請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99704完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 闕蓓德 | zh_TW |
| dc.contributor.advisor | Pei-Te Chiueh | en |
| dc.contributor.author | 俞宏達 | zh_TW |
| dc.contributor.author | Hung-Ta Yu | en |
| dc.date.accessioned | 2025-09-17T16:25:49Z | - |
| dc.date.available | 2025-10-21 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | Bačeković, I., & Østergaard, P. A. (2018). Local smart energy systems and cross-system integration. Energy, 151, 812–825. https://doi.org/10.1016/j.energy.2018.03.098
Barros, M. V., Salvador, R., Piekarski, C. M., de Francisco, A. C., & Freire, F. M. C. S. (2020). Life cycle assessment of electricity generation: A review of the characteristics of existing literature. The International Journal of Life Cycle Assessment, 25(1), 36–54. https://doi.org/10.1007/s11367-019-01652-4 Baumgärtner, N., Deutz, S., Reinert, C., Nolzen, N., Kuepper, L. E., Hennen, M., Hollermann, D. E., & Bardow, A. (2021). Life-Cycle Assessment of Sector-Coupled National Energy Systems: Environmental Impacts of Electricity, Heat, and Transportation in Germany Till 2050. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.621502 Behrens, P., van Vliet, M. T. H., Nanninga, T., Walsh, B., & Rodrigues, J. F. D. (2017). Climate change and the vulnerability of electricity generation to water stress in the European Union. Nature Energy, 2(8), 1–7. https://doi.org/10.1038/nenergy.2017.114 Berrill, P., Arvesen, A., Scholz, Y., Gils, H. C., & Hertwich, E. G. (2016). Environmental impacts of high penetration renewable energy scenarios for Europe. Environmental Research Letters, 11(1), 014012. https://doi.org/10.1088/1748-9326/11/1/014012 Binyet, E., & Hsu, H.-W. (2024). Decarbonization strategies and achieving net-zero by 2050 in Taiwan: A study of independent power grid region. Technological Forecasting and Social Change, 204, 123439. https://doi.org/10.1016/j.techfore.2024.123439 Chowdhury, J. I., Balta-Ozkan, N., Goglio, P., Hu, Y., Varga, L., & McCabe, L. (2020). Techno-environmental analysis of battery storage for grid level energy services. Renewable and Sustainable Energy Reviews, 131, 110018. https://doi.org/10.1016/j.rser.2020.110018 Curran, M. A. (2015). Life Cycle Assessment Student Handbook. https://www.wiley.com/en-us/Life+Cycle+Assessment+Student+Handbook-p-9781119083542 Das, J., Ur Rehman, A., Verma, R., Gulen, G., & Young, M. H. (2024). Comparative Life-Cycle Assessment of Electricity-Generation Technologies: West Texas Case Study. Energies, 17(5), Article 5. https://doi.org/10.3390/en17050992 Deng, Z., Chen, Y., Yang, J., & Causone, F. (2023). AutoBPS: A tool for urban building energy modeling to support energy efficiency improvement at city-scale. Energy and Buildings, 282, 112794. https://doi.org/10.1016/j.enbuild.2023.112794 EIA. (2020). Capital Cost and Performance Characteristics for Utility-Scale Electric Power Generating Technologies. EIA (Energy Information Administration). https://www.eia.gov/analysis/studies/powerplants/capitalcost/ Eloranta, V., Grönman, A., & Woszczek, A. (2021). Case Study and Feasibility Analysis of Multi-Objective Life Cycle Energy System Optimization in a Nordic Campus Building. Energies, 14(22), Article 22. https://doi.org/10.3390/en14227742 Energy Institute. (2024). Energy Charting Tool. Retrieved from https://energyinst.net/#/results/et/electric-gene/unit/TWh/regions/TWN/view/area EPA. (2023). Progress Report—Atmospheric Deposition. https://www.epa.gov/power-sector/progress-report-atmospheric-deposition Fattahi, A., Sánchez Diéguez, M., Sijm, J., Morales España, G., & Faaij, A. (2021). Measuring accuracy and computational capacity trade-offs in an hourly integrated energy system model. Advances in Applied Energy, 1, 100009. https://doi.org/10.1016/j.adapen.2021.100009 Fattahi, A., Sijm, J., & Faaij, A. (2020). A systemic approach to analyze integrated energy system modeling tools: A review of national models. Renewable and Sustainable Energy Reviews, 133, 110195. https://doi.org/10.1016/j.rser.2020.110195 Gao, A. M.-Z., Fan, C.-T., & Liao, C.-N. (2018). Application of German energy transition in Taiwan: A critical review of unique electricity liberalisation as a core strategy to achieve renewable energy growth. Energy Policy, 120, 644–654. https://doi.org/10.1016/j.enpol.2018.01.010 García-Gusano, D., Martín-Gamboa, M., Iribarren, D., & Dufour, J. (2016). Prospective Analysis of Life-Cycle Indicators through Endogenous Integration into a National Power Generation Model. Resources, 5(4), Article 4. https://doi.org/10.3390/resources5040039 Groissböck, M. (2019). Are open source energy system optimization tools mature enough for serious use? Renewable and Sustainable Energy Reviews, 102, 234–248. https://doi.org/10.1016/j.rser.2018.11.020 Hauschild, M. Z., Rosenbaum, R. K., & Olsen, S. I. (2018). Life Cycle Assessment Theory and Practice. In M. Z. Hauschild, R. K. Rosenbaum, & S. I. Olsen (Eds.), Life Cycle Assessment: Theory and Practice (p. 3–8). Springer International Publishing. https://doi.org/10.1007/978-3-319-56475-3_1 Hoffmann, M., Schyska, B. U., Bartels, J., Pelser, T., Behrens, J., Wetzel, M., Gils, H. C., Tang, C.-F., Tillmanns, M., Stock, J., Xhonneux, A., Kotzur, L., Praktiknjo, A., Vogt, T., Jochem, P., Linßen, J., Weinand, J. M., & Stolten, D. (2024). A review of mixed-integer linear formulations for framework-based energy system models. Advances in Applied Energy, 16, 100190. https://doi.org/10.1016/j.adapen.2024.100190 Hong, Y.-Y., & Magararu, L. A. P. (2021). Techno-economic analysis of Taiwan’s new energy policy for 2025. Sustainable Energy Technologies and Assessments, 46, 101307. https://doi.org/10.1016/j.seta.2021.101307 Howells, M., Rogner, H., Strachan, N., Heaps, C., Huntington, H., Kypreos, S., Hughes, A., Silveira, S., DeCarolis, J., Bazillian, M., & Roehrl, A. (2011). OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development. Energy Policy, 39(10), 5850–5870. https://doi.org/10.1016/j.enpol.2011.06.033 Huang, G. C.-L., & Chen, R.-Y. (2021). Injustices in phasing out nuclear power?: Exploring limited public participation and transparency in Taiwan’s transition away from nuclear energy. Energy Research & Social Science, 71, 101808. https://doi.org/10.1016/j.erss.2020.101808 Huang, K., & Eckelman, M. J. (2022). Appending material flows to the National Energy Modeling System (NEMS) for projecting the physical economy of the United States. Journal of Industrial Ecology, 26(1), 294–308. https://doi.org/10.1111/jiec.13053 Huang, Y.-H., & Wu, J.-H. (2009). A transition toward a market expansion phase: Policies for promoting wind power in Taiwan. Energy, 34(4), 437–447. https://doi.org/10.1016/j.energy.2008.12.003 Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2017). ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22(2), 138–147. https://doi.org/10.1007/s11367-016-1246-y Huppmann, D., Browell, J., Nastasi, B., Vale, Z., & Süsser, D. (2022). A research agenda for open energy science: Opportunities and perspectives of the F1000Research Energy Gateway. F1000Research, 11, 896. https://doi.org/10.12688/f1000research.124267.1 IEA. (2016). WEO-2016 Special Report: Energy and Air Pollution – Analysis. https://www.iea.org/reports/energy-and-air-pollution IEA. (2021). Net Zero by 2050—A Roadmap for the Global Energy Sector. International Energy Agency publishing. https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-RoadmapfortheGlobalEnergySector_CORR.pdf IEA. (2023, October 24). World Energy Outlook 2023. International Energy Agency Publishing. https://www.iea.org/reports/world-energy-outlook-2023 IEA. (2024, January 11). Renewables 2023 – Analysis. International Energy Agency Publishing. https://www.iea.org/reports/renewables-2023 IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel Climate Change Publishing. https://www.ipcc-nggip.iges.or.jp/public/2006gl/ IRENA. (2023). World Energy Transitions Outlook 2023: 1.5°C Pathway. International Renewable Energy Agency Publishing. https://www.irena.org/Publications/2023/Jun/World-Energy-Transitions-Outlook-2023 ISO. (2016). ISO 14040:2006 Environmental management—Life cycle assessment—Principles and framework. International Organization for Standardization Publishing. https://www.iso.org/standard/37456.html Khanna, N., Zhou, N., Ke, J., & Fridley, D. (2014). Evaluation of the Contribution of the Building Sector to PM2.5 Emissions in China (LBNL--179094, 1236784; p. LBNL--179094, 1236784). https://doi.org/10.2172/1236784 Kung, C.-C., & McCarl, B. A. (2020). The potential role of renewable electricity generation in Taiwan. Energy Policy, 138, 111227. https://doi.org/10.1016/j.enpol.2019.111227 Lau, H. C., & Tsai, S. C. (2022). A Decarbonization Roadmap for Taiwan and Its Energy Policy Implications. Sustainability, 14(14), Article 14. https://doi.org/10.3390/su14148425 Lehtveer, M., Göransson, L., Heinisch, V., Johnsson, F., Karlsson, I., Nyholm, E., Odenberger, M., Romanchenko, D., Rootzén, J., Savvidou, G., Taljegard, M., Toktarova, A., Ullmark, J., Vilén, K., & Walter, V. (2021). Actuating the European Energy System Transition: Indicators for Translating Energy Systems Modelling Results into Policy-Making. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.677208 Lu, W., Arrigoni, A., Swishchuk, A., & Goutte, S. (2021). Modelling of Fuel- and Energy-Switching Prices by Mean-Reverting Processes and Their Applications to Alberta Energy Markets. Mathematics, 9(7), Article 7. https://doi.org/10.3390/math9070709 McGookin, C., Ó Gallachóir, B., & Byrne, E. (2021). Participatory methods in energy system modelling and planning – A review. Renewable and Sustainable Energy Reviews, 151, 111504. https://doi.org/10.1016/j.rser.2021.111504 Medeiros, A. S. S., Calderaro, G., Guimarães, P. C., Magalhaes, M. R., Morais, M. V. B., Rafee, S. A. A., Ribeiro, I. O., Andreoli, R. V., Martins, J. A., Martins, L. D., Martin, S. T., & Souza, R. A. F. (2017). Power plant fuel switching and air quality in a tropical, forested environment. Atmospheric Chemistry and Physics (Online), 17(14). https://doi.org/10.5194/acp-17-8987-2017 Mentis, D., Howells, M., Rogner, H., Korkovelos, A., Arderne, C., Zepeda, E., Siyal, S., Taliotis, C., Bazilian, M., de Roo, A., Tanvez, Y., Oudalov, A., & Scholtz, E. (2017). Lighting the World: The first application of an open source, spatial electrification tool (OnSSET) on Sub-Saharan Africa. Environmental Research Letters, 12(8), 085003. https://doi.org/10.1088/1748-9326/aa7b29 Naegler, T., Becker, L., Buchgeister, J., Hauser, W., Hottenroth, H., Junne, T., Lehr, U., Scheel, O., Schmidt-Scheele, R., Simon, S., Sutardhio, C., Tietze, I., Ulrich, P., Viere, T., & Weidlich, A. (2021). Integrated Multidimensional Sustainability Assessment of Energy System Transformation Pathways. Sustainability, 13(9), Article 9. https://doi.org/10.3390/su13095217 Nicoli, M., Gracceva, F., Lerede, D., & Savoldi, L. (2022). Can We Rely on Open-Source Energy System Optimization Models? The TEMOA-Italy Case Study. Energies, 15(18), Article 18. https://doi.org/10.3390/en15186505 NREL. (2021). Life Cycle Greenhouse Gas Emissions from Electricity Generation: Update. National Renewable Energy Laboratory Publishing. https://docs.nrel.gov/docs/fy21osti/80580.pdf NREL. (2022). 2020 Annual Technology Baseline (ATB). National Renewable Energy Laboratory Publishing. https://atb-archive.nrel.gov/electricity/2020/about.php NREL. (2025). Life Cycle Assessment Harmonization. National Renewable Energy Laboratory Publishing. https://www.nrel.gov/analysis/life-cycle-assessment Obernberger, I., Hammerschmid, A., & Forstinger, M. (2015). IEA Bioenergy Task 32 project Techno-economic evaluation of selected decentralised CHP applications based on biomass combustion with steam turbine and ORC processes. BIOS BIOENERGIESYSTEME GmbH. Publishing. https://nachhaltigwirtschaften.at/resources/iea_pdf/reports/iea_bioenergy_task32_tea_chp_applications_2015.pdf Pathe, S., & Bertsch, V. (2022). Combining Life Cycle Assessment and Energy System Optimization to Model Sustainable Power Systems Transformation | Energy Proceedings. 27. https://www.energy-proceedings.org/combining-life-cycle-assessment-and-energy-system-optimization-to-model-sustainable-power-systems-transformation/ Pehnt, M. (2006). Dynamic life cycle assessment (LCA) of renewable energy technologies. Renewable Energy, 31(1), 55–71. https://doi.org/10.1016/j.renene.2005.03.002 Quest, G., Arendt, R., Klemm, C., Bach, V., Budde, J., Vennemann, P., & Finkbeiner, M. (2022). Integrated Life Cycle Assessment (LCA) of Power and Heat Supply for a Neighborhood: A Case Study of Herne, Germany. Energies, 15(16), Article 16. https://doi.org/10.3390/en15165900 Rasheed, R., Javed, H., Rizwan, A., Sharif, F., Yasar, A., Tabinda, A. B., Ahmad, S. R., Wang, Y., & Su, Y. (2021). Life cycle assessment of a cleaner supercritical coal-fired power plant. Journal of Cleaner Production, 279, 123869. https://doi.org/10.1016/j.jclepro.2020.123869 Ringkjøb, H.-K., Haugan, P. M., & Solbrekke, I. M. (2018). A review of modelling tools for energy and electricity systems with large shares of variable renewables. Renewable and Sustainable Energy Reviews, 96, 440–459. https://doi.org/10.1016/j.rser.2018.08.002 Schumacher, L. (2025). ReCiPe. PRé Sustainability. https://pre-sustainability.com/articles/recipe/ Schwenk-Nebbe, L. J. (2023). National-sectoral emission constraints in PyPSA-based open-source European energy system models. MethodsX, 10, 102014. https://doi.org/10.1016/j.mex.2023.102014 Sinaga, P. D. L., Moersidik, S. S., & Hamzah, U. S. (2021). Life Cycle Assessment of a combined cycle power plant in Indonesia. IOP Conference Series: Earth and Environmental Science, 716(1), 012122. https://doi.org/10.1088/1755-1315/716/1/012122 Solomon, B. D., & Krishna, K. (2011). The coming sustainable energy transition: History, strategies, and outlook. Energy Policy, 39(11), 7422–7431. https://doi.org/10.1016/j.enpol.2011.09.009 Stričík, M., Kuhnová, L., Variny, M., Szaryszová, P., Kršák, B., & Štrba, Ľ. (2024). An Opportunity for Coal Thermal Power Plants Facing Phase-Out: Case of the Power Plant Vojany (Slovakia). Energies, 17(3), Article 3. https://doi.org/10.3390/en17030585 Toth, F. L., & Rogner, H.-H. (2006). Oil and nuclear power: Past, present, and future. Energy Economics, 28(1), 1–25. https://doi.org/10.1016/j.eneco.2005.03.004 Tozzi, P., & Jo, J. H. (2017). A comparative analysis of renewable energy simulation tools: Performance simulation model vs. system optimization. Renewable and Sustainable Energy Reviews, 80, 390–398. https://doi.org/10.1016/j.rser.2017.05.153 Tsai, W.-T. (2021). Overview of wind power development over the two past decades (2000-2019) and its role in the Taiwan’s energy transition and sustainable development goals. AIMS Energy, 9(2), Article energy-09-02-018. https://doi.org/10.3934/energy.2021018 Usher, W., Henke, H., Muschner, C., & Barnes, T. (2024). Welcome to the documentation of otoole! https://otoole.readthedocs.io/en/latest/index.html WHO. (2024). Ambient (outdoor) air pollution. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health World Resources Institute. (2025). Climate Watch Historical GHG Emissions. 2025. https://www.climatewatchdata.org/ghg-emissions Wu, Y.-H., & Lee, T.-C. (2024). Designing a cost-effective policy mix for transition toward net-zero emissions: A case study of the mid-term plan by 2035 of Taiwan. Carbon Management, 15(1), 2379545. https://doi.org/10.1080/17583004.2024.2379545 Yang, Y., Xia, S., Huang, P., & Qian, J. (2024). Energy transition: Connotations, mechanisms and effects. Energy Strategy Reviews, 52, 101320. https://doi.org/10.1016/j.esr.2024.101320 Zhang, H., Zhang, B., & Bi, J. (2015). More efforts, more benefits: Air pollutant control of coal-fired power plants in China. Energy, 80, 1–9. https://doi.org/10.1016/j.energy.2014.11.029 Zhang, Y., Ma, T., & Guo, F. (2018). A multi-regional energy transport and structure model for China’s electricity system. Energy, 161, 907–919. https://doi.org/10.1016/j.energy.2018.07.133 工業技術研究院 (2013)。Taiwan 2050 Calculator 能源供給部門情境規劃及關鍵參數說明。 台灣電力公司 (2019a)。107年度審定決算書。 台灣電力公司 (2019b)。107年電業年報。 台灣電力公司 (2020a)。108年度審定決算書。 台灣電力公司 (2020b)。108年電業年報。 台灣電力公司 (2020c)。台電公司109年上半年電價費率檢討方案核燃料成本。 台灣電力公司 (2021a)。109年度審定決算書。 台灣電力公司 (2021b)。109年電業年報。 台灣電力公司 (2022a)。110年度審定決算書。 台灣電力公司 (2022b)。110年電業年報。 台灣電力公司 (2023a)。111年度審定決算書。 台灣電力公司 (2023b)。111年電業年報。 台灣電力公司 (2024a)。112年度審定決算書。 台灣電力公司 (2024b)。112年電業年報。 台灣電力公司 (2024b)。歷史與發展。https://www.taipower.com.tw/2289/2339/2340/10123/ 台灣電力公司 (2024c)。空氣品質改善作為。https://www.taipower.com.tw/2289/2363/2391/2399/11564/ 台灣電力公司 (2024d)。重要電業經營績效。https://www.taipower.com.tw/2289/2363/2373/2379/10449/ 台灣電力公司 (2024e)。核二廠除役關鍵工程正式啟動 用過核燃料室外乾貯開工。https://www.taipower.com.tw/2289/2323/2324/60587/ 台灣電力公司 (2025)。核能營運現況與績效。 https://www.taipower.com.tw/2289/2363/2380/2382/10534/ 台灣電力狀況監測. (2024). 台灣電力狀況監測。 擷取自https://power.eq.pe/d/TaiPower/5Y-w54Gj6Zu75Yqb54uA5rOB55uj5ris?orgId=1&refresh=10m。 田丁財, 馬瑞鴻, 郭慧玲, & 莊宗達 (2016)。林口電廠超超臨界鍋爐介紹。電工通訊季刊,3,1–13。https://doi.org/10.6328/CIEE.2016.1.01 吳祥豐 (2005) 。火力發電廠空氣污染防制成本及效益分析。臺灣大學環境工程學研究所學位論文。https://doi.org/10.6342/NTU.2005.01873 沃旭能源 (2023) 。大彰化西南離岸風力發電股份有限公司-112年發電業年報。 林素真, 劉家豪, 陳俊凱, 郭紋秀, & 方奕翔 (2010) 。火力發電廠燃料與機組之生命週期評估與不確定性分析。工業污染防治,115。 林瑞珠, 陳棋炫, & 沈政雄. (2022). 健全我國地熱發電法制及推動建議. 臺灣能源期刊,9(1),45–48。 凃玉枝 (2022) 。我國再生能源電源開發與電力交易執行情形之探討,立法院。 擷取自https://www.ly.gov.tw/Pages/Detail.aspx?nodeid=45634&pid=220464。 柳志錫, 郭泰融, 李清瑞, 李伯亨, 韓吟龍, 劉力維, & 王俊堯 (2012)。地熱發電發展現況與未來方向。 徐慈臨(2024)。電力業空污減排有成效嗎?台電致力打照潔淨家園,台電月刊, 737,40–41。 國家發展委員會 (2022)。臺灣2050淨零路徑,國發會全球資訊網。擷取自https://www.ndc.gov.tw/Content_List.aspx?n=FD76ECBAE77D9811。 曾建元 (2010)。大型量販店整合性庫存控制與銷售物流網路之多目標區位定址問題。淡江大學管理科學研究所碩士班。https://doi.org/10.6846/TKU.2010.00786 經濟部 (2025) 。114 年度再生能源躉購費率正式公告, 擷取自https://www.moea.gov.tw/MNS/populace/news/News.aspx?kind=1&menu_id=40&news_id=118268。 經濟部能源署 (2017)。風力發電4年推動計畫(核定本). 經濟部能源署 (2023)。中華民國112年能源統計手冊,擷取自https://www.esist.org.tw/publication/handbook/handbook_2023/html/index.html#p=191。 經濟部能源署 (2024)。能源統計年報(平衡表). 能源統計專區,擷取自https://www.esist.org.tw/。 經濟部標準檢驗局 (2023)。離岸風力發電運轉及維護技術指引。 農業部 (2008)。台灣、日本、韓國在1974年與近年能源危機期間之經濟與物價. 農政與農情,196期。 https://www.moa.gov.tw/ws.php?id=18379 環境部 (2024a)。2024 年中華民國國家溫室氣體排放清冊報告。 環境部 (2024b)。空氣品質嚴重惡化預警資訊。 https://air.moenv.gov.tw/envtopics/AirQuality_14.aspx 環境部 (2024c)。空氣品質改善維護資訊。https://air.moenv.gov.tw/envtopics/StationarySource_9.aspx# 環境部 (2025)。第三期溫室氣體階段管制目標。https://www.cca.gov.tw/information-service/info/12709.html | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99704 | - |
| dc.description.abstract | 因應氣候變遷的嚴峻挑戰,實現電力部門能深度去碳化已成為全球淨零目標的重要策略。臺灣於2022 年電力部門之溫室氣體排放占全國的排放量的65%,顯示電力結構調整對我國2050 年淨零排放路徑具關鍵性的影響。過去能源規劃多著重於成本於排放效率分析,卻較少系統性的考量發電技術在全生命週期中所產生的環境衝擊。有鑒於此,本研究首次以開源能源系統工具OSeMOSYS (Open Source Energy Modeling System) 模型工具並整合生命週期評估 (Life Cycle Assessment, LCA) 方法,針對臺灣2018 至2050 年之電力系統進行模擬,評估不同情境下能源結構之轉變趨勢、環境衝擊與政策結果,並且以多目標分析環境與模型系統之取捨。
首先,本研究透過台灣電力公司 (Taipower) 2018–2023 年歷史發電數據模擬,確立OSeMOSYS 模型之準確性與調度邏輯,並且建立群組層級限制及再生能源優先調度、技術建置規劃等台灣的發電特徵。模型納入多種發電技術及未來情境(如技術進步、政策規劃)後,針對四種核心的情境模擬進行分析:以最小化成本為目標的「基本情境」 (Business as Usual, BAU)、以火力發展為主之情境、積極發展再生能源之情境以及以生命週期評估最小化環境衝擊為目標之情境。結果顯示,地熱發電為再生能源最具成本效益的選擇;若是以生命週期評估為目標優化,雖然能達成最低環境衝擊,但是系統成本負擔最大,主因在於大規模新建離岸風電。 本研究亦探討三種不同條件下的國家政策路徑。模擬結果指出,2030 年前透過燃氣取代燃煤之策略實現了顯著的溫室氣體減排及延緩再生能源建置之壓力、2030 年至2050 年需要加速再生能源的投資(高於預期裝設量1.3 倍),並於2050 年全面導入碳捕捉與封存(Carbon Capture And Storage, CCS)技術。透過多目標分析發現,雖然再生能源於營運間具備低碳排及空污之優勢,但若納入製造與建設階段之衝擊,其整體環境效益將因供應鏈與間歇性等問題被部分抵銷,導致燃氣發電於情境中仍具競爭性。 本研究的貢獻在於結合臺灣實際發電資料與生命週期評估,對臺灣能源轉型路徑進行了綜合性分析,考量了技術可行性、能源安全性、溫室氣體與空氣污染排放,並識別了不同發電技術的環境衝擊。這些結果對於未來優化臺灣電力結構模擬及綜合評估提供參考依據,亦對於LCA 與能源模型整合方法之理解與發展具有貢獻,為後續能源研究進行擴展及資料檢視。 | zh_TW |
| dc.description.abstract | In response to the pressing challenges of climate change, chieving deep decarbonization of the power sector has become a crucial strategy for global net-zero targets. Taiwan's power sector contributing 65% of the nation's total greenhouse gas emissions in 2022, underscoring the pivotal role of electricity structure transformation in the country’s 2050 net-zero pathway. While past energy planning has focused primarily on cost and emission efficiency analyses, the environmental impacts associated with different power generation technologies over their full life cycle have rarely been assessed in a systematic manner.
This study is first to apply the Open Source Energy Modelling System (OSeMOSYS) integrated with Life Cycle Assessment (LCA) to Taiwan’s electricity system, simulating from 2018 to 2050. It evaluates trends in energy structure transitions, environmental impacts, and policy outcomes under different scenarios, and applies multi-objective analysis to assess trade-offs between environmental impacts and system performance. The study first validated the OSeMOSYS model using historical power generation data from Taipower (2018–2023) to verify its accuracy and applicability. It incorporates Taiwan-specific features such as group-level constraints, renewable energy prioritization, and technology deployment strategies. With various power generation technologies and future scenarios (e.g., echnological advancement, policy interventions) included, four core scenarios are analyzed: (1) a cost-minimizing Business-as-Usual (BAU) scenario, (2) a fossil-fuel dominant scenario, (3) a renewable energy dominant scenario, and (4) an LCA-optimized low-impact scenario. Results show that geothermal energy is the most cost-effective renewable option, yet even under aggressive deployment, it accounts for only 58.6% of electricity generation by 2050. The LCA-optimized scenario achieves the lowest environmental impact but incurs the highest system cost, mainly due to large-scale offshore wind development. Additionally, three national policy pathways under different assumptions are examined. The simulations indicate that substituting coal with natural gas before 2030 can lead to significant emission reductions and reduce short-term pressure on renewable deployment. However, from 2030 to 2050, accelerated renewable investment—1.3 times the anticipated capacity—is required, alongside the full adoption of Carbon Capture and Storage (CCS) by 2050. The multi-objective analysis reveals that while renewable energy offers low emissions and air pollution during operational stage, its overall environmental benefits are partially offset when upstream impacts from manufacturing, construction, and intermittency are considered, making natural gas remain competitive. This study contributes to the literature by combining empirical data from Taiwan’s power sector with life cycle-based environmental assessments. It provides a comprehensive analysis of Taiwan’s energy transition pathway by addressing technical feasibility, energy security, and emissions of both GHGs and air pollutants. The findings offer valuable insights for optimizing future electricity modeling frameworks in Taiwan and enhance the understanding of LCA-integrated energy system modeling methodologies for broader research applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:25:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:25:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract IV 目次 VI 圖次 IX 表次 XI 第 1 章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究架構 4 第 2 章 文獻回顧 5 2.1 台灣電力系統與能源轉型現況 5 2.1.1 電力系統結構與現況 5 2.1.2 能源轉型政策與目標 6 2.1.3 台灣能源轉型之文獻綜述 9 2.2 能源系統模型之應用 10 2.2.1 能源系統建模的必要性 10 2.2.2 能源系統模型介紹 11 2.2.3 模型細節與挑戰 11 2.3 能源轉型下之環境影響評估 13 2.3.1 發電業空氣污染排放 13 2.3.2 發電業之溫室氣體排放 13 2.4 生命週期評估方法於能源系統應用 14 2.4.1 生命週期評估方法 15 2.4.2 能源模型整合LCA 方法之實踐 16 第 3 章 研究方法 18 3.1 研究範疇 18 3.1.1 電力系統之邊界 18 3.1.2 發電技術 20 3.2 能源系統模型 24 3.2.1 目標函數及變數關聯 25 3.2.2 限制條件 27 3.2.3 模型系統限制擴充 29 3.2.4 模型系統最佳化擴充 29 3.3 模型參數與情境設定 30 3.3.1 時間參數與經濟參數 30 3.3.2 技術參數 34 3.3.3 環境參數 36 3.3.4 情境設定 37 3.3.5 綜合指標 41 3.4 生命週期評估之整合 43 3.4.1 生命週期評估 43 3.4.2 系統邊界與功能單位 44 3.4.3 生命週期清單 44 3.5 模型假設與限制 45 第 4 章 結果與討論 47 4.1 參數特徵與歷史電力結構模擬 47 4.1.1 台電系統之電力結構 47 4.1.2 時間解析度調整容量因數 49 4.1.3 發電技術之成本 52 4.1.4 歷史發電模擬 54 4.2 未來電力結構模擬 58 4.2.1 基本情境 58 4.2.2 火力及再生能源發展情境 62 4.2.3 最小化環境衝擊情境 64 4.2.4 綜合討論 67 4.3 國家能源政策下的未來電力結構模擬 71 4.3.1 能源政策結果 71 4.3.2 綜合討論 77 4.4 電力結構之生命週期評估 81 4.4.1 發電技術之生命週期評估 81 4.4.2 發電技術之多目標分析 83 4.4.3 能源政策下的環境衝擊比較 87 第 5 章 結論與建議 90 5.1 結論 90 5.2 未來研究建議 92 參考文獻 93 附錄 103 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | OSeMOSYS | zh_TW |
| dc.subject | 能源系統模型 | zh_TW |
| dc.subject | 多目標分析 | zh_TW |
| dc.subject | 生命週期評估 | zh_TW |
| dc.subject | 電力系統模型 | zh_TW |
| dc.subject | Power System Modeling | en |
| dc.subject | Life Cycle Assessment | en |
| dc.subject | Multi-objective analysis | en |
| dc.subject | OSeMOSYS | en |
| dc.subject | Energy System Models | en |
| dc.title | 結合電力系統模擬與生命週期評估之臺灣能源轉型路徑探討——以OSeMOSYS模型為例 | zh_TW |
| dc.title | Exploring Taiwan’s Energy Transition Pathways through Power System Modeling and Life Cycle Assessment: A Case Study Using OSeMOSYS | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 趙家緯;馬鴻文 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Wei Chao;Hwong-Wen Ma | en |
| dc.subject.keyword | 能源系統模型,OSeMOSYS,電力系統模型,生命週期評估,多目標分析, | zh_TW |
| dc.subject.keyword | Energy System Models,OSeMOSYS,Power System Modeling,Life Cycle Assessment,Multi-objective analysis, | en |
| dc.relation.page | 125 | - |
| dc.identifier.doi | 10.6342/NTU202503919 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2029-12-31 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 18.8 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
