請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99722完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江皓森 | zh_TW |
| dc.contributor.advisor | Hao-Sen Chiang | en |
| dc.contributor.author | 陳沐柔 | zh_TW |
| dc.contributor.author | Mu-Jou Chen | en |
| dc.date.accessioned | 2025-09-17T16:29:04Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | 1. Poewe, W., et al., Parkinson disease. Nature Reviews Disease Primers, 2017. 3(1): p. 17013.
2. Polymeropoulos, M.H., et al., Mutation in the α-Synuclein Gene Identified in Families with Parkinson's Disease. Science, 1997. 276(5321): p. 2045–2047. 3. Funayama, M., et al., Molecular genetics of Parkinson’s disease: Contributions and global trends. Journal of Human Genetics, 2023. 68(3): p. 125–130. 4. Trinh, J., I. Guella, and M.J. Farrer, Disease Penetrance of Late-Onset Parkinsonism: A Meta-analysis. JAMA Neurology, 2014. 71(12): p. 1535–1539. 5. Grotewold, N. and R.L. Albin, Update: Protective and risk factors for Parkinson disease. Parkinsonism & Related Disorders, 2024. 125: p. 107026. 6. Gao, X., et al., A Prospective Study of Bowel Movement Frequency and Risk of Parkinson’s Disease. American Journal of Epidemiology, 2011. 174(5): p. 546–551. 7. Shannon, K.M., et al., Is alpha-synuclein in the colon a biomarker for premotor Parkinson's Disease? Evidence from 3 cases. Movement Disorders, 2012. 27(6): p. 716–719. 8. Devos, D., et al., Colonic inflammation in Parkinson's disease. Neurobiology of Disease, 2013. 50: p. 42–48. 9. Forsyth, C.B., et al., Increased Intestinal Permeability Correlates with Sigmoid Mucosa alpha-Synuclein Staining and Endotoxin Exposure Markers in Early Parkinson's Disease. PLOS ONE, 2011. 6(12): p. e28032. 10. Chang, J.J., S. Kulkarni, and T.S. Pasricha, Upper Gastrointestinal Mucosal Damage and Subsequent Risk of Parkinson Disease. JAMA Network Open, 2024. 7(9): p. e2431949–e2431949. 11. Nerius, M., G. Doblhammer, and G. Tamgüney, GI infections are associated with an increased risk of Parkinson's disease. Gut, 2020. 69(6): p. 1154–1156. 12. Rietdijk, C.D., et al., Exploring Braak's Hypothesis of Parkinson's Disease. Front Neurol, 2017. 8: p. 37. 13. Horsager, J. and P. Borghammer, Brain-first vs. body-first Parkinson's disease: An update on recent evidence. Parkinsonism & Related Disorders, 2024. 122: p. 106101. 14. Kishimoto, Y., et al., Chronic Mild Gut Inflammation Accelerates Brain Neuropathology and Motor Dysfunction in α-Synuclein Mutant Mice. NeuroMolecular Medicine, 2019. 21(3): p. 239–249. 15. Gil-Martinez, A.L., et al., Identification of differentially expressed genes profiles in a combined mouse model of Parkinsonism and colitis. Scientific Reports, 2020. 10(1): p. 13147. 16. Houser, M.C., et al., Experimental colitis promotes sustained, sex-dependent, T-cell-associated neuroinflammation and parkinsonian neuropathology. Acta Neuropathologica Communications, 2021. 9(1): p. 139. 17. Matheoud, D., et al., Intestinal infection triggers Parkinson’s disease-like symptoms in Pink1−/− mice. Nature, 2019. 571(7766): p. 565–569. 18. Liang, D., et al., Escherichia coli triggers α-synuclein pathology in the LRRK2 transgenic mouse model of PD. Gut Microbes, 2023. 15(2): p. 2276296. 19. Svensson, E., et al., Vagotomy and subsequent risk of Parkinson's disease. Annals of Neurology, 2015. 78(4): p. 522–529. 20. Uemura, N., et al., Inoculation of α-synuclein preformed fibrils into the mouse gastrointestinal tract induces Lewy body-like aggregates in the brainstem via the vagus nerve. Molecular Neurodegeneration, 2018. 13(1): p. 21. 21. Calabresi, P., et al., Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death & Disease, 2023. 14(3): p. 176. 22. Burré, J., The Synaptic Function of α-Synuclein. J Parkinsons Dis, 2015. 5(4): p. 699–713. 23. Ito, N., et al., Extracellular high molecular weight α-synuclein oligomers induce cell death by disrupting the plasma membrane. npj Parkinson's Disease, 2023. 9(1): p. 139. 24. Deas, E., et al., Alpha-Synuclein Oligomers Interact with Metal Ions to Induce Oxidative Stress and Neuronal Death in Parkinson's Disease. Antioxid Redox Signal, 2016. 24(7): p. 376–91. 25. Snyder, H., et al., Aggregated and Monomeric α-Synuclein Bind to the S6′ Proteasomal Protein and Inhibit Proteasomal Function*. Journal of Biological Chemistry, 2003. 278(14): p. 11753–11759. 26. Colla, E., et al., Endoplasmic reticulum stress is important for the manifestations of α-synucleinopathy in vivo. J Neurosci, 2012. 32(10): p. 3306–20. 27. Vidović, M. and M.G. Rikalovic, Alpha-Synuclein Aggregation Pathway in Parkinson's Disease: Current Status and Novel Therapeutic Approaches. Cells, 2022. 11(11). 28. Tyson, T., J.A. Steiner, and P. Brundin, Sorting out release, uptake and processing of alpha-synuclein during prion-like spread of pathology. J Neurochem, 2016. 139 Suppl 1(Suppl 1): p. 275–289. 29. Zarranz, J.J., et al., The new mutation, E46K, of α-synuclein causes parkinson and Lewy body dementia. Annals of Neurology, 2004. 55(2): p. 164–173. 30. Krüger, R., et al., Familial parkinsonism with synuclein pathology. Neurology, 2001. 56(10): p. 1355–1362. 31. Appel-Cresswell, S., et al., Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson's disease. Movement Disorders, 2013. 28(6): p. 811–813. 32. Coskuner, O. and O. Wise-Scira, Structures and Free Energy Landscapes of the A53T Mutant-Type α-Synuclein Protein and Impact of A53T Mutation on the Structures of the Wild-Type α-Synuclein Protein with Dynamics. ACS Chemical Neuroscience, 2013. 4(7): p. 1101–1113. 33. Conway, K.A., et al., Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc Natl Acad Sci U S A, 2000. 97(2): p. 571–6. 34. Zambon, F., et al., Cellular α-synuclein pathology is associated with bioenergetic dysfunction in Parkinson's iPSC-derived dopamine neurons. Hum Mol Genet, 2019. 28(12): p. 2001–2013. 35. Choubey, V., et al., Mutant A53T alpha-synuclein induces neuronal death by increasing mitochondrial autophagy. J Biol Chem, 2011. 286(12): p. 10814–24. 36. Lee, M.K., et al., Human α-synuclein-harboring familial Parkinson's disease-linked Ala-53 → Thr mutation causes neurodegenerative disease with α-synuclein aggregation in transgenic mice. Proceedings of the National Academy of Sciences, 2002. 99(13): p. 8968–8973. 37. Rota, L., et al., Constipation, deficit in colon contractions and alpha-synuclein inclusions within the colon precede motor abnormalities and neurodegeneration in the central nervous system in a mouse model of alpha-synucleinopathy. Translational Neurodegeneration, 2019. 8(1): p. 5. 38. Rocha, E.M., B. De Miranda, and L.H. Sanders, Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiology of Disease, 2018. 109: p. 249–257. 39. Grozdanov, V., et al., Increased Immune Activation by Pathologic α-Synuclein in Parkinson's Disease. Annals of Neurology, 2019. 86(4): p. 593–606. 40. Alam, M.M., et al., Alpha synuclein, the culprit in Parkinson disease, is required for normal immune function. Cell Reports, 2022. 38(2): p. 110090. 41. Stolzenberg, E., et al., A Role for Neuronal Alpha-Synuclein in Gastrointestinal Immunity. J Innate Immun, 2017. 9(5): p. 456–463. 42. Bonaz, B., The gut-brain axis in Parkinson's disease. Revue Neurologique, 2024. 180(1): p. 65–78. 43. Fleming, M.A., 2nd, et al., The Enteric Nervous System and Its Emerging Role as a Therapeutic Target. Gastroenterol Res Pract, 2020. 2020: p. 8024171. 44. Furness, J.B., et al., Intrinsic primary afferent neuronsof the intestine. Progress in Neurobiology, 1998. 54(1): p. 1–18. 45. Böttner, M., et al., Alpha-synuclein is associated with the synaptic vesicle apparatus in the human and rat enteric nervous system. Brain Research, 2015. 1614: p. 51–59. 46. Swaminathan, M., et al., α-Synuclein Regulates Development and Function of Cholinergic Enteric Neurons in the Mouse Colon. Neuroscience, 2019. 423: p. 76–85. 47. Yan, Y., et al., Interleukin-6 produced by enteric neurons regulates the number and phenotype of microbe-responsive regulatory T cells in the gut. Immunity, 2021. 54(3): p. 499–513.e5. 48. Seillet, C., et al., The neuropeptide VIP confers anticipatory mucosal immunity by regulating ILC3 activity. Nature Immunology, 2020. 21(2): p. 168–177. 49. Talbot, J., et al., Feeding-dependent VIP neuron–ILC3 circuit regulates the intestinal barrier. Nature, 2020. 579(7800): p. 575–580. 50. Muller, P.A., et al., Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell, 2014. 158(2): p. 300–313. 51. De Schepper, S., et al., Muscularis macrophages: Key players in intestinal homeostasis and disease. Cell Immunol, 2018. 330: p. 142–150. 52. Han, M.N., et al., Assessment of gastrointestinal function and enteric nervous system changes over time in the A53T mouse model of Parkinson’s disease. Acta Neuropathologica Communications, 2025. 13(1): p. 58. 53. Liang, F., et al., Early Dysbiosis and Dampened Gut Microbe Oscillation Precede Motor Dysfunction and Neuropathology in Animal Models of Parkinson’s Disease. Journal of Parkinson’s Disease, 2022. 12(8): p. 2423–2440. 54. Kim, S., et al., Transneuronal Propagation of Pathologic α-Synuclein from the Gut to the Brain Models Parkinson's Disease. Neuron, 2019. 103(4): p. 627–641.e7. 55. Yang, H., et al., Fecal microbiota from patients with Parkinson's disease intensifies inflammation and neurodegeneration in A53T mice. CNS Neuroscience & Therapeutics, 2024. 30(8): p. e70003. 56. Han, J.Y., C. Shin, and Y.P. Choi, Preclinical Detection of Alpha-Synuclein Seeding Activity in the Colon of a Transgenic Mouse Model of Synucleinopathy by RT-QuIC. Viruses, 2021. 13(5). 57. LaFleur, A.M., et al., Role of CC chemokine CCL6/C10 as a monocyte chemoattractant in a murine acute peritonitis. Mediators Inflamm, 2004. 13(5-6): p. 349–55. 58. Ma, B., et al., The C10/CCL6 chemokine and CCR1 play critical roles in the pathogenesis of IL-13-induced inflammation and remodeling. J Immunol, 2004. 172(3): p. 1872–81. 59. Mackie, P.M., et al., Complement C1q-dependent engulfment of alpha-synuclein induces ENS-resident macrophage exhaustion and accelerates Parkinson's-like gut pathology. bioRxiv, 2023. 60. McFleder, R.L., et al., Brain-to-gut trafficking of alpha-synuclein by CD11c+ cells in a mouse model of Parkinson’s disease. Nature Communications, 2023. 14(1): p. 7529. 61. Wang, P., et al., Global Characterization of Peripheral B Cells in Parkinson's Disease by Single-Cell RNA and BCR Sequencing. Front Immunol, 2022. 13: p. 814239. 62. Su, Y., et al., The cross-talk between B cells and macrophages. International Immunopharmacology, 2024. 143: p. 113463. 63. Goldman, N., et al., Macrophage regulation of B cell proliferation. Cellular Immunology, 2017. 314: p. 54–62. 64. Bauman, D.R., et al., 25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production. Proceedings of the National Academy of Sciences, 2009. 106(39): p. 16764–16769. 65. Geladaris, A., et al., IL-10-providing B cells govern pro-inflammatory activity of macrophages and microglia in CNS autoimmunity. Acta Neuropathologica, 2023. 145(4): p. 461–477. 66. Zhang, B., et al., B cell-derived GABA elicits IL-10+ macrophages to limit anti-tumour immunity. Nature, 2021. 599(7885): p. 471–476. 67. Campagnolo, M., et al., Immune landscape of the enteric nervous system differentiates Parkinson's disease patients from controls: The PADUA-CESNE cohort. Neurobiology of Disease, 2024. 200: p. 106609. 68. Sulzer, D., et al., T cells from patients with Parkinson's disease recognize α-synuclein peptides. Nature, 2017. 546(7660): p. 656–661. 69. Manevich, Y. and A.B. Fisher, Peroxiredoxin 6, a 1-Cys peroxiredoxin, functions in antioxidant defense and lung phospholipid metabolism. Free Radical Biology and Medicine, 2005. 38(11): p. 1422–1432. 70. Turnbull, S., et al., α-synuclein implicated in Parkinson’s disease catalyses the formation of hydrogen peroxide in vitro. Free Radical Biology and Medicine, 2001. 30(10): p. 1163–1170. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99722 | - |
| dc.description.abstract | 帕金森氏症是一種神經退化性疾病,患者腦部的多巴胺神經中會有大量α-突觸核蛋白的堆積。雖然有越來越多證據顯示腸道免疫與帕金森氏症有著緊密關係,但腸道免疫細胞是否會影響α-突觸核蛋白在腸道神經內的堆積仍然未知。我的研究目的是想知道α-突觸核蛋白會如何影響腸道內的免疫狀況,以及免疫細胞是否也能反過來影響α-突觸核蛋白的堆積。利用過度表現人類α-突觸核蛋白的 A53T 轉基因小鼠 (lineG2-3, JXA:006823),我分離其富有神經本體的腸道肌肉層,並利用免疫螢光染色或流式細胞術檢視其中的免疫細胞族群。我發現A53T轉基因小鼠腸道肌肉層中的 T細胞,巨噬細胞,B細胞,以及巨噬細胞趨化因子Ccl6與過氧化物酶Prdx6b的基因表現與野生型小鼠有所不同。為了知道免疫細胞是否會影響腸道神經內α-突觸核蛋白的堆積,我也透過共培養腸道神經與CD4+ T細胞,初步發現他們會導致α-突觸核蛋白在腸道神經中的總量稍微上升。總而言之,這些結果都顯示α-突觸核蛋白與腸道神經附近的免疫細胞有著雙向的影響。 | zh_TW |
| dc.description.abstract | Parkinson’s disease (PD) is a neurodegenerative disease characterized by the aggregation of protein alpha-synuclein in dopaminergic neurons in the brain. While the connection of PD with gut immune condition is becoming increasingly evident, it is still unknown whether immune cells in the gut can affect alpha-synuclein aggregation in the enteric neurons. Our research aim is to examine whether alpha-synuclein can affect gut immune status and whether immune cells can, in turn, influence alpha-synuclein accumulation. Using human alpha-synuclein overexpressed A53T transgenic mice (lineG2-3, JXA:00682) as an animal model for PD, I isolated the muscularis layer rich in enteric neural bodies from the mice colon and examined the immune cell population using IF staining or flow cytometry. We found the composition of T cells, macrophages, B cells, as well as the expression of macrophage chemokine Ccl6 and anti-oxidant enzyme Prdx6b, was different in the A53T colon muscularis layer compared to wild-type mice. Also, to investigate whether immune cells can influence alpha-synuclein aggregation in the enteric neurons, I co-cultured CD4+ T cells with primary enteric neurons. Preliminary results showed that CD4+ T cells caused a slight increase in the amount of alpha-synuclein in the enteric neurons. These results demonstrated a two-way influence of alpha-synuclein and immune cells near the enteric neurons. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:29:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:29:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ................................................................................................................................... i
中文摘要 .......................................................................................................................... ii Abstract ............................................................................................................................ iii Contents ........................................................................................................................... iv Chapter 1 Introduction ...................................................................................................... 1 1.1 Parkinson’s disease (PD) .................................................................................. 1 1.1.1 PD symptoms and pathogenesis ............................................................... 1 1.1.2 PD and the gastrointestinal tract ............................................................... 2 1.1.3 Gut-first PD pathogenesis ......................................................................... 3 1.2 Alpha-synuclein (α-synuclein) ......................................................................... 4 1.2.1 Structure and physiological function ........................................................ 4 1.2.2 Pathological α-synuclein .......................................................................... 6 1.2.3 α-synuclein mutations and PD .................................................................. 7 1.2.4 α-synuclein and the immune system ......................................................... 9 1.3 The enteric nervous system (ENS) ................................................................. 10 1.3.1 Enteric neuron function and categories .................................................. 10 1.3.2 The role of α-synuclein in the ENS ........................................................ 12 1.3.3 ENS-immune cells interaction ................................................................ 12 1.4 Rationale and specific aim .............................................................................. 13 Chapter 2 Materials and Methods ................................................................................... 15 2.1 Mice .................................................................................................................... 15 2.2 Genotyping of the α-synuclein A53T transgenic mice ....................................... 16 2.3 Rotarod performance test .................................................................................... 16 2.4 Open field test ..................................................................................................... 17 2.5 Quantitative PCR ................................................................................................ 17 2.6 Isolation of colon muscularis layer ..................................................................... 17 2.7 Whole-mount immunofluorescence staining of the colon muscularis layer ....... 18 2.8 Immunofluorescence staining of paraffin-embedded slides ............................... 19 2.9 Isolation of immune cells from the colon muscularis layer ................................ 20 2.10 Flow cytometry analysis of immune cells from the colon muscularis layer ..... 21 2.11 Primary ENS culture ......................................................................................... 22 2.12 Immunofluorescence staining of primary ENS culture .................................... 24 2.13 Western blot ...................................................................................................... 24 2.14 Sorting and activation of CD4+ T cells ............................................................. 25 2.15 Co-culture of primary ENS and CD4+ T cells .................................................. 26 2.16 Culture of bone marrow derived macrophages (BMDMs) ............................... 27 Chapter 3. Results ........................................................................................................... 28 3.1 Motor abilities in A53T mice were comparable to wild-type mice prior to four months of age. ...........................28 3.2 A53T mice exhibited increased colonic α-synuclein co-localized with neural fiber compared to wild-type as early as two months of age. ............................... 28 3.3 At 2 months of age, A53T mice exhibited a higher percentage of macrophages and fewer B cells in the colon muscularis layer. At 4 months, the percentage of CD4+ and CD8+ T cells was increased. ................. 30 3.4 A53T mice expressed higher levels of Prdx6b and Ccl6 in their colon muscularis layer. ................................................ 31 3.5 Co-culture of primary enteric neurons with CD4+ T cells for 24 hours induced a slight increase in the amount of α-synuclein monomer in the enteric neurons. ........ 32 3.6 Several immune cells also express α-synuclein. ................................. 33 Figures ................................................... 34 Figure 1. Motor abilities in A53T mice were comparable to wild-type prior to four months of age. ............................... 35 ............................................................ 36 ............................................................ 38 Figure 2. A53T mice exhibited increased colonic α-synuclein colocalized with neural fiber compared to wild type as early as two months of age. .................... 40 Figure 3. The immune cell population in the colon muscularis of A53T mice differs from that of wild-type mice. .............................................................. 46 Figure 4. A53T mice expressed higher levels of Prdx6b and Ccl6 in their colon muscularis layer. ............................................................................ 49 Figure 5. Co-culture of primary enteric neurons with CD4+ T cells for 24 hours induced a slight increase in the amount of α-synuclein monomer in the enteric neurons. ................... 52 Figure 6. α-synuclein expression in the immune cells of A53T mice. ................ 54 Chapter 4. Discussion .......................................................... 55 Chapter 5. Conclusion ...................................................... 61 Tables .................................................................... 62 Table 1. Primer list ....................................................... 62 References ................................................................. 63 | - |
| dc.language.iso | en | - |
| dc.subject | 帕金森氏症 | zh_TW |
| dc.subject | Parkinson's disease | en |
| dc.title | 探究腸道免疫細胞與帕金森氏症α-突觸核蛋白堆積之間的雙向影響 | zh_TW |
| dc.title | Investigating the two-way influence of gut immune cells and alpha-synuclein accumulation in Parkinson’s disease | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林靜嫻;陳示國 | zh_TW |
| dc.contributor.oralexamcommittee | Chin-Hsien Lin;Shih-Kuo Chen | en |
| dc.subject.keyword | 帕金森氏症, | zh_TW |
| dc.subject.keyword | Parkinson's disease, | en |
| dc.relation.page | 68 | - |
| dc.identifier.doi | 10.6342/NTU202503079 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-10 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生命科學系 | - |
| dc.date.embargo-lift | 2030-07-30 | - |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-07-30 | 11.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
