請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99715完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃國倉 | zh_TW |
| dc.contributor.advisor | Kuo-Tsang Huang | en |
| dc.contributor.author | 林沛君 | zh_TW |
| dc.contributor.author | Pei-Jun Lin | en |
| dc.date.accessioned | 2025-09-17T16:27:48Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | Ahmed, O., Sezer, N., Ouf, M., Wang, L., & Hassan, I. G. (2023). State-of-the-art review of occupant behavior modeling and implementation in building performance simulation. Renewable and Sustainable Energy Reviews, 185. https://doi.org/10.1016/j.rser.2023.113558
Cao, J., Li, M., Zhang, R., & Wang, M. (2021). An efficient climate index for reflecting cooling energy consumption: Cooling degree days based on wet bulb temperature. Meteorological Applications, 28(3). https://doi.org/10.1002/met.2005 Friess, W. A., Rakhshan, K., & Davis, M. P. (2017). A global survey of adverse energetic effects of increased wall insulation in office buildings: degree day and climate zone indicators [Article]. Energy Efficiency, 10(1), 97-116. https://doi.org/10.1007/s12053-016-9441-z Hamby, D. M. (1994). A review of techniques for parameter sensitivity analysis of environmental models. Environmental Monitoring and Assessment, 32(2), 135-154. https://doi.org/10.1007/BF00547132 Jung, W., Wang, Z., Hong, T., & Jazizadeh, F. (2023). Smart thermostat data-driven U.S. residential occupancy schedules and development of a U.S. residential occupancy schedule simulator. Building and Environment, 243. https://doi.org/10.1016/j.buildenv.2023.110628 Kim, J. H., & Kim, Y. I. (2021). Optimal Combination of External Wall Insulation Thickness and Surface Solar Reflectivity of Non-Residential Buildings in the Korean Peninsula. Sustainability, 13(6). https://doi.org/10.3390/su13063205 Masoso, O. T., & Grobler, L. J. (2008). A new and innovative look at anti-insulation behaviour in building energy consumption. Energy and Buildings, 40(10), 1889-1894. https://doi.org/https://doi.org/10.1016/j.enbuild.2008.04.013 Ounis, S., Aste, N., Butera, F. M., Pero, C. D., Leonforte, F., & Adhikari, R. S. (2022). Optimal Balance between Heating, Cooling and Environmental Impacts: A Method for Appropriate Assessment of Building Envelope’s U-Value. Energies, 15(10). https://doi.org/10.3390/en15103570 Piselli, C., Pisello, A. L., Saffari, M., de Gracia, A., Cotana, F., & Cabeza, L. F. (2019). Cool Roof Impact on Building Energy Need: The Role of Thermal Insulation with Varying Climate Conditions. Energies, 12(17). https://doi.org/10.3390/en12173354 Rossi, F. d., Marigliano, M., Marino, C., & Minichiello, F. (2016). A Technical and Economic Analysis on Optimal Thermal Insulation Thickness for Existing Office Building in Mediterranean Climates. International Journal of Heat and Technology, 34(S2), S561-S568. https://doi.org/10.18280/ijht.34S251 Shin, M., & Do, S. L. (2016). Prediction of cooling energy use in buildings using an enthalpy-based cooling degree days method in a hot and humid climate. Energy and Buildings, 110, 57-70. https://doi.org/https://doi.org/10.1016/j.enbuild.2015.10.035 Singapore Code on Envelope Thermal Performance for Buildings, (2008). https://www1.bca.gov.sg/docs/default-source/docs-corp-news-and-publications/publications/codes-acts-and-regulations/retv.pdf Viet Nam QCVN 09:2017/BXD, (2017). https://vgbc.vn/wp-content/uploads/2018/08/QCVN-09-2017-BXD-ENGLISH-Unofficial-Translation-by-VGBC.pdf 臺灣建築物節約能源設計技術規範, (2019). https://glrs.moi.gov.tw/LawContent.aspx?id=GL001227 綠建築評估手冊-基本型2023年版, (2023). https://www.abri.gov.tw/News_Content.aspx?n=20916&s=322425 王榮進;黃國倉. (2022). 住商部門淨零排放策略及減碳潛力之研究. 住房城乡建设部. (2021). 中国建筑节能与可再生能源利用通用规范(GB 55015-2021). https://www.ahjzu.edu.cn/lsjz/2022/1209/c10448a207000/page.htm 国立研究開発法人建築研究所. 日本建築能耗性能技術訊息(建築物のエネルギー消費性能に関する技術情報). https://www.kenken.go.jp/becc/index.html 林憲德. (2023). 台灣建築外殼節能法規的成本最佳化策略. 建築學報, 125(125增刊), 115-128. https://doi.org/10.53106/101632122023120125013 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99715 | - |
| dc.description.abstract | 熱傳透率(U值)是影響建築能源消耗的重要指標,U值越低表示熱阻效果越佳,能有效降低冷暖房負荷,因此各國建築法規持續調降最大允許U值,以提升能源效率。然而,部分研究指出,U值並非越低越好,不同氣候條件下存在使建築能耗達到最低的最佳U值,當U值低於該最佳值時,反而會導致能耗上升,稱為「隔熱反效果現象」,此現象多發生於亞熱帶、熱帶及地中海型氣候區,因為高隔熱設計在降低外部熱入的同時,也限制室內熱量散出,並增加建材成本與空調耗能。本研究使用EnergyPlus模擬東亞八個地點辦公與住宅建築之能源負荷量,探討不同氣候條件下U值與冷暖房負荷之關係,以及隔熱反效果發生的區域,並提供建築法規最大允許U值的參考依據。 | zh_TW |
| dc.description.abstract | Thermal transmittance (U-value) is a crucial indicator influencing building energy consumption, where lower values indicate better thermal resistance and can effectively reduce heating and cooling loads. Accordingly, building codes worldwide have progressively lowered the maximum allowable U-values to improve energy efficiency. However, some studies indicate that lower U-values are not always better. There exists an optimal U-value under various climatic conditions that minimizes building energy use. When the U-value drops below this optimal point, energy consumption may increase—a phenomenon known as the "anti-insulation effect." This effect frequently occurs in subtropical, tropical, and Mediterranean climates, where high insulation reduces external heat gains but also hinders indoor heat dissipation, leading to increased air conditioning loads and construction costs. This study employs EnergyPlus to simulate the energy loads of office and residential buildings across eight locations in East Asia, investigating the relationship between U-values and total loads under varied climate conditions, identifying regions susceptible to the anti-insulation effect, and providing references for setting maximum allowable U-values in building regulations. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:27:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:27:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii ABSTRACT iii 目次 iv 圖次 vi 表次 vii 第一章、研究動機 1 第二章、文獻回顧 2 2.1 熱傳透率對於空調負荷與能源消耗的影響 2 2.2 隔熱反效果 3 第三章、研究方法 8 3.1 建築模型 8 3.1.1 辦公 8 3.1.2 住宅 11 3.1.3 住宅建築人員變動設定方法 15 3.2 氣候資料 18 3.2.1 CDD、CED、HDD與氣候分區 18 3.2.2 冷房度日計算 19 第四章、結果與討論 22 4.1 辦公建築 22 4.1.1 冷暖房負荷量 22 4.1.2 敏感度分析 26 4.1.3 交點溫度 31 4.1.4 最佳U值 34 4.2 住宅建築 35 4.2.1 冷暖房負荷量 35 4.2.2 敏感度分析 38 4.2.3 空調開啟時間 43 第五章、結論與建議 46 5.1 辦公建築 46 5.2 住宅建築 46 5.3 不足與建議 46 第六章、參考文獻 48 附錄一 50 附錄二 52 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 建築冷房負荷 | zh_TW |
| dc.subject | 建築暖房負荷 | zh_TW |
| dc.subject | 冷房度日 | zh_TW |
| dc.subject | 隔熱反效果現象 | zh_TW |
| dc.subject | 敏感度分析 | zh_TW |
| dc.subject | Anti-insulation effect | en |
| dc.subject | Cooling loads | en |
| dc.subject | Heating loads | en |
| dc.subject | Sensitivity analysis | en |
| dc.subject | Cooling degree days | en |
| dc.title | 不同氣候下建築外殼隔熱性能對空調冷房負荷量影響之研究 | zh_TW |
| dc.title | Impact of Thermal Insulation in Building Envelopes on Cooling Load under Diverse Climate Conditions | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃瑞隆;謝宜桓 | zh_TW |
| dc.contributor.oralexamcommittee | Ruey-Lung Huang;Yi-Huan Hsieh | en |
| dc.subject.keyword | 建築冷房負荷,建築暖房負荷,冷房度日,隔熱反效果現象,敏感度分析, | zh_TW |
| dc.subject.keyword | Cooling loads,Heating loads,Cooling degree days,Anti-insulation effect,Sensitivity analysis, | en |
| dc.relation.page | 53 | - |
| dc.identifier.doi | 10.6342/NTU202503474 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-09 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物環境系統工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 5.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
