaging range. Specifically, an optical clock frequency doubling circuit module was integrated into the system to increase the sampling rate by doubling the frequency of the optical k-clock signal, which synchronizes the wavelength sweep of the light source with digital data acquisition. This enhancement successfully extended the imaging depth of the system by a factor of two. In addition to the hardware upgrade, this study presents a more detailed theoretical derivation of the PS-OCT system, along with analytical algorithms tailored for integrating the optical clock frequency doubling circuit module in OCT systems. These improvements were tested on real sample measurements. Finally, experimental validation was performed to demonstrate the feasibility of integrating the optical clock frequency doubling circuit module into the PS-OCT system. Measurements were performed on various ex vivo biological tissues as well as in vivo mouse retinal samples. The polarization-sensitive contrasts provided by PS-OCT reveal valuable insights into the polarization-related properties of these tissues. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:29:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:29:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員會審定書 i
致謝 ii 中文摘要 iii ABSTRACT iv 目次 vi 圖次 ix 表次 xiii 第一章 緒論 1 1.1 偏振靈敏光學同調斷層掃描術之簡介 1 1.1.1 單輸入偏振靈敏光學同調斷層掃描術 2 1.1.2 多輸入偏振靈敏光學同調斷層掃描術 4 1.2 研究動機與論文架構 6 第二章 光學同調斷層掃描術 8 2.1 簡介 8 2.1.1 時域式光學同調斷層掃描術 8 2.1.2 傅立葉域光學同調斷層掃描術 9 2.1.3 頻域式光學同調斷層掃描術 9 2.1.4 掃頻式光學同調斷層掃描術 10 2.2 低同調干涉術理論 11 2.3 光學同調斷層掃描系統之特性 16 2.3.1 軸向解析度 16 2.3.2 橫向解析度 16 2.3.3 景深 16 2.3.4 影像深度 17 2.3.5 訊噪比 18 2.3.6 靈敏度與靈敏度滾落 18 第三章 偏振靈敏光學同調斷層掃描術 19 3.1 光偏振性 19 3.1.1 光偏振定義 19 3.1.2 影響偏振態的原因 20 3.1.3 瓊斯向量與矩陣 21 3.1.4 史托克向量 22 3.1.5 邦加球 24 3.2 單輸入偏振靈敏光學同調斷層掃描術理論 26 第四章 系統介紹與操作方法 31 4.1 單輸入 PS-OCT 架構 31 4.2 系統偏振態校正流程 33 4.2.1 樣本端檢查點校正流程 33 4.2.2 訊號蒐集端檢查點校正流程 36 4.3 光學時脈頻率倍增模組架構與分析流程 37 第五章 實驗結果 43 5.1 系統整合光學時脈頻率倍增模組後之結果與分析 43 5.2 實際樣本影像 47 5.2.1 四分之一波板 47 5.2.2 牙齒影像 48 5.2.3 眼睛視網膜影像 50 5.3 討論 53 第六章 結論與未來展望 55 6.1 結論 55 6.2 未來展望 55 參考文獻 56 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 單輸入偏振 | zh_TW |
| dc.subject | 光學同調斷層掃描術 | zh_TW |
| dc.subject | 光學時脈頻率倍增模組 | zh_TW |
| dc.subject | 光學時脈訊號 | zh_TW |
| dc.subject | 偏振靈敏光學同調斷層掃描術 | zh_TW |
| dc.subject | Polarization-sensitive optical coherence tomography | en |
| dc.subject | Optical k-clock signal | en |
| dc.subject | Optical clock frequency doubling circuit module | en |
| dc.subject | Single input state | en |
| dc.subject | Optical coherence tomography | en |
| dc.title | 基於生物樣本上之應用改良單輸入偏振靈敏光學同調斷層掃描系統與演算法 | zh_TW |
| dc.title | Improvement of the System and Algorithm in Single-Input Polarization-Sensitive Optical Coherence Tomography for Biological Applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡睿哲;王義閔;李正匡;施博仁 | zh_TW |
| dc.contributor.oralexamcommittee | Jui-Che Tsai;Yih-Min Wang;Cheng-Kuang Lee;Po-Jen Shih | en |
| dc.subject.keyword | 光學同調斷層掃描術,單輸入偏振,偏振靈敏光學同調斷層掃描術,光學時脈訊號,光學時脈頻率倍增模組, | zh_TW |
| dc.subject.keyword | Optical coherence tomography,Single input state,Polarization-sensitive optical coherence tomography,Optical k-clock signal,Optical clock frequency doubling circuit module, | en |
| dc.relation.page | 60 | - |
| dc.identifier.doi | 10.6342/NTU202503747 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-08 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2030-08-04 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 4.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
