Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99711
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯淳涵zh_TW
dc.contributor.advisorChun-Han Koen
dc.contributor.author鄭文益zh_TW
dc.contributor.authorWen-Yi Chengen
dc.date.accessioned2025-09-17T16:27:05Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citationAbdallah, A. F., Jawaid, M., Mohamed, A. Z., Tahir, P. M., & Abdullah, U. H. (2024). Alkaline sulfite anthraquinone and methanol pulps from bamboo for papermaking applications. Biomass Conversion and Biorefinery, 1-18.
Afsahi, G., Rojalin, T., & Vuorinen, T. (2019). Chemical characteristics and stability of Eeucalyptus kraft pulps bleached with tertiary amine catalyzed hypochlorous acid. Cellulose, 26, 2047-2054.
Alsup, R., Punderson, J., & Leverett, G. (1959). The effect of solvents on high molecular weight, stable acetal resins. Journal of Applied Polymer Science, 1 (2), 185-191.
Areej, F., Mohd Ashadie, K., Zakiah, S., & Ainun, Z. M. A. (2023). Pulping process for nonwoody plants. In (pp. 17-32). Elsevier. https://doi.org/10.1016/b978-0-323-91625-7.00007-2
Batalha, L. R., Colodette, J. L., Gomide, J. L., Barbosa, L. C., Maltha, C. R., & Gomes, F. B. (2012). Dissolving pulp production from bamboo. BioResources, 7 (1), 640-651.
Brogdon, B. N. (2008). Caustic extraction in elemental chlorine-free bleaching sequences for softwood kraft pulps: A fundamental review and analysis. Proceedings of the Engineering, Pulping and Environmental Conference, Portland, OR, USA,
Brogdon, B. N., Dimmel, D. R., & McDonough, T. J. (1999). The influence of the bleaching medium on caustic extraction efficiency (II): oxidized lignin solubility. Journal of wood chemistry and technology, 19 (4), 307-321.
Brogdon, B. N., Dimmel, D. R., & McDonough, T. J. (2001). The influence of the bleaching medium on chlorine dioxide delignification. Journal of wood chemistry and technology, 21 (2), 143-156.
Brogdon, B. N., & Lucia, L. A. (2023). Kraft pulp viscosity as a predictor of paper strength: Its uses and abuses. Tappi Journal, 22 (10), 631-643.
Burchard, W. (2003). Solubility and solution structure of cellulose derivatives. Cellulose, 10, 213-225.
Ceccherini, S., Ståhl, M., Sawada, D., Hummel, M., & Maloney, T. C. (2021). Effect of enzymatic depolymerization of cellulose and hemicelluloses on the direct dissolution of prehydrolysis kraft dissolving pulp. Biomacromolecules, 22 (11), 4805-4813.
Chanda, M. (2000). Chapter 1: Introductory Concepts and Definitions. Advanced Polymer Chemistry: A Problem Solving Guide, 27.
Copur, Y., & Tozluoglu, A. (2008). A comparison of kraft, PS, kraft-AQ and kraft-NaBH4 pulps of Brutia pine. Bioresource technology, 99 (5), 909-913.
Cruz, D. N., Ocampo, C., Brendolan, A., Menara, G., Corradi, V., de Cal, M., Polanco, N., Kuang, D., Nalesso, F., & Crepaldi, C. (2007). Effectiveness of sodium hypochlorite in the prevention of catheter related infections. In Disinfection by Sodium Hypochlorite: Dialysis Applications (Vol. 154, pp. 97-102). Karger Publishers.
Dong, Y., Ji, H., Dong, C., Zhu, W., Long, Z., & Pang, Z. (2020). Preparation of high-grade dissolving pulp from radiata pine. Industrial Crops and Products, 143, 111880.
Donohue, M. D. (2003). SUPERCRITICAL FLUID SPRAY APPLICATION PROCESS FOR ADHESIVES AND PRIMERS. Johns Hopkins University, Laurel.
Echeverria, D., Venditti, R., Jameel, H., & Yao, Y. (2022). Process simulation-based life cycle assessment of dissolving pulps. Environmental Science & Technology, 56 (7), 4578-4586.
Elfaleh, I., Abbassi, F., Habibi, M., Ahmad, F., Guedri, M., Nasri, M., & Garnier, C. (2023). A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results in Engineering, 19, 101271.
Exchange, T. (2022). Organic cotton market report. Textile Exchange, Lamesa.
Fang, Z., Li, B., Liu, Y., Zhu, J., Li, G., Hou, G., Zhou, J., & Qiu, X. (2020). Critical role of degree of polymerization of cellulose in super-strong nanocellulose films. Matter, 2 (4), 1000-1014.
Fearon, O., Nykänen, V., Kuitunen, S., Ruuttunen, K., Alén, R., Alopaeus, V., & Vuorinen, T. (2020). Detailed modeling of the kraft pulping chemistry: carbohydrate reactions. AIChE Journal, 66 (8), e16252.
Friebel, C., Bischof, R., Schild, G., Fackler, K., & Gebauer, I. (2019). Effects of caustic extraction on properties of viscose grade dissolving pulp. Processes 7: 1–12. In.
Gellerstedt, G. (2009). Mechanical pulping chemistry. Pulping chemistry and technology, 2, 35.
Germgård, U. (2009). 10 Bleaching of Pulp. Pulping Chemistry and Technology, 2, 239.
Gojic, A., & Bukhonka, N. (2023). Recycled Textile Fibers and Materials—Current State and Development Perspectives. Conference proceedings ICPAE.
Gupta, N. K., Prakash, P., Kalaichelvi, P., & Sheeba, K. (2016). The effect of temperature and hemicellulose-lignin, cellulose-lignin, and cellulose-hemicellulose on char yield from the slow pyrolysis of rice husk. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38 (10), 1428-1434.
Hashizume, T., Saito, K., & Watanabe, T. (2025). Facile characterization of molecular weight distribution of cellulose by gel permeation chromatography using a dimethyl sulfoxide solution containing 1% EmimOAc. Cellulose, 32 (3), 1499-1511.
Houshangi, M. (2021). Life-cycle Assessment for the Production of IonoSolv Dissolving Pulp Fiber. Master’s thesis in Department of Chemical Engineering, Imperial College London, London.
Ibarra, D., Köpcke, V., Larsson, P. T., Jääskeläinen, A.-S., & Ek, M. (2010). Combination of alkaline and enzymatic treatments as a process for upgrading sisal paper-grade pulp to dissolving-grade pulp. Bioresource Technology, 101 (19), 7416-7423.
Isaza Ferro, E., Ruuttunen, K., Perrin, J., & Vuorinen, T. (2021). Sustainable bleaching of Eeucalyptus sp. kraft pulp with hypochlorous acid, ozone and hydrogen peroxide. Industrial Crops and Products, 172, 114004. https://doi.org/10.1016/j.indcrop.2021.114004
Janzon, R., Puls, J., & Saake, B. (2006). Upgrading of paper-grade pulps to dissolving pulps by nitren extraction: optimisation of extraction parameters and application to different pulps. Holzforschung, 60, 347-354.
Jeong, S.-Y., & Lee, J.-W. (2015). Hydrothermal treatment. In Pretreatment of Biomass (pp. 61-74). Elsevier.
Jiang, X., Bai, Y., Chen, X., & Liu, W. (2020). A review on raw materials, commercial production and properties of lyocell fiber. Journal of Bioresources and Bioproducts, 5 (1), 16-25.
Johnson, D., & Chiswell, B. (1993). A new method for the evaluation of the oxidizing equivalent of manganese in surface freshwaters. Talanta, 40 (4), 533-540.
Juuti, S., Vartiainen, T., Joutsenoja, P., & Ruuskanena, J. (1996). Volatile organochlorine compounds formed in the bleaching of pulp with ClO2. Chemosphere, 33 (3), 437-448.
Kallio, A. M. I. (2021). Wood-based textile fibre market as part of the global forest-based bioeconomy. Forest Policy and Economics, 123, 102364.
Kärkkäinen, E. (2021). Industrial production of different prehydrolysis kraft dissolving pulp grades. Master’s thesis in Master of Science in Technology, Aalto University, Espoo.
Kumar, H., & Christopher, L. P. (2017). Recent trends and developments in dissolving pulp production and application. Cellulose, 24, 2347-2365.
Lê, H. Q., She, J., Fang, W., & Sixta, H. (2024a). StExCell: novel steam-explosion-based biorefinery concept for dissolving pulp production. Holzforschung, 78 (11-12), 631-646.
Lê, H. Q., She, J., Fang, W., & Sixta, H. (2024b). StExCell: novel steam-explosion-based biorefinery concept for dissolving pulp production. Holzforschung (0).
Li, S., Wang, Y., Ma, L., Zhang, X., Dong, S., Liu, L., Zhou, X., Wang, C., & Shi, Z. (2019). Synthesis of PAN with adjustable molecular weight and low polydispersity index (PDI) value via reverse atom transfer radical polymerization. Designed Monomers and Polymers, 22 (1), 180-186.
lino, A. G. (2008). 以蒸煮爆碎搭配鹼浸泡前處理法提升稻殼糖化效率的研究。有機高分子所碩士學位論文,國立臺北科技大學 臺北市。
Lippiat, B. (2007). Building for environmental and economic sustainability (BEES) technical manual and user guide. National Institute of Standards and Technology [NISTIR 7423].
Liu, W., Zhou, S., Qi, X., & Pu, J. (2013). Preparation of acetate-grade dissolving pulp from Eeucalyptus by processes including alkaline pretreatment and combined post-treatments with xylanase and alkali. Tappi Journal, 12 (9), 19-24.
Luo, M. (2009). Enzymatic treatment of pulp for lyocell manufacture. In: Google Patents.
Lynn, T. F., Ottino, J. M., Lueptow, R. M., & Umbanhowar, P. B. (2022). Potentialities and limitations of machine learning to solve cut-and-shuffle mixing problems: A case study. Chemical Engineering Science, 260, 117840.
Martín-Sampedro, R., Eugenio, M., & Villar, J. (2011). Biobleaching of eucalyptus globulus kraft pulps: Comparison between pulps obtained from exploded and non-exploded chips. Bioresource Technology, 102 (6), 4530-4535.
Martin-Sampedro, R., Eugenio, M. E., Moreno, J. A., Revilla, E., & Villar, J. C. (2014). Integration of a kraft pulping mill into a forest biorefinery: Pre-extraction of hemicellulose by steam explosion versus steam treatment. Bioresource Technology, 153, 236-244.
Mboowa, D. (2024). A review of the traditional pulping methods and the recent improvements in the pulping processes. Biomass Conversion and Biorefinery, 14 (1), 1-12.
Mensah, R. Q., Yingkamhaeng, N., Venkatachalam, P., Show, P.-L., Mussatto, S. I., Sriariyanun, M., Sukyai, P., Parakulsuksatid, P., & Rattanaporn, K. (2023). Application of green produced xylooligosaccharides from sugarcane residues and their properties–Recent progress towards sustainability. Bioresource Technology Reports, 23, 101537.
Montane, D., Farriol, X., Salvado, J., Jollez, P., & Chornet, E. (1998). Application of steam explosion to the fractionation and rapid vapor-phase alkaline pulping of wheat straw. Biomass and Bioenergy, 14 (3), 261-276.
Montet, E. (2021). Investigation of the consequences of the use of ozone in the bleaching of cellulosic fibres. PhD thesis in Chemical and Process Engineering, Université Grenoble Alpes, Grenoble.
Montet, E., Lachenal, D., & Chirat, C. (2025). Variations in carbohydrates molar mass distribution during chemical degradation and consequences on fibre strength. Nordic Pulp & Paper Research Journal (0).
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96 (6), 673-686.
Ni, Y. (1992). A fundamental study of chlorine dioxide bleaching of kraft pulp. PhD thesis in Department of Chemical Engineering. McGill University, Montreal.
Nilsson, L. (2023). Soda Based Production of Dissolving Pulp from Wheat Straw Process Simulation and Techno-Economic Assessment. Master’s thesis in Innovative and Sustainable Chemical Engineering, Chalmers University of Technology, Gothenburg.
Perrin, J., Lachenal, D., & Chirat, C. (2017). Brightness stability of Eeucalyptus-dissolving pulps: effect of the bleaching sequence. Holzforschung, 71 (7-8), 625-631.
Petrovan, S., Collier, J., & Negulescu, I. (2001). Rheology of cellulosic N‐methylmorpholine oxide monohydrate solutions of different degrees of polymerization. Journal of Applied Polymer Science, 79 (3), 396-405.
Pielhop, T., Amgarten, J., von Rohr, P. R., & Studer, M. H. (2016). Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility. Biotechnology for Biofuels, 9, 1-13.
Putra, A. S., Noguchi, R., & Ohi, H. (2019, January). Life Cycle Assessment of Dissolving Pulp and Furfural made from Oil Palm Empty Fruit Bunches Waste. In Proceedings of the Conference on Biomass Science, 14 (145-146). Tokyo, The Japan Institute of Energy.
Rahman, M. M., Jahan, M. S., & Ni, Y. (2023). Pulping and papermaking of jute. In Pulping and Papermaking of Nonwood Plant Fibers (pp. 121-141). Elsevier.
Rosenau, T., Potthast, A., Hofinger, A., & Kosma, P. (2005). Isolation and identification of residual chromophores in cellulosic materials. Macromolecular Symposia,
Sharma, N., Bhardwaj, N. K., & Singh, R. B. P. (2020). Environmental issues of pulp bleaching and prospects of peracetic acid pulp bleaching: A review. Journal of Cleaner Production, 256, 120338.
Sharma, N., Tripathi, S. K., & Bhardwaj, N. K. (2020). Utilization of sarkanda for making pulp and paper using elemental chlorine free and total chlorine free bleaching processes. Industrial Crops and Products, 149, 112316.
Silva, V. L., Lino, A. G., Ribeiro, R. A., Colodette, J. L., Forsström, A., & Wackerberg, E. (2011). Factors affecting brightness reversion of hardwood kraft pulps. BioResources, 6 (4).
Tsai, C.-C., Hu, T.-E., Lin, K.-C., & Chen, Z.-S. (2009). Estimation of soil organic carbon stocks in plantation forest soils of Northern Taiwan. Taiwan J For Sci, 24 (2), 103-115.
Ulefors, A. (2022). Production of Dissolving Pulp from Oat Husks. Process Design with Techno-Economic and Environmental Assessment in a Life Cycle Perspective. Master’s thesis in Innovative and Sustainable Chemical Engineering, Chalmers University of Technology, Gothenburg.
Vuorinen, T., Jääskeläinen, A.-S., Lehtimaa, T., Toikka, K., & Zhou, Z. (2005). Fundamentals and characteristics of modern hardwood pulp bleaching. ABTCP-PI 2005: 38th Pulp and Paper International Congress & Exhibition, Sao Paulo, Brazil, October 17-20, 2005.
Wang, N., & Chen, H.-Z. (2013). Manufacture of dissolving pulps from cornstalk by novel method coupling steam explosion and mechanical carding fractionation. Bioresource Technology, 139, 59-65.
Wang, Y., Azhar, S., Lindström, M. E., & Henriksson, G. (2015). Stabilization of polysaccharides during alkaline pre-treatment of wood combined with enzyme-supported extractions in a biorefinery. Journal of Wood Chemistry and Technology, 35 (2), 91-101.
Wenzel, H., Hauschild, M. Z., & Alting, L. (2000). Environmental Assessment of Products: Volume 1: Methodology, tools and case studies in product development (Vol. 1). Springer Science & Business Media.
Windeisen, E., & Wegener, G. (2012). Lignin as Building Unit for Polymers. In (pp. 255-265). Elsevier. https://doi.org/10.1016/b978-0-444-53349-4.00263-6
Wistara, N. J., Carolina, A., Pulungan, W. S., Emil, N., Lee, S.-H., & Kim, N.-H. (2015). Effect of tree age and active alkali on kraft pulping of white jabon. Journal of the Korean Wood Science and Technology, 43 (5), 566-577.
Young, R. A., & Akhtar, M. (1997). Environmentally friendly technologies for the pulp and paper industry. John Wiley & Sons.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99711-
dc.description.abstract本研究旨在探討以柳杉鹼性蒸汽預處理漿應用於製備溶解漿之可行性。木片經由亞硫酸鹽法 (K)、1%酸性蒸汽爆破 (A)、2 %鹼性蒸汽爆破 (B2)、4%鹼性蒸汽爆破 (B4)等不同預處理方法,進行後續蒸煮 (C)與三段漂白 (H₁E₁、H₂E₂、H₃E₃)處理,分析其對黏度、白度、分子量與木質素去除率之影響。研究結果顯示,酸蒸爆A組雖處理條件激烈,但E₁階段殘留木質素仍高 (NaClO可溶物達13.8%),白度僅提升至27.5%,顯示須增加藥品使用量或漂白段數以達製漿要求;相較之下,B2C、B₄、B₄C組在E₂階段已具備優異脫木質素效果,木質素含量低於1%。在E3階段B₄、B₄C且白度可達到89.1%與90.8%,且黏度可維持在13.1 cP 與12.8 cP,符合溶解級紙漿之標準。相較傳統亞硫酸鹽紙漿工藝有更高之白度 (83.9%)與黏度 (10.3 cP),顯示預處理條件能有效地提升白度與去木質素效率,且控制對纖維素主鏈的降解風險。GPC與化學組成分析顯示,B₄與B₄C之PDI值分別為4.2與3.5,較其他組別分布更集中,半纖維素含量可以控制在7-8%,代表纖維具良好均質性與應用潛力;相較下,未經前處理之SP 組纖維殘留半纖維素較高、黏度與白度提升有限,需經鹼或氨氣處理才可將牛皮紙級漿轉化為溶解即漿。同時,傳統亞硫酸鹽紙漿工藝預處理時間最長 (170℃, 3 hr ),為各預處理方法中,最不具環保效益之選項。綜合上述,柳杉經適當之鹼性蒸爆搭配低溫蒸煮與分段漂白,可在較低的能耗下,製備具高白度、低雜質且黏度與分子量適宜之溶解級紙漿,顯示國產材具發展再生纖維應用之潛能,有助於實現低碳永續及紡織產業原料本地化之目標。zh_TW
dc.description.abstractThis study evaluated alkaline steam-pretreated Japanese Cedar for dissolving pulp production. Wood chips underwent various pretreatment methods, followed by cooking (C) and a three-stage bleaching process (H₁E₁, H₂E₂, H₃E₃). To assess their effects on pulp viscosity, brightness, molecular weight, and lignin removal efficiency. Acid-pretreated A group showed poor delignification and low brightness (27.5%) after E₁, groups B₂C, B₄, and B₄C achieved lignin contents <1% by E₂ and high brightness (up to 90.8%) by E₃, with viscosities meeting dissolving-grade standards (≥12.8 cP). Compared to kraft pulp (83.9% brightness, 10.3 cP), these alkaline steam-pretreatments enhanced delignification and brightness while preserving cellulose integrity. GPC and chemical analysis showed 4% alkaline treated SEP had PDI values of 4.2 and 3.5, indicating narrower molecular weight distributions. Hemicellulose content was maintained at 7–8%, ensuring fiber homogeneity. In contrast, un-pretreated SP retained more hemicellulose and required further treatment to reach dissolving-grade quality. The combination of alkaline steam explosion, low-temp cooking, and staged bleaching effectively produced high-brightness, low-impurity dissolving pulp from Japanese cedar. These results highlight the potential of domestic wood resources for regenerated fiber applications, supporting low-carbon sustainability and raw material localization in the textile industry.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:27:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:27:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
中文摘要 ii
ABSTRACT iii
目次 iv
圖次 viii
表次 x
縮寫表 xii
第一章 前言 1
第二章 文獻回顧 3
2.1 溶解級漿 (Dissolving pulp) 4
2.1.1 標準 4
2.1.2 污染物 (Impurities) 6
2.1.3 聚合度 (Degree of polymerization;DP) 6
2.2 溶解級漿之典型製程 9
2.2.1 原料 (Raw Material) 10
2.2.2 預處理 (Pretreatment) 11
2.2.3 蒸煮製漿 12
2.2.4 鹼性亞硫酸鹽製漿 12
2.2.5 蒸汽爆碎製漿 14
2.2.6 SEP 木質素去除機制 16
2.2.7 鹼性預處理之文獻回顧 17
2.3 漂白 18
2.3.1 氯價 20
2.3.2 ECF 與TCF漂白 22
2.3.3 次氯酸鈉漂白 (H) 23
2.3.4 鹼萃 (E) 24
2.4 漂白之影響 25
2.4.1 對黏度之影響 25
2.4.2 對分子量分佈之影響 27
2.4.3 製程模擬 29
2.4.4 製漿能耗 30
第三章 材料與方法 32
3.1 研究架構圖 32
3.2 材料 33
3.2.1 原料 33
3.2.2 化學品 33
3.3 方法 34
3.3.1 亞硫酸鹽製漿 34
3.3.2 蒸汽爆碎 (SEP) 35
3.3.3 低溫蒸煮 35
3.3.4 磨漿與良漿率 36
3.3.5 漂白 36
3.4 製漿適漿性 37
3.4.1 手抄紙製備 37
3.4.2 抗張強度 38
3.4.3 破裂強度 38
3.4.4 白度 39
3.4.5 紙漿黏度 39
3.4.6 纖維長度篩分 40
3.5 紙漿化學組成分析 40
3.5.1 灰分 40
3.5.2 抽出成分 41
3.5.3 全纖維素 41
3.5.4 α-纖維素 42
3.6 凝膠層析儀 (GPC/SEC) 43
3.7 環境衝擊評估 45
第四章 結果與討論 46
4.1 纖維形態與製漿潛力 46
4.1.1 纖維長度測試 46
4.1.2 黏度 47
4.2 化學組成分及其收率 49
4.3 分子量分布 52
4.3.1 凝膠層析儀 (GPC/SEC) 52
4.3.2 MW、Mn、PDI 56
4.3.3 MW vs. 紙漿黏度 58
4.4 手抄紙物理性質 60
4.4.1 抗張指數 vs. MW vs. Mn 60
4.5 選擇性 62
4.5.1 黏度 vs. 白度 62
4.5.2 能耗vs. α-纖維素 純度 64
4.5.3 環境衝擊分析 66
第五章 結論 68
參考文獻 69
附錄 74
-
dc.language.isozh_TW-
dc.subject凝膠層析儀zh_TW
dc.subject柳杉zh_TW
dc.subject聚合度zh_TW
dc.subject漂白zh_TW
dc.subject溶解級漿zh_TW
dc.subjectGel permeation chromatographyen
dc.subjectCryptomeria japonicaen
dc.subjectDissolving pulpen
dc.subjectSteam explosionen
dc.subjectBleachingen
dc.subjectDegree of polymerizationen
dc.title蒸氣爆碎製漿用於溶解級紙漿之應用zh_TW
dc.titleApplication of Steam Explosion Pulping in Dissolving Grade Pulpen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor官崇煜zh_TW
dc.contributor.coadvisorChung-Yu Guanen
dc.contributor.oralexamcommittee藍浩繁 ;張芳志zh_TW
dc.contributor.oralexamcommitteeHaw-Earn Lan;Fang-Chih Changen
dc.subject.keyword柳杉,溶解級漿,漂白,聚合度,凝膠層析儀,zh_TW
dc.subject.keywordCryptomeria japonica,Dissolving pulp,Steam explosion,Bleaching,Degree of polymerization,Gel permeation chromatography,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU202501819-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
dc.date.embargo-lift2030-07-14-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
2.09 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved