請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99721完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葛宇甯 | zh_TW |
| dc.contributor.advisor | Louis Ge | en |
| dc.contributor.author | 汪志穎 | zh_TW |
| dc.contributor.author | Zhi-Ying Wang | en |
| dc.date.accessioned | 2025-09-17T16:28:53Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | Arias, A. (1970). A measure of earthquake intensity. Seismic design for nuclear plants, 438-483.
Baker, J. W. (2007). Quantitative Classification of Near-Fault Ground Motions Using Wavelet Analysis. Bulletin of the Seismological Society of America, 97(5), 1486-1501. Bilek, S. L., & Lay, T. (2018). Subduction zone megathrust earthquakes. Geosphere, 14(4), 1468-1500. Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Proceedings of the fifth annual workshop on Computational learning theory, Boulanger, R. W., & Idriss, I. (2016). CPT-based liquefaction triggering procedure. Journal of Geotechnical and Geoenvironmental Engineering, 142(2), 04015065. Boulanger, R. W., & Idriss, I. M. (2014). CPT and SPT based liquefaction triggering procedures. Report No. UCD/CGM.-14, 1, 134. Brito, L., Bessette, C., Dashti, S., B. Liel, A., & Wham, B. (2024). Efficiency and Sufficiency of Ground Motion Intensity Measures in Predicting Ejecta Potential and Peak Pore Pressures. Japanese Geotechnical Society Special Publication, 10(22), 809-814. Cetin, K. O., Seed, R. B., Der Kiureghian, A., Tokimatsu, K., Harder Jr, L. F., Kayen, R. E., & Moss, R. E. (2004). Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, 130(12), 1314-1340. Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, Darendeli, M. B. (2001). Development of a new family of normalized modulus reduction and material damping curves. The university of Texas at Austin. Dashti, S., & Karimi, Z. (2017). Ground motion intensity measures to evaluate I: The liquefaction hazard in the vicinity of shallow-founded structures. Earthquake Spectra, 33(1), 241-276. Douzas, G., Bacao, F., & Last, F. (2018). Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Information sciences, 465, 1-20. Foulon, T., Saeidi, A., Chesnaux, R., Nastev, M., & Rouleau, A. (2018). Spatial distribution of soil shear-wave velocity and the fundamental period of vibration–a case study of the Saguenay region, Canada. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 12(1), 74-86. Hossain, A., Saeidi, A., Salsabili, M., Nastev, M., Suescun, J., & Bayati, Z. (2025). A Review of Parameters and Methods for Seismic Site Response. Geosciences, 15, 128. Hwang, J.-H., Khoshnevisan, S., Juang, C. H., & Lu, C.-C. (2021). Soil liquefaction potential evaluation–An update of the HBF method focusing on research and practice in Taiwan. Engineering Geology, 280, 105926. Idriss, I., & Boulanger, R. W. (2010). SPT-based liquefaction triggering procedures. Rep. UCD/CGM-10, 2, 4-13. Jas, K., & Dodagoudar, G. (2023). Explainable machine learning model for liquefaction potential assessment of soils using XGBoost-SHAP. Soil Dynamics and Earthquake Engineering, 165, 107662. Khosravifar, A., Elgamal, A., Lu, J. C., & Li, J. (2018). A 3D model for earthquake-induced liquefaction triggering and post-liquefaction response. Soil Dynamics and Earthquake Engineering, 110, 43-52. Kramer, S. L., & Stewart, J. P. (2024). Geotechnical earthquake engineering. CRC Press. Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30. Masing, G. (1926). Eigenspannungen und verfestigung beim messing. Proceedings, second international congress of applied mechanics, Matasovic, N. (1993). Seismic response of composite horizontally-layered soil deposits. University of California, Los Angeles. Matasović, N., & Vucetic, M. (1993). Cyclic characterization of liquefiable sands. Journal of Geotechnical Engineering, 119(11), 1805-1822. Matasovic, N., Witthoeft, A., Borghei, A., & Elgamal, A.-W. (2024). Seismic Site Response Analysis with Pore Water Pressure Generation: Resources for Evaluation. National Academies Sciences Engineering Medicine. Newmark, & Rosenblueth. (1971). Fundamentals of earthquake engineering. Prentice Hall. Obermeier, S. F. (1996). Use of liquefaction-induced features for paleoseismic analysis—an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology, 44(1-4), 1-76. Olarte, J., Paramasivam, B., Dashti, S., Liel, A., & Zannin, J. (2017). Centrifuge modeling of mitigation-soil-foundation-structure interaction on liquefiable ground. Soil Dynamics and Earthquake Engineering, 97, 304-323. Olson, S. M., Mei, X., & Hashash, Y. M. A. (2020). Nonlinear Site Response Analysis with Pore-Water Pressure Generation for Liquefaction Triggering Evaluation. Journal of Geotechnical and Geoenvironmental Engineering, 146(2). Pyke, R. M. (1979). Nonlinear soil models for irregular cyclic loadings. Journal of the Geotechnical Engineering Division, 105(6), 715-726. Reed, J. W., & Kassawara, R. P. (1990). A criterion for determining exceedance of the operating basis earthquake. Nuclear Engineering and Design, 123(2-3), 387-396. Samui, P., & Sitharam, T. (2011). Machine learning modelling for predicting soil liquefaction susceptibility. Natural Hazards and Earth System Sciences, 11(1), 1-9. Santiago, Y., Ledezma, C., & Tiznado, J. C. (2025). Assessing soil liquefaction due to large-magnitude subduction earthquakes. Soil Dynamics and Earthquake Engineering, 188. Seed, H. B., & Idriss, I. M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations division, 97(9), 1249-1273. Shahi, S. K., & Baker, J. W. (2014). An Efficient Algorithm to Identify Strong-Velocity Pulses in Multicomponent Ground Motions. Bulletin of the Seismological Society of America, 104(5), 2456-2466. Sui, Q.-r., Chen, Q.-h., Wang, D.-d., & Tao, Z.-g. (2023). Application of machine learning to the V s-based soil liquefaction potential assessment. Journal of Mountain Science, 20(8), 2197-2213. Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice. John wiley & sons. Tsai, C.-C., & Li, P.-C. (2024). Quantifying near-fault motion effects on soil liquefaction through effective stress site response analysis. Soil Dynamics and Earthquake Engineering, 183. Tsai, C.-C., Wang, J., Huang, T.-Y., & Sung, C.-Y. (2022). Correlations between pore water pressure development in sandy soil and CAV-based ground motion intensity measures. Engineering Geology, 307, 106785. Verdugo, R., & González, J. (2015). Liquefaction-induced ground damages during the 2010 Chile earthquake. Soil Dynamics and Earthquake Engineering, 79, 280-295. Vucetic, M. (1994). Cyclic threshold shear strains in soils. Journal of Geotechnical Engineering, 120(12), 2208-2228. Wu, M.-H., Wang, J.-P., & Sung, C.-Y. (2023). PERFORMANCE OF HBF METHOD FOR SOIL LIQUEFACTION ASSESSMENT. Journal of GeoEngineering, 18(4). 李珮綺(2023)。近斷層效應對引發土壤液化之影響。(碩士論文。國立中興大學) 臺灣博碩士論文知識加值系統。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99721 | - |
| dc.description.abstract | 臺灣位處環太平洋地震帶,頻繁的地震經常對不論是建築物或是民生經濟都帶來相當程度的威脅,地震帶來的循環荷載使土壤顆粒間的孔隙水壓上升,土層失去原有的有效應力,造成土壤液化的現象,為近十年來火熱的議題。
本研究為探究不同類型地震作用於土層之影響,蒐集了共743筆地震訊號,包含淺殼層型、海溝型、近斷層脈衝型及非近斷層脈衝型等地震,土層部分則分為數值土層及臺灣現地土層兩類,模擬土層部分主要由砂土構成,依相對密度、地層深度、土壤分層數量等差異一共生成100種土層;現地土層則是透過臺灣中南部的真實土層資料建立,共選取7個土層,以上述資料用OpenSees建立數值模型,進行了79501組三維有效應力地盤反應分析,討論不同地震、土層下對超額孔隙水壓比 (r_u) 及最大剪應變 (γ_max) 的影響。 將地盤反應分析的結果整合,分別建立數值土層及臺灣現地土層的資料庫,內容包括土壤參數如深度、相對密度;各地震之地震動強度參數 (ground motion intensity measures, IMs) 如PGA、PGV、CAV等參數以及r_u和γ_max,使用機器學習方法:可解釋提升機器 (explainable boosting machine, EBM)、隨機森林 (random forest, RF)、極限梯度提升 (extreme gradient boosting , XGBoost) 作訓練,以土壤參數及單一IM作為輸入特徵,r_u、γ_max及液化種類為預測目標,比較不同演算法和資料庫訓練出的差異,並將訓練出的模型套用至歷史液化案例上,觀察各自的預測表現,其中在不論r_u或γ_max的預測上,以PGV作為輸入特徵參數的模型皆表現出較高的預測能力,顯現出PGV與兩者間的高度相關。 | zh_TW |
| dc.description.abstract | Taiwan is located along the Pacific Ring of Fire, where frequent earthquakes pose significant threats to both infrastructure and the general economy. The cyclic loading induced by ground motions lead to an increase in pore water pressure between soil particles, causing the soil to lose its original bearing capacity and resulting in soil liquefaction—a topic that has garnered much attention in the past decade.
This study aims to investigate the effects of different types of earthquakes on soil layers. A total of 743 ground motion records were collected, including shallow crustal, subduction zone, near-fault pulse-like, and non-pulse-like earthquakes. Two categories of soil layers were considered: synthetic and field. The synthetic soil layers, primarily composed of sandy soils, were generated based on variations in relative density, depth, and number of soil strata, resulting in 100 different configurations. The field soil profiles were established using actual geotechnical data from central and southern Taiwan, consisting of 7 selected sites. Using the above data, numerical models were constructed in OpenSees to perform 79,501 three-dimensional effective stress site response analyses. The impact of various ground motions and soil conditions on excess pore water pressure ratio (r_u) and maximum shear strain (γ_max) was analyzed. The results of the site response analyses were compiled into two separate databases for synthetic and field soil layers. These databases included soil parameters (e.g., depth, relative density), ground motion intensity measures (IMs) such as PGA, PGV, and CAV, as well as the response metrics r_u and γ_max. Three machine learning models—Explainable Boosting Machine (EBM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost)—were trained using soil parameters and a single IM as input features, with r_u, γ_max, and liquefaction classification as prediction targets. The performance of each model was compared based on different datasets and algorithms. Furthermore, the trained models were applied to historical liquefaction cases to evaluate their predictive capability. Among all IMs considered, models using PGV as the input feature consistently demonstrated superior prediction performance for both r_u and γ_max, indicating a strong correlation between PGV and these two response parameters. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:28:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:28:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目次 v 圖次 vii 表次 xi 第一章 緒論 1 1.1 研究動機及目的 1 1.2 研究方法 1 1.3 研究架構 2 第二章 文獻回顧 3 2.1 土壤液化介紹 3 2.2 地盤反應分析 3 2.2.1 地盤反應分析方法概述 4 2.2.2 場址效應 8 2.3 地震類型 9 2.3.1 淺殼層地震 9 2.3.2 隱沒帶地震 9 2.3.3 近斷層脈衝地震 10 2.4 地震動強度參數 13 2.5 機器學習於液化潛勢預測之應用 13 第三章 研究方法 21 3.1 資料蒐集 21 3.1.1 土層資料 21 3.1.2 地震訊號 23 3.2 數值模型建立 26 3.2.1 軟體OpenSees介紹 26 3.2.2 模型基本架構 27 3.3 機器學習 34 3.3.1 資料庫建立 34 3.3.2 採用之機器學習方法 38 第四章 結果與討論 46 4.1 近斷層效應觀察 46 4.2 各地震動參數 (IMs) 與超額孔隙水壓比 (r_u) 及最大剪應變 (γ_max) 之相關性 48 4.2.1 r_u 49 4.2.2 γ_max 52 4.3 EBMs模型之開發 53 4.3.1 EBM-r_u Model 54 4.3.2 EBM-γ_max Model 61 4.3.3 EBM-liq Model 68 第五章 EBM與其他方法之比較 82 5.1 RF 82 5.1.1 RF-r_u Model 82 5.1.2 RF-γ_max Model 85 5.1.3 RF-liq Model 87 5.2 XGBoost 89 5.2.1 XGB-r_u Model 89 5.2.2 XGB-γ_max Model 93 5.2.3 XGB-liq Model 95 5.3 EBM與二者之比較 98 第六章 結論與建議 107 6.1 結論 107 6.2 建議 108 參考文獻 110 附錄A 地震資料 A-1 附錄B 臺灣現地土層資料 B-1 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 有效應力分析 | zh_TW |
| dc.subject | 土壤液化 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | EBM | zh_TW |
| dc.subject | RF | zh_TW |
| dc.subject | XGBoost | zh_TW |
| dc.subject | XGBoost | en |
| dc.subject | effective stress analysis | en |
| dc.subject | soil liquefaction | en |
| dc.subject | machine learning | en |
| dc.subject | EBM | en |
| dc.subject | RF | en |
| dc.title | 應用機器學習於土壤液化潛能分類之預測 | zh_TW |
| dc.title | Application of Machine Learning for Liquefaction Hazard Assessment | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 黃郁惟 | zh_TW |
| dc.contributor.coadvisor | Yu-Wei Hwang | en |
| dc.contributor.oralexamcommittee | 許尚逸 | zh_TW |
| dc.contributor.oralexamcommittee | Shang-Yi Hsu | en |
| dc.subject.keyword | 有效應力分析,土壤液化,機器學習,EBM,RF,XGBoost, | zh_TW |
| dc.subject.keyword | effective stress analysis,soil liquefaction,machine learning,EBM,RF,XGBoost, | en |
| dc.relation.page | 137 | - |
| dc.identifier.doi | 10.6342/NTU202502264 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 8.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
