請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99718完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鍾明宗 | zh_TW |
| dc.contributor.advisor | Ming-Tsung Chung | en |
| dc.contributor.author | 張芯語 | zh_TW |
| dc.contributor.author | Hsin-Yu Chang | en |
| dc.date.accessioned | 2025-09-17T16:28:20Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | Alfakih, A., Watt, P. J., & Nadeau, N. J. (2022). The physiological cost of colour change: evidence, implications and mitigations. Journal of Experimental Biology, 225(10), jeb210401. https://doi.org/10.1242/jeb.210401
Allen, J. J., Mäthger, L. M., Barbosa, A., Buresch, K. C., Sogin, E., Schwartz, J., Chubb, C., & Hanlon, R. T. (2009). Cuttlefish dynamic camouflage: responses to substrate choice and integration of multiple visual cues. Proceedings of the Royal Society B: Biological Sciences, 277(1684), 1031–1039. https://doi.org/10.1098/rspb.2009.1694 Barbosa, A., Florio, C. F., Chiao, C.-C., & Hanlon, R. T. (2004). Visual background features that elicit mottled body patterns in cuttlefish, Sepia officinalis. The Biological Bulletin, 207(2), 154–154. https://doi.org/10.1086/BBLv207n2p154 Barbosa, A., Mäthger, L. M., Buresch, K. C., Kelly, J., Chubb, C., Chiao, C.-C., & Hanlon, R. T. (2008). Cuttlefish camouflage: The effects of substrate contrast and size in evoking uniform, mottle or disruptive body patterns. Vision Research, 48(10), 1242–1253. https://doi.org/https://doi.org/10.1016/j.visres.2008.02.011 Barbosa, A., Mäthger, L. M., Chubb, C., Florio, C., Chiao, C.-C., & Hanlon, R. T. (2007). Disruptive coloration in cuttlefish: a visual perception mechanism that regulates ontogenetic adjustment of skin patterning. Journal of Experimental Biology, 210(7), 1139–1147. https://doi.org/10.1242/jeb.02741 Bettencourt, V., & Guerra, A. (2001). Age studies based on daily growth increments in statoliths and growth lamellae in cuttlebone of cultured Sepia officinalis. Marine Biology, 139(2), 327–334. https://doi.org/10.1007/s002270100582 Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85(7), 1771–1789. https://doi.org/https://doi.org/10.1890/03-9000 Chandel, N. S. (2021). Glycolysis. Cold Spring Harbor Perspectives in Biology, 13(5), a040535. Chiao, C.-C., Chubb, C., Buresch, K. C., Barbosa, A., Allen, J. J., Mäthger, L. M., & Hanlon, R. T. (2010). Mottle camouflage patterns in cuttlefish: quantitative characterization and visual background stimuli that evoke them. Journal of Experimental Biology, 213(2), 187–199. https://doi.org/10.1242/jeb.030247 Chiao, C.-C., Chubb, C., & Hanlon, R. T. (2007). Interactive effects of size, contrast, intensity and configuration of background objects in evoking disruptive camouflage in cuttlefish. Vision Research, 47(16), 2223–2235. https://doi.org/https://doi.org/10.1016/j.visres.2007.05.001 Chiao, C.-C., & Hanlon, R. T. (2001). Cuttlefish camouflage: visual perception of size, contrast and number of white squares on artificial checkerboard substrata initiates disruptive coloration. Journal of Experimental Biology, 204(12), 2119–2125. https://doi.org/10.1242/jeb.204.12.2119 Chung, M.-T., Chen, C.-Y., Shiao, J.-C., Shirai, K., & Wang, C.-H. (2021). Metabolic proxy for cephalopods: Stable carbon isotope values recorded in different biogenic carbonates. Methods in Ecology and Evolution, 12(9), 1648–1657. https://doi.org/https://doi.org/10.1111/2041-210X.13630 Chung, M.-T., Huang, K.-F., You, C.-F., Chiao, C.-C., & Wang, C.-H. (2020). Elemental ratios in cuttlebone indicate growth rates in the cuttlefish Sepia pharaonis. Frontiers in Marine Science, Volume 6 - 2019. Chung, M.-T., Trueman, C. N., Godiksen, J. A., & Grønkjær, P. (2019). Otolith δ13C values as a metabolic proxy: approaches and mechanical underpinnings. Marine and Freshwater Research, 70(12), 1747–1756. Chung, M.-T., Trueman, C. N., Godiksen, J. A., Holmstrup, M. E., & Grønkjær, P. (2019). Field metabolic rates of teleost fishes are recorded in otolith carbonate. Communications Biology, 2(1), 24. https://doi.org/10.1038/s42003-018-0266-5 Chung, M.-T., & Wang, C.-H. (2013). Age validation of the growth lamellae in the cuttlebone from cultured Sepia pharaonis at different stages. Journal of Experimental Marine Biology and Ecology, 447, 132–137. https://doi.org/https://doi.org/10.1016/j.jembe.2013.02.020 Cloney, R. A., & Florey, E. (1968). Ultrastructure of cephalopod chromatophore organs. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 89(2), 250–280. https://doi.org/10.1007/BF00347297 Cott, H. B. (1940). Adaptive coloration in animals. Cronin, E. R., & Seymour, R. S. (2000). Respiration of the eggs of the giant cuttlefish Sepia apama. Marine Biology, 136(5), 863–870. https://doi.org/10.1007/s002270000274 de la Chesnais, T., Fulton, E. A., Tracey, S. R., & Pecl, G. T. (2019). The ecological role of cephalopods and their representation in ecosystem models. Reviews in Fish Biology and Fisheries, 29(2), 313–334. https://doi.org/10.1007/s11160-019-09554-2 Denton, E. J., & Gilpin-Brown, J. B. (1961). The distribution of gas and liquid within the cuttlebone. Journal of the Marine Biological Association of the United Kingdom, 41(2), 365–381. https://doi.org/10.1017/S0025315400023973 Driedzic, W. R., Sidell, B. D., Stewart, J. M., & Johnston, I. A. (1990). Maximal activities of enzymes of energy metabolism in cephalopod systemic and branchial hearts. Physiological Zoology, 63(3), 615–629. https://doi.org/10.1086/physzool.63.3.30156232 Feidantsis, K., Michaelidis, B., Raitsos, D. Ε., & Vafidis, D. (2021). Seasonal metabolic and oxidative stress responses of commercially important invertebrate species correlation with their habitat. Marine Ecology Progress Series, 658, 27–46. Grigoriou, P., & Richardson, C. A. (2008). The effect of ration size, temperature and body weight on specific dynamic action of the common cuttlefish Sepia officinalis. Marine Biology, 154(6), 1085–1095. https://doi.org/10.1007/s00227-008-1002-3 Grigoriou, P., & Richardson, C. A. (2009). Effect of body mass, temperature and food deprivation on oxygen consumption rate of common cuttlefish Sepia officinalis. Marine Biology, 156(12), 2473–2481. https://doi.org/10.1007/s00227-009-1272-4 Halsey, L. G., Killen, S. S., Clark, T. D., & Norin, T. (2018). Exploring key issues of aerobic scope interpretation in ectotherms: absolute versus factorial. Reviews in Fish Biology and Fisheries, 28(2), 405–415. https://doi.org/10.1007/s11160-018-9516-3 Hanlon, R. (2007). Cephalopod dynamic camouflage. Current Biology, 17(11), R400–R404. https://doi.org/10.1016/j.cub.2007.03.034 Hanlon, R. T., Forsythe, J. W., & Joneschild, D. E. (1999). Crypsis, conspicuousness, mimicry and polyphenism as antipredator defences of foraging octopuses on Indo-Pacific coral reefs, with a method of quantifying crypsis from video tapes. Biological Journal of the Linnean Society, 66(1), 1–22. https://doi.org/10.1111/j.1095-8312.1999.tb01914.x Hanlon, R. T., & Messenger, J. B. (1988). Adaptive coloration in young cuttlefish (Sepia officinalis L.): the morphology and development of body patterns and their relation to behaviour. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 320(1200), 437–487. Hanlon, R. T., & Messenger, J. B. (2018). Cephalopod behaviour. Cambridge University Press. Hsieh, C.-Y., Liu, T.-Y., Tseng, Y.-C., Shirai, K., Wang, P.-L., Wu, G.-C., & Chung, M.-T. (2025). Estimation of lifelong metabolic rates in marine fish: A combination of oxygen consumption measurements and δ13C metabolic proxy derived from vertebral structural carbonates. Limnology and Oceanography Letters, 10(3), 403–411. https://doi.org/https://doi.org/10.1002/lol2.70009 Hunsicker, M. E., Essington, T. E., Watson, R., & Sumaila, U. R. (2010). The contribution of cephalopods to global marine fisheries: can we have our squid and eat them too? Fish and Fisheries, 11(4), 421–438. https://doi.org/https://doi.org/10.1111/j.1467-2979.2010.00369.x Ikeda, Y., Arai, N., Sakamoto, W., & Yoshida, K. (1999). Trace elements in cephalopod calcified tissue: cuttlebone as a possible tracer for life historical events of cuttlefish. International Journal of PIXE, 09(03n04), 335–343. https://doi.org/10.1142/S0129083599000437 Katsanevakis, S., Stephanopoulou, S., Miliou, H., Moraitou-Apostolopoulou, M., & Verriopoulos, G. (2005). Oxygen consumption and ammonia excretion of Octopus vulgaris (Cephalopoda) in relation to body mass and temperature. Marine Biology, 146(4), 725–732. https://doi.org/10.1007/s00227-004-1473-9 Krebs, H. A. (1970). Rate control of the tricarboxylic acid cycle. Advances in Enzyme Regulation, 8, 335–353. https://doi.org/https://doi.org/10.1016/0065-2571(70)90028-2 Kuan, P.-L., You, J.-Y., Wu, G.-C., & Tseng, Y.-C. (2022). Temperature increases induce metabolic adjustments in the early developmental stages of bigfin reef squid (Sepioteuthis lessoniana). Science of The Total Environment, 844, 156962. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.156962 Lee, Y.-H., Yan, H. Y., & Chiao, C.-C. (2010). Visual contrast modulates maturation of camouflage body patterning in cuttlefish (Sepia pharaonis). Journal of Comparative Psychology, 124(3), 261. Maginniss, L. A., & Wells, M. J. (1969). The oxygen consumption of Octopus Cyanea. Journal of Experimental Biology, 51(3), 607–613. https://doi.org/10.1242/jeb.51.3.607 Mather, J. A. (2004). Cephalopod skin displays: from concealment to communication. Evolution of communication systems, 193–214. Melzner, F., Bock, C., & Pörtner, H.-O. (2007). Allometry of thermal limitation in the cephalopod Sepia officinalis. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 146(2), 149–154. https://doi.org/https://doi.org/10.1016/j.cbpa.2006.07.023 O'Dor, R. K., Hoar, J. A., Webber, D. M., Carey, F. G., Tanaka, S., Martins, H. R., & Porteiro, F. M. (1995). Squid (Loligo forbesi) performance and metabolic rates in nature. Marine and Freshwater Behaviour and Physiology, 25(1-3), 163–177. https://doi.org/10.1080/10236249409378915 Önsoy, B., & Salman, A. (2022). Length weight relationships of coleoid cephalopods from the eastern Mediterranean. Scientific Reports, 12(1), 12256. https://doi.org/10.1038/s41598-022-16611-7 Romanek, C. S., Grossman, E. L., & Morse, J. W. (1992). Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta, 56(1), 419–430. https://doi.org/https://doi.org/10.1016/0016-7037(92)90142-6 Segawa, S. (1991). Body Size and Oxygen Consumption Rate of the Oval Squid (Sepioteuthis lessoniana). NIPPON SUISAN GAKKAISHI, 57(9), 1651–1656. https://doi.org/10.2331/suisan.57.1651 Segawa, S. (1995). Effect of Temperature on Oxygen Consumption of Juvenile Oval Squid (Sepioteuthis lessoniana). Fisheries science, 61(5), 743–746. https://doi.org/10.2331/fishsci.61.743 Segawa, S., & Nomoto, A. (2002). Laboratory growth, feeding, oxygen consumption and ammonia excretion of Octopus ocellatus. Bulletin of Marine Science, 71(2), 801–813. Seibel, B. A. (2007). On the depth and scale of metabolic rate variation: scaling of oxygen consumption rates and enzymatic activity in the Class Cephalopoda (Mollusca). Journal of Experimental Biology, 210(1), 1–11. https://doi.org/10.1242/jeb.02588 Sonner, S. C., & Onthank, K. L. (2024). High energetic cost of color change in octopuses. Proceedings of the National Academy of Sciences, 121(48), e2408386121. https://doi.org/10.1073/pnas.2408386121 Villanueva, R., Perricone, V., & Fiorito, G. (2017). Cephalopods as predators: a short journey among behavioral flexibilities, adaptions, and feeding habits. Frontiers in Physiology, Volume 8 - 2017. Wells, M. J., O'Dor, R. K., Mangold, K., & Wells, J. (1983). Oxygen consumption in movement by octopus. Marine Behaviour and Physiology, 9(4), 289–303. https://doi.org/10.1080/10236248309378599 Yin, F., Sun, P., Peng, S., Tang, B., Zhang, D., Wang, C., Mu, C., & Shi, Z. (2013). The respiration, excretion and biochemical response of the juvenile common Chinese cuttlefish, Sepiella maindroni at different temperatures. Aquaculture, 402-403, 127–132. https://doi.org/https://doi.org/10.1016/j.aquaculture.2013.03.018 Zammit, V. A., & Newsholme, E. A. (1976). The maximum activities of hexokinase, phosphorylase, phosphofructokinase, glycerol phosphate dehydrogenases, lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, nucleoside diphosphatekinase, glutamate-oxaloacetate transaminase and arginine kinase in relation to carbohydrate utilization in muscles from marine invertebrates. Biochemical Journal, 160(3), 447–462. https://doi.org/10.1042/bj1600447 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99718 | - |
| dc.description.abstract | 長期以來,頭足類動物展現的高度發達且獨具特色的變換體色行為被認為需要極高的能量代價。然而,個體層級的實際代謝成本至今尚未被明確量化。為釐清此行為的能量使用,本研究將虎斑烏賊(Sepia pharaonis)分別飼養於三種實驗環境中:白色背景(穩定環境,無偽裝需求)、固定邊長的黑白棋盤方格背景(穩定環境,有偽裝需求),以及週期性變換邊長大小的棋盤方格背景(動態環境,有偽裝需求)。本研究透過三項指標進行評估個體的能量代謝:其一,於養殖實驗結束時測量鰓與外套膜中乳酸去氫酶(LDH)與檸檬酸合成酶(CS)的酵素活性;其二,每五日量測一次個體耗氧量;其三,飼養期間骨板的 δ¹³C 值。
結果顯示酵素活性與耗氧量在三組處理間並無顯著差異。然而,有偽裝需求的處理組δ¹³C 值顯著降低,顯示其單位體重代謝率的增加。本研究指出,與偽裝行為相關的能量消耗具有時間動態性,相較於瞬時測量的耗氧量或酵素活性指標, δ¹³C 值所代表的時間整合訊號更能捕捉到能量消耗的動態變化因而具有較佳的解釋力。由 δ¹³C 值重建推估的耗氧量進一步顯示在有偽裝需求的環境下,個體的能量消耗相較於在無偽裝需求的環境約增加兩倍。此結果不僅提供支持體色變換為一具高代謝成本之行為的證據,也為頭足類的代謝生態學提供了嶄新的理解視角。 | zh_TW |
| dc.description.abstract | Cephalopods exhibit extraordinary camouflage behaviors which are unique compared to other marine organisms. This behavior has long been considered energetically expensive, yet it has rarely been quantified at the individual level. To quantify the energetic cost, we study the cuttlefish Sepia pharaonis by rearing individuals in three distinct environments: a white background (stable environment without camouflage requirement), a fixed square size of black-and-white checkerboard (stable environment with camouflage requirement) and a checkerboard with constantly changing square sizes (dynamic environment with camouflage requirement). Energy use was assessed via (1) enzyme activities (LDH and CS) measured in gill and mantle tissues at the end of the experiment, (2) oxygen consumption measured every five days, and (3) δ13C values recorded in the cuttlebone over the one-month rearing period. Enzyme activities and oxygen consumption showed no significant differences among treatments. However, δ13C values were significantly more negative in a camouflage-requiring environment, indicating elevated mass-specific metabolic rates. Our results show the energy expenditure of camouflage is dynamic and better captured by time-averaged δ13C signals rather than snapshot measurements of oxygen consumption or enzyme activity. Reconstructed oxygen consumption from δ13C values further suggests a two-fold increase in energy use under camouflage-requiring conditions, providing new insights into cephalopod metabolic ecology. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:28:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:28:20Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv Table of contents vi List of Tables ix List of Figures x Introduction 1 Cuttlefish camouflage patterns 2 Traditional metabolic rate measurement methodology 3 Novel δ13C metabolic proxy 5 Method 8 Rearing experimental setting 8 Experimental tank design 9 Camouflage background design 9 Mantle length and body weight measurement 11 Oxygen consumption measurement 12 Rearing water and feed sample collection 13 Cuttlebone sample preparation 14 Stable isotope analysis 14 Reconstructed oxygen consumption from isotopic values 15 Enzyme activity analysis 16 Statistical analyses 17 Results 19 The camouflage pattern distinguishes 19 Measurements of mantle length, body weight, and growth rate 19 Measurement of oxygen consumption rate 20 δ13C analysis 21 Reconstructed oxygen consumption rate 22 Enzyme activity analysis 24 Discussion 26 Evaluation of whole-organism oxygen consumption rates measurement 26 Values of applying δ13C metabolic proxy 28 Potential mechanisms underlying the decline in camouflage-related energy expenditure in the latter half of the experiment 29 Discrepant results between measured and reconstructed MO2 data 30 Endpoint enzyme activity assays did not reveal camouflage-related energy costs 31 Variation in species and rearing background may cause a lower level of disruptive pattern in our study 32 Conclusion and future directions 33 References 35 Appendix 66 | - |
| dc.language.iso | en | - |
| dc.subject | 棋盤方格 | zh_TW |
| dc.subject | 耗氧量 | zh_TW |
| dc.subject | 碳13同位素 | zh_TW |
| dc.subject | 酵素活性 | zh_TW |
| dc.subject | checkerboard | en |
| dc.subject | enzyme activity | en |
| dc.subject | δ13C | en |
| dc.subject | oxygen consumption | en |
| dc.title | 虎斑烏賊改變偽裝花紋的能量支出 | zh_TW |
| dc.title | Energy expenditure of camouflage in the cuttlefish Sepia pharaonis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 曾庸哲 | zh_TW |
| dc.contributor.coadvisor | Yung-Che Tseng | en |
| dc.contributor.oralexamcommittee | 王佳惠;何瓊紋 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Hui Wang;Chuan-Wen Ho | en |
| dc.subject.keyword | 棋盤方格,耗氧量,碳13同位素,酵素活性, | zh_TW |
| dc.subject.keyword | checkerboard,oxygen consumption,δ13C,enzyme activity, | en |
| dc.relation.page | 68 | - |
| dc.identifier.doi | 10.6342/NTU202503275 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-08 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 海洋研究所 | - |
| dc.date.embargo-lift | 2028-08-08 | - |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 3.88 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
