請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99695完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林祥泰 | zh_TW |
| dc.contributor.advisor | Shiang-Tai Lin | en |
| dc.contributor.author | 施彥任 | zh_TW |
| dc.contributor.author | Yen-Jen Shih | en |
| dc.date.accessioned | 2025-09-17T16:24:08Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | [1] Sholl, D.S. and R.P. Lively, Seven chemical separations to change the world. Nature News, 2016. 532(7600): p. 435.
[2] Materials for Separation Technologies: Energy and Emission Reduction Opportunities. 2005, Oak Ridge National Laboratory. [3] Duran, M.A. and I.E. Grossmann, Simultaneous optimization and heat integration of chemical processes. AIChE Journal, 1986. 32(1): p. 123-138. [4] Cunha, S.C., J. Fernandes, and M. Oliveira, Current trends in liquid-liquid microextraction for analysis of pesticide residues in food and water. Pesticides-Strategies for pesticides analysis. InTech, 2011: p. p1-26. [5] Herbst, R., P. Baron, and M. Nilsson, Standard and advanced separation: PUREX processes for nuclear fuel reprocessing, in Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment. 2011, Elsevier. p. 141-175. [6] Mazzola, P.G., et al., Liquid–liquid extraction of biomolecules: an overview and update of the main techniques. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 2008. 83(2): p. 143-157. [7] Xie, F., et al., A critical review on solvent extraction of rare earths from aqueous solutions. Minerals Engineering, 2014. 56: p. 10-28. [8] Cai, Y., et al., Energy-efficient desalination by forward osmosis using responsive ionic liquid draw solutes. Environmental Science: Water Research & Technology, 2015. 1(3): p. 341-347. [9] Pena‐Pereira, F. and J. Namieśnik, Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes. ChemSusChem, 2014. 7(7): p. 1784-1800. [10] Garcia-Chavez, L.Y., B. Schuur, and A.B. de Haan, Conceptual Process Design and Economic Analysis of a Process Based on Liquid–Liquid Extraction for the Recovery of Glycols from Aqueous Streams. Industrial & Engineering Chemistry Research, 2013. 52(13): p. 4902-4910. [11] Ullmann, A., Z. Ludmer, and R. Shinnar, Phase transition extraction using solvent mixtures with critical point of miscibility. AIChE Journal, 1995. 41(3): p. 488-500. [12] Gupta, R., R. Mauri, and R. Shinnar, Liquid− liquid extraction using the composition-induced phase separation process. Industrial & engineering chemistry research, 1996. 35(7): p. 2360-2368. [13] Margules, M., Über die Zusammensetzung der gesättigten Dämpfe von Mischungen. Sitzungsber. Akad. Wiss. Wien, math.-naturwiss. Klasse, 1895. 104: p. 1243-1278. [14] Renon, H. and J.M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures. AIChE journal, 1968. 14(1): p. 135-144. [15] Wilson, G.M., Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing. Journal of the American Chemical Society, 1964. 86(2): p. 127-130. [16] Abrams, D.S. and J.M. Prausnitz, Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE Journal, 1975. 21(1): p. 116-128. [17] Klamt, A., Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. The Journal of Physical Chemistry, 1995. 99(7): p. 2224-2235. [18] Lin, S.-T. and S.I. Sandler, A priori phase equilibrium prediction from a segment contribution solvation model. Industrial & engineering chemistry research, 2002. 41(5): p. 899-913. [19] M. J. Frisch, G.W.T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega,, W.L. G. Zheng, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin,, and T.A.K. V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16 Rev. A.03. 2016: Wallingford, CT. [20] ADF 2022, SCM, Theoretical Chemistry, Vrike Universiteit, Amsterdam, Netherlands. 2022: SCM, Theoretical Chemistry, Vrike Universiteit, Amsterdam, Netherlands. [21] Te Velde, G.t., et al., Chemistry with ADF. Journal of Computational Chemistry, 2001. 22(9): p. 931-967. [22] Rowlinson, J.S. and F.L. Swinton, Chapter 4 - The thermodynamics of liquid mixtures, in Liquids and Liquid Mixtures (Third Edition), J.S. Rowlinson and F.L. Swinton, Editors. 1982, Butterworth-Heinemann. p. 86-131. [23] Campostrini, M., et al., 25th-order high-temperature expansion results for three-dimensional Ising-like systems on the simple-cubic lattice. Physical Review E, 2002. 65(6): p. 066127. [24] Sengers, J.V. and J.G. Shanks, Experimental critical-exponent values for fluids. Journal of Statistical Physics, 2009. 137: p. 857-877. [25] Fisher, M.E., The theory of equilibrium critical phenomena. Reports on progress in physics, 1967. 30(2): p. 615. [26] Kumar, A., H.R. Krishnamurthy, and E.S.R. Gopal, Equilibrium critical phenomena in binary liquid mixtures. Physics Reports, 1983. 98(2): p. 57-143. [27] Yanase, K., et al., Fluctuation in diethylene glycol diethyl ether/water mixtures near the lower critical solution temperature studied by small-and wide-angle x-ray scattering and thermodynamic calculation. Journal of Molecular Liquids, 2022. 346: p. 117830. [28] Sandler, S.I., The generalized van der Waals partition function. I. Basic theory. Fluid Phase Equilibria, 1985. 19(3): p. 238-257. [29] Sengers, J.M.L., Mean-field theories, their weaknesses and strength. Fluid phase equilibria, 1999. 158: p. 3-17. [30] Morrow, T.I. and E.J. Maginn, Isomolar semigrand ensemble molecular dynamics: Development and application to liquid-liquid equilibria. The Journal of chemical physics, 2005. 122(5). [31] Kogut, J.B., An introduction to lattice gauge theory and spin systems. Reviews of Modern Physics, 1979. 51(4): p. 659. [32] Kadanoff, L.P. and A. Houghton, Numerical evaluations of the critical properties of the two-dimensional Ising model. Physical Review B, 1975. 11(1): p. 377. [33] Servis, M.J., S. Nayak, and S. Seifert, The pervasive impact of critical fluctuations in liquid–liquid extraction organic phases. The Journal of Chemical Physics, 2021. 155(24). [34] Anisimov, M. and J. Sengers, 11 Critical region. Experimental Thermodynamics, 2000. 5: p. 381-434. [35] Sanchez, I.C., A universal coexistence curve for polymer solutions. Journal of applied physics, 1985. 58(8): p. 2871-2874. [36] Fisher, M.E., Correlation functions and the critical region of simple fluids. Journal of Mathematical Physics, 1964. 5(7): p. 944-962. [37] Kadanoff, L.P., Scaling laws for Ising models near T c. Physics Physique Fizika, 1966. 2(6): p. 263. [38] Kadanoff, L.P., et al., Static phenomena near critical points: theory and experiment. Reviews of Modern Physics, 1967. 39(2): p. 395. [39] Sengers, J.L., From Van der Waals' equation to the scaling laws. Physica, 1974. 73(1): p. 73-106. [40] Sengers, J.L. and J. Sengers, Universality of critical behavior in gases. Physical Review A, 1975. 12(6): p. 2622. [41] Sengers, A.L., R. Hocken, and J.V. Sengers, Critical-point universality and fluids. Physics Today, 1977. 30(12): p. 42-51. [42] Greer, S.C., Coexistence curves at liquid-liquid critical points: Ising exponents and extended scaling. Physical Review A, 1976. 14(5): p. 1770. [43] Greer, S.C., Liquid-liquid critical phenomena. Accounts of Chemical Research, 1978. 11(11): p. 427-432. [44] Jacobs, D.T., et al., Coexistence curve of a binary mixture. Chemical Physics, 1977. 20(2): p. 219-226. [45] Nagarajan, N., et al., Liquid-liquid critical phenomena. The coexistence curve of n-heptane-acetic anhydride. The Journal of Physical Chemistry, 1980. 84(22): p. 2883-2887. [46] Stein, A. and G. Allen, An Analysis of Coexistence Curve Data for Several Binary Liquid Mixtures Near their Critical Points. Journal of Physical and Chemical Reference Data, 1973. 2(3): p. 443-466. [47] Wegner, F.J., Corrections to scaling laws. Physical Review B, 1972. 5(11): p. 4529. [48] Sengers, J. and J.L. Sengers, Thermodynamic behavior of fluids near the critical point. Annual Review of Physical Chemistry, 1986. 37(1): p. 189-222. [49] Forte, E., et al., Application of a renormalization-group treatment to the statistical associating fluid theory for potentials of variable range (SAFT-VR). The Journal of chemical physics, 2011. 134(15): p. 154102. [50] Fox, J.R., Nonclassical equations of state for critical and tricritical points. Journal of Statistical Physics, 1979. 21(3): p. 243-261. [51] Fox, J.R., Method for construction of nonclassical equations of state. Fluid Phase Equilibria, 1983. 14: p. 45-53. [52] Ley-Koo, M. and M. Green, Consequences of the renormalization group for the thermodynamics of fluids near the critical point. Physical Review A, 1981. 23(5): p. 2650. [53] Tang, S., J. Sengers, and Z. Chen, Nonasymptotic critical thermodynamical behavior of fluids. Physica A: Statistical Mechanics and its Applications, 1991. 179(3): p. 344-377. [54] Kiselev, S., Cubic crossover equation of state. Fluid Phase Equilibria, 1998. 147(1-2): p. 7-23. [55] Kiselev, S. and J. Ely, Crossover SAFT equation of state: application for normal alkanes. Industrial & engineering chemistry research, 1999. 38(12): p. 4993-5004. [56] Chen, Z., P. Albright, and J. Sengers, Crossover from singular critical to regular classical thermodynamic behavior of fluids. Physical Review A, 1990. 41(6): p. 3161. [57] Nicoll, J. and J. Bhattacharjee, Crossover functions by renormalization-group matching: O (ε 2) results. Physical Review B, 1981. 23(1): p. 389. [58] Nicoll, J. and P. Albright, Crossover functions by renormalization-group matching: three-loop results. Physical Review B, 1985. 31(7): p. 4576. [59] Nicoll, J. and P. Albright, Background fluctuations and Wegner corrections. Physical Review B, 1986. 34(3): p. 1991. [60] White, J.A. and S. Zhang, Renormalization group theory for fluids. The journal of chemical physics, 1993. 99(3): p. 2012-2019. [61] White, J.A. and S. Zhang, Renormalization theory of nonuniversal thermal properties of fluids. The Journal of chemical physics, 1995. 103(5): p. 1922-1928. [62] White, J. and S. Zhang, Renormalization group theory for fluids to greater density distances from the critical point. International journal of thermophysics, 1998. 19(4): p. 1019-1027. [63] White, J.A., Global renormalization calculations compared with simulations for Lennard-Jones fluid. The Journal of Chemical Physics, 2000. 112(7): p. 3236-3244. [64] White, J.A., Global renormalization calculations compared with simulations for square-well fluids: Widths 3.0 and 1.5. The Journal of Chemical Physics, 2000. 113(4): p. 1580-1586. [65] White, J., Are global renormalization methods capable of locating gas–liquid critical points? International journal of thermophysics, 2001. 22(4): p. 1147-1157. [66] Wilson, K.G., Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Physical review B, 1971. 4(9): p. 3174. [67] Parola, A. and L. Reatto, Liquid-state theory for critical phenomena. Physical review letters, 1984. 53(25): p. 2417. [68] Parola, A. and L. Reatto, Hierarchical reference theory of fluids and the critical point. Physical Review A, 1985. 31(5): p. 3309. [69] Pini, D., A. Parola, and L. Reatto, Hierarchical reference theory of fluids: Application to three-dimensional Ising model. Journal of statistical physics, 1993. 72(5): p. 1179-1201. [70] Batalin, O.Y. and N. Vafina, Global transformation of fluid structure and corresponding phase behavior. The Journal of Supercritical Fluids, 2023. 203: p. 106081. [71] De Pablo, J.J. and J.M. Prausnitz, Liquid-liquid equilibria for binary and ternary systems including the critical region. Transformation to non-classical coordinates. Fluid Phase Equilibria, 1989. 50(1): p. 101-131. [72] De Pablo, J.J. and J.M. Prausnitz, Thermodynamics of liquid-liquid equilibria including the critical region. Transformation to non-classical coordinates using revised scaling. Fluid phase equilibria, 1990. 59(1): p. 1-14. [73] Edison, T.A., M.A. Anisimov, and J.V. Sengers, Critical scaling laws and an excess Gibbs energy model. Fluid phase equilibria, 1998. 150: p. 429-438. [74] van’t Hof, A., M.L. Japas, and C.J. Peters, Description of liquid–liquid equilibria including the critical region with the crossover-NRTL model. Fluid phase equilibria, 2001. 192(1-2): p. 27-48. [75] Parvaneh, K., et al., A crossover‐UNIQUAC model for critical and noncritical LLE calculations. AIChE Journal, 2015. 61(9): p. 3094-3103. [76] Yu, F. and J. Cai, Renormalization Group Approach to Binary Liquid–Liquid Equilibria. Industrial & Engineering Chemistry Research, 2020. 59(20): p. 9611-9618. [77] Shih, Y.-J. and S.-T. Lin, Can local composition models combined with global renormalization group theory describe the phase transitions in ferromagnetic materials? Fluid Phase Equilibria, 2024. 576: p. 113959. [78] Shih, Y.-J. and S.-T. Lin, New Strategy for Predicting Liquid-liquid Equilibrium Near Critical Point Using Global Renormalization Group Theory. ESS Open Archive eprints, 2024. 169: p. 16910239. [79] Khairulin, R., S. Stankus, and V. Gruzdev, Liquid–Liquid Coexistence Curve of n-Perfluorohexane–n-Hexane System. International Journal of Thermophysics, 2007. 28: p. 1245-1254. [80] Klamt, A., Renormalization by Complete Asymmetric Fluctuation Equations (CAFE). 2022, Google Patents. [81] Talapov, A. and H. Blöte, The magnetization of the 3D Ising model. Journal of Physics A: Mathematical and General, 1996. 29(17): p. 5727. [82] Ramana, A.S.V. and S. Menon, Generalized approach to global renormalization-group theory for fluids. Physical Review E, 2012. 85(4): p. 041108. [83] Sandler, S.I., Chemical, biochemical, and engineering thermodynamics. 2017: John Wiley & Sons. [84] Eckfeldt, E.L. and W.W. Lucasse, The Liquid–Liquid Phase Equilibria of the System Cyclohexane–Methyl Alcohol in the Presence of Various Salts as Third Components. The Journal of Physical Chemistry, 1943. 47(2): p. 164-183. [85] Sorensen, J.M., Liquid-Liquid Equilibrium Data Collection Binary Systems. DECHEMA Chemistry Data Series, Vol. V, Part 1, 1979. 361. [86] Bae, Y., et al., Representation of vapor–liquid and liquid–liquid equilibria for binary systems containing polymers: applicability of an extended Flory–Huggins equation. Journal of applied polymer science, 1993. 47(7): p. 1193-1206. [87] Chang, B.H. and Y.C. Bae, Liquid–liquid equilibria of binary polymer solutions with specific interactions. Polymer, 1998. 39(25): p. 6449-6454. [88] Saeki, S., et al., Upper and lower critical solution temperatures in poly (ethylene glycol) solutions. Polymer, 1976. 17(8): p. 685-689. [89] Sorensen, J.M., Liquid-liquid equilibrium data collection-Binary systems. Chemistry data series, 1979. 1: p. xxll. [90] Onsager, L., Crystal statistics. I. A two-dimensional model with an order-disorder transition. Physical Review, 1944. 65(3-4): p. 117. [91] Yang, C.N., The spontaneous magnetization of a two-dimensional Ising model. Physical Review, 1952. 85(5): p. 808. [92] Ruge, C., P. Zhu, and F. Wagner, Correlation function in Ising models. Physica A: Statistical Mechanics and its Applications, 1994. 209(3-4): p. 431-443. [93] Feng, X. and H.W. Blöte, Specific heat of the simple-cubic Ising model. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 2010. 81(3): p. 031103. [94] Guida, R. and J. Zinn-Justin, Critical exponents of the N-vector model. Journal of Physics A: Mathematical and General, 1998. 31(40): p. 8103. [95] Ron, D., A. Brandt, and R.H. Swendsen, Surprising convergence of the Monte Carlo renormalization group for the three-dimensional Ising model. Physical Review E, 2017. 95(5): p. 053305. [96] Henriksson, J., The critical O (N) CFT: Methods and conformal data. Physics Reports, 2023. 1002: p. 1-72. [97] Lee, K.-H., M. Lombardo, and S. Sandler, The generalized van der Waals partition function. II. Application to the square-well fluid. Fluid Phase Equilibria, 1985. 21(3): p. 177-196. [98] Lee, K.-H., S. Sandler, and N. Patel, The generalized van der Waals partition function. III. Local composition models for a mixture of equal size square-well molecules. Fluid Phase Equilibria, 1986. 25(1): p. 31-49. [99] Lee, K.-H. and S.I. Sandler, The generalized van der waals partition function—IV. Local composition models for mixtures of unequal-size molecules. Fluid Phase Equilibria, 1987. 34(2-3): p. 113-147. [100] Van der Waals, J.D., Over de Continuiteit van den Gas-en Vloeistoftoestand. Vol. 1. 1873: Sijthoff. [101] Van Der Waals, J.D. and J.S. Rowlinson, On the continuity of the gaseous and liquid states. 2004: Courier Corporation. [102] Percus, J.K. and G.J. Yevick, Analysis of classical statistical mechanics by means of collective coordinates. Physical Review, 1958. 110(1): p. 1. [103] Ornstein, L.S. and F. Zernike, Acculental deviations of density and opalescence at the critical point of a simple substance. Proceedings of the Koninklijke Akademie Van Wetenschappen Te Amsterdam, 1914. 17: p. 793-806. [104] Lin, S.-T., et al., Towards the development of theoretically correct liquid activity coefficient models. The Journal of Chemical Thermodynamics, 2009. 41(10): p. 1145-1153. [105] Flemr, V., A note on excess Gibbs energy equations based on local composition concept. Collection of Czechoslovak Chemical Communications, 1976. 41(11): p. 3347-3349. [106] McDermott, C. and N. Ashton, Note on the definition of local composition. Fluid Phase Equilibria, 1977. 1(1): p. 33-35. [107] Reed, T.M. and K.E. Gubbins, Applied statistical mechanics. 1973. [108] Wilson, K.G., Renormalization group and critical phenomena. II. Phase-space cell analysis of critical behavior. Physical Review B, 1971. 4(9): p. 3184. [109] Lue, L. and J.M. Prausnitz, Thermodynamics of fluid mixtures near to and far from the critical region. AIChE journal, 1998. 44(6): p. 1455-1466. [110] Ramana, A.S.V., Application of renormalization group corrected coupling parameter expansion method to square well fluids. Physica A: Statistical Mechanics and its Applications, 2016. 442: p. 137-148. [111] Cahn, J.W. and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. The Journal of chemical physics, 1958. 28(2): p. 258-267. [112] Hohenberg, P.C. and A.P. Krekhov, An introduction to the Ginzburg–Landau theory of phase transitions and nonequilibrium patterns. Physics Reports, 2015. 572: p. 1-42. [113] Nauman, E.B. and N.P. Balsara, Phase equilibria and the Landau—Ginzburg functional. Fluid Phase Equilibria, 1989. 45(2): p. 229-250. [114] Enders, S. and K. Quitzsch, Calculation of interfacial properties of demixed fluids using density gradient theory. Langmuir, 1998. 14(16): p. 4606-4614. [115] Ramana, A.S.V., Generalized coupling parameter expansion: Application to square well and Lennard-Jones fluids. The Journal of Chemical Physics, 2013. 139(4): p. 044106. [116] Zhou, Z., J. Cai, and Y. Hu, Application of the renormalization group theory for critical asymmetry to surface criticality of one-component fluids. Fluid Phase Equilibria, 2021. 544: p. 113114. [117] Tolman, R.C., The Principles of Statistical Mechanics. 1938: Oxford University Press Oxford. [118] Bhatia, A.B. and D.E. Thornton, Structural Aspects of the Electrical Resistivity of Binary Alloys. Physical Review B, 1970. 2(8): p. 3004-3012. [119] Rubio, R.G., et al., Concentration fluctuations and surface adsorption in non-ideal binary mixtures. A light-scattering and surface tension study. Physical Chemistry Chemical Physics, 2003. 5(21): p. 4864-4868. [120] Rubio, R.G., et al., Local compositions in real mixtures of simple molecules. Journal of Physical Chemistry, 1987. 91(5): p. 1177-1184. [121] Davis, H.T., Statistical mechanics of phases, interfaces, and thin films. (No Title), 1996. [122] Anisimov, M.A., Critical phenomena in liquids and liquid crystals. 1991: CRC Press. [123] Landau, L.D., On the theory of phase transitions. Zh. eksp. teor. Fiz, 1937. 7(19-32): p. 926. [124] Troncoso, J., et al., Quantitative analysis of the W-shaped excess heat capacities of binary liquid mixtures in the light of the local composition concept. Fluid phase equilibria, 2005. 235(2): p. 201-210. [125] Rushbrooke, G., On the thermodynamics of the critical region for the Ising problem. The Journal of Chemical Physics, 1963. 39(3): p. 842-843. [126] Frenkel, M., et al., NIST ThermoData Engine. NIST Standard Reference Database 103b-Pure Compounds, Binary Mixtures, and Chemical Reactions, Version, 2008. 5. [127] Aspen Plus. 2018, Aspen Technology: Bedford, MA, USA. [128] Faber, R., T. Jockenhövel, and G. Tsatsaronis, Dynamic optimization with simulated annealing. Computers & chemical engineering, 2005. 29(2): p. 273-290. [129] Pan, H., L. Wang, and B. Liu, Particle swarm optimization for function optimization in noisy environment. Applied Mathematics and Computation, 2006. 181(2): p. 908-919. [130] Storn, R. and K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 1997. 11: p. 341-359. [131] Virtanen, P., et al., SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods, 2020. 17(3): p. 261-272. [132] Wilson, K.G. and J. Kogut, The renormalization group and the ϵ expansion. Physics reports, 1974. 12(2): p. 75-199. [133] Ewins, A.J., XXXVIII.—The mutual solubility of formic acid and benzene, and the system: benzene–formic acid–water. Journal of the Chemical Society, Transactions, 1914. 105: p. 350-364. [134] Sazonov, V.P., K.N. Marsh, and G.T. Hefter, IUPAC-NIST solubility data series 71. Nitromethane with water or organic solvents: Binary systems. Journal of Physical and Chemical Reference Data, 2000. 29(5): p. 1165-1354. [135] Evans, W. and M. Aylesworth, Some critical constants of furfural. Industrial & Engineering Chemistry, 1926. 18(1): p. 24-27. [136] Barton, A.F., Alcohols with Water: Solubility Data Series. 2013: Elsevier. [137] Matsuda, H., M. Fujita, and K. Ochi, Measurement and correlation of mutual solubilities for high-viscosity binary systems: aniline+ methylcyclohexane, phenol+ heptane, phenol+ octane, and glycerol+ 1-pentanol. Journal of Chemical & Engineering Data, 2003. 48(4): p. 1076-1080. [138] Jaoui, M., M. Luszczyk, and M. Rogalski, Liquid− Liquid and Liquid− Solid Equilibria of Systems Containing Water and Selected Chlorophenols. Journal of Chemical & Engineering Data, 1999. 44(6): p. 1269-1272. [139] Ochi, K., M. Tada, and K. Kojima, Measurement and correlation of liquid-liquid equilibria up to critical solution temperature. Fluid phase equilibria, 1990. 56: p. 341-359. [140] Moriyoshi, T., Y. Aoki, and H. Kamiyama, Mutual solubility of i-butanol+ water under high pressure. The Journal of Chemical Thermodynamics, 1977. 9(5): p. 495-502. [141] Ward, H. and S.L.S. Cooper, The system benzoic acid, orthophthalic acid, water. The Journal of Physical Chemistry, 2002. 34(7): p. 1484-1493. [142] Góral, M., et al., IUPAC-NIST solubility data series. 91. Phenols with Water. Part 1. C6 and C7 Phenols with Water and Heavy Water. Journal of Physical and Chemical Reference Data, 2011. 40(3). [143] Grattoni, C.A., et al., Lower critical solution coexistence curve and physical properties (density, viscosity, surface tension, and interfacial tension) of 2, 6-lutidine+ water. Journal of Chemical and Engineering Data, 1993. 38(4): p. 516-519. [144] Krichevskii, I.R. and Y.V. Tsekhanskaya, DISSOLUTION OF SOLID ACIDS IN BINARY LIQUID SOLUTIONS IN THE CRITICAL REGION. Zhurnal Fizicheskoi Khimii, 1959. 33(10): p. 2331-2338. [145] Campbell, A.N., E.M. Kartzmark, and W.E. Falconer, THE SYSTEM - NICOTINE-METHYLETHYL KETONE-WATER. Canadian Journal of Chemistry-Revue Canadienne De Chimie, 1958. 36(11): p. 1475-1486. [146] Lin, S.-Y., C.-H. Su, and L.-J. Chen, Liquid–liquid equilibria for the binary systems of propylene glycol ether+ water measured by the phase volume method. Journal of the Taiwan Institute of Chemical Engineers, 2014. 45(1): p. 63-67. [147] Aratono, M. and K. Motomura, Ultralow interfacial tension in the vicinity of the lower critical solution temperature of the mixture of water and diethylene glycol diethyl ether. Journal of colloid and interface science, 1987. 117(1): p. 159-164. [148] Coulier, Y., et al., Temperatures of liquid–liquid separation and excess molar volumes of {N-methylpiperidine–water} and {2-methylpiperidine–water} systems. Fluid Phase Equilibria, 2010. 296(2): p. 206-212. [149] Góral, M., et al., IUPAC-NIST solubility data series. 96. Amines with water Part 1. C4–C6 aliphatic amines. Journal of Physical and Chemical Reference Data, 2012. 41(4). [150] Cox, H.L., W.L. Nelson, and L.H. Cretcher, Reciprocal solubility of the normal propyl ethers of 1, 2-propylene glycol and water. Closed solubility curves. II. Journal of the American Chemical Society, 1927. 49(4): p. 1080-1083. [151] Christensen, S.P., et al., Mutual solubility and lower critical solution temperature for water+ glycol ether systems. Journal of Chemical & Engineering Data, 2005. 50(3): p. 869-877. [152] Stephenson, R.M., Mutual solubility of water and pyridine derivatives. Journal of Chemical and Engineering Data, 1993. 38(3): p. 428-431. [153] Flaschner, O. and B. MacEwen, XCVI.—The mutual solubility of 2-methylpiperidine and water. Journal of the Chemical Society, Transactions, 1908. 93: p. 1000-1003. [154] Koga, Y., Vapor pressures of aqueous 2-butoxyethanol solutions at 25. degree. C: transitions in mixing scheme. The Journal of Physical Chemistry, 1991. 95(10): p. 4119-4126. [155] Perera, A., et al., Kirkwood-Buff integrals of aqueous alcohol binary mixtures. The Journal of chemical physics, 2006. 124(12). [156] Yang, A.J., P.D. Fleming, and J.H. Gibbs, Molecular theory of surface tension. The Journal of Chemical Physics, 1976. 64(9): p. 3732-3747. [157] Evans, R., The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Advances in Physics, 1979. 28(2): p. 143-200. [158] Xu, X.-H., Y.-Y. Duan, and Z. Yang, Prediction of the critical properties of binary alkanol+alkane mixtures using a crossover CPA equation of state. Fluid Phase Equilibria, 2011. 309(2): p. 168-173. [159] P. C. M. Vinhal, A., W. Yan, and G.M. Kontogeorgis, Application of a Crossover Equation of State to Describe Phase Equilibrium and Critical Properties of n-Alkanes and Methane/n-Alkane Mixtures. Journal of Chemical & Engineering Data, 2018. 63(4): p. 981-993. [160] Cai, J. and J.M. Prausnitz, Thermodynamics for fluid mixtures near to and far from the vapor–liquid critical point. Fluid Phase Equilibria, 2004. 219(2): p. 205-217. [161] Llovell, F. and L.F. Vega, Global Fluid Phase Equilibria and Critical Phenomena of Selected Mixtures Using the Crossover Soft-SAFT Equation. The Journal of Physical Chemistry B, 2006. 110(3): p. 1350-1362. [162] Llovell, F. and L.F. Vega, Phase equilibria, critical behavior and derivative properties of selected n-alkane/n-alkane and n-alkane/1-alkanol mixtures by the crossover soft-SAFT equation of state. The Journal of Supercritical Fluids, 2007. 41(2): p. 204-216. [163] Cai, J., et al., Vapor–liquid critical properties of multi-component fluid mixture. Fluid Phase Equilibria, 2006. 241(1): p. 229-235. [164] Parola, A. and L. Reatto, Microscopic approach to critical phenomena in binary fluids. Physical Review A, 1991. 44(10): p. 6600-6615. [165] Anisimov, M.A., et al., Crossover between vapor-liquid and consolute critical phenomena. Physical Review E, 1995. 51(2): p. 1199-1215. [166] Al-Sadoon, F.M., Prediction of Stability Limits for Binary and Ternary Systems Using the NTRL Liquid Phase Model. 2013. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99695 | - |
| dc.description.abstract | 在液-液分離的臨界點附近,準確預測相行為一直是熱力學中的一大挑戰。特別是化學工程常用的局部組成模型,普遍無法正確描述混合物在臨界區域的相平衡行為,限制了這些模型在液-液萃取程序設計中的應用。為了提升模型在臨界區域的預測準確度,本研究將全域重整化群理論(Global Renormalization Group Theory, GRGT)結合至局部組成模型中,並提出一種新方法來決定原需依賴臨界區域之實驗數據的參數,使此理論具備預測能力。此外,本研究進一步強化 GRGT 的理論基礎,納入不對稱組成波動的影響,提升對臨界現象的描述能力。
本研究分為三個部分。首先,開發一套名為 GRGT2 的參數決定方法,並將其應用於 Margules、NRTL、Wilson 與 COSMO-SAC 等四種局部組成模型,在立方晶格系統上評估其預測能力。結果顯示,GRGT2 有效提升臨界溫度的預測準確性,其中 COSMO-SAC 模型的誤差降低約 20%,其餘模型約降低 6–10%;同時,該方法亦可不依賴實驗或模擬數據,即可重現正確的臨界指數。第二部分將 GRGT2 應用於 21 組真實的二元混合物資料。結果顯示,NRTL+GRGT2 方法在不使用臨界區資料進行參數擬合的情況下,可將上臨界溶解溫度(UCST)預測誤差降低 48%,但下臨界溶解溫度(LCST)預測誤差則略為增加約 20%。 最後,本研究提出一套進階版本的 GRGT,稱為 GRGT-SAF(Symmetric and Asymmetric Fluctuations),能同時考慮對稱與不對稱的組成波動。在立方晶格模型的測試中,GRGT-SAF 對 COSMO-SAC 模型的臨界溫度預測誤差降低約 40%,並更準確地重現比熱與組成波動在臨界點附近的發散行為。此外,GRGT-SAF 可滿足如 Rushbrooke 恆等式等關鍵熱力學一致性關係,確保模型對臨界指數間的相依性具備熱力學合理性。 綜合而言,本研究建立了一套具預測能力且具有物理一致性的理論架構,適用於晶格模型與真實混合物的臨界現象模擬。此方法亦為未來推廣至更複雜、多組分系統的 GRGT 模型提供了基礎,具有應用於化工與程序設計的潛力。 | zh_TW |
| dc.description.abstract | Classical local composition models widely used in chemical engineering often fail to describe phase equilibrium near criticality, which limits their applicability in designing liquid-liquid extraction processes. To improve predictive accuracy in this region, this study combines Global Renormalization Group Theory (GRGT) with local composition models and proposes a new method to determine the two GRGT parameters that previously relied on experimental data near the critical point. This enhancement enables a predictive, data-independent approach. Furthermore, the theoretical framework of GRGT is extended to account for asymmetric composition fluctuations, increasing the model’s capability to capture critical phenomena.
This dissertation is structured in three parts. First, a parameter estimation method called GRGT2 is developed and applied to four classical local composition models: Margules, NRTL, Wilson, and COSMO-SAC on a cubic lattice system. Results show that GRGT2 significantly improves critical temperature predictions, reducing the error by approximately 20% for COSMO-SAC and by 6–10% for the other models. In addition, GRGT2 accurately reproduces critical exponents without requiring empirical fitting. In the second part, GRGT2 is applied to 21 real binary mixtures. The NRTL+GRGT2 model, without using near-critical experimental data, reduces the prediction error of the upper critical solution temperature (UCST) by 48%, although the error for the lower critical solution temperature (LCST) increases by approximately 20%. Finally, this work introduces an extended GRGT framework called GRGT-SAF (Symmetric and Asymmetric Fluctuations), which incorporates both symmetric and asymmetric composition fluctuations. In cubic lattice tests, GRGT-SAF reduces critical temperature prediction error by about 40% for the COSMO-SAC model and more accurately captures the divergence of heat capacity and composition fluctuations near the critical point. Notably, GRGT-SAF satisfies important thermodynamic consistency relations, such as the Rushbrooke’s identity, ensuring that the interdependence between critical exponents adheres to the principles of equilibrium thermodynamics. In summary, this dissertation establishes a predictive and thermodynamically consistent modeling framework for simulating critical phenomena in both model systems and real liquid mixtures. The proposed methods lay a foundation for future extensions of GRGT to more complex and multicomponent systems, offering potential applications in chemical and process engineering. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:24:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:24:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 iii 中文摘要 v Abstact vii Contents ix List of Figures xii List of Tables xx Chapter 1 Introduction 1 1.1 Background 1 1.2 Liquid-liquid equilibrium 4 1.3 Liquid-liquid equilibrium near critical point 6 1.4 Corrections of critical behavior to classical models 9 1.5 Limitations of existing models based on global renormalization group theory (GRGT) 12 1.6 Main goals of the dissertation 14 1.7 Outline of the dissertation 17 Chapter 2 Theory 19 2.1 Basic concepts of Liquid-liquid equilibrium 19 2.2 The Ising model for describing LLE of binary lattice fluid 26 2.3 The generalized van der Waals theory 29 2.4 Local composition models 35 2.5 The global renormalization group theory (GRGT) 42 2.6 GRGT parameters for different methods 47 2.7 A global renormalization group theory incorporating symmetric and asymmetric fluctuations (GRGT-SAF) 52 2.8 GRGT formulation for internal energy of mixing 66 2.9 Composition fluctuation in binary mixture 68 2.10 Landau theory of phase transition and Rushbrooke’s identity 70 Chapter 3 Computational Details 74 3.1 Classical models 74 3.1.1 Parameters 74 3.1.2 Equilibrium composition 80 3.1.3 Critical point 82 3.1.4 Other thermodynamic properties 83 3.2 The global renormalization group theory (GRGT) 84 3.2.1 Parameters 84 3.2.2 GRGT iteration 89 3.2.3 Equilibrium composition 93 3.2.4 Critical point 95 3.2.5 Other thermodynamic properties 95 3.3 Determination of Critical Exponents for Classical and GRGT 97 3.4 Numerical solution on 3D Ising model 99 Chapter 4 Results and Discussion 101 4.1 Combining local composition models with global renormalization group theory on cubic lattice system 101 4.2 Predicting liquid-liquid equilibrium near critical point for real mixtures using NRTL with Global Renormalization Group Theory 107 4.3 The global renormalization group theory incorporating symmetric and asymmetric fluctuations (GRGT-SAF) on cubic lattice system 125 4.4 Predicting liquid-liquid equilibrium near critical point for real mixtures using NRTL and GRGT-SAF 138 Chapter 5 Conclusion 145 Chapter 6 Future Work and Prospects 148 Appendix 150 I. The expression of chemical potential and their derivatives 150 II. An example on the uncertainty estimation of β 152 III. A sensitivity analysis examining the effect of composition discretization 155 IV. The LLE phase diagram of 21 mixtures 157 Reference 165 | - |
| dc.language.iso | en | - |
| dc.subject | 臨界現象 | zh_TW |
| dc.subject | 重整化群理論 | zh_TW |
| dc.subject | 局部組成模型 | zh_TW |
| dc.subject | 組成波動 | zh_TW |
| dc.subject | 液-液平衡(LLE) | zh_TW |
| dc.subject | 相平衡 | zh_TW |
| dc.subject | Ising模型 | zh_TW |
| dc.subject | Renormalization group | en |
| dc.subject | Ising model | en |
| dc.subject | Phase equilibrium | en |
| dc.subject | Liquid-liquid equilibrium (LLE) | en |
| dc.subject | Composition fluctuations | en |
| dc.subject | Local composition models | en |
| dc.subject | Critical phenomena | en |
| dc.title | 開發全域重整化群理論以預測混合物在臨界區域之熱力學性質與相行為 | zh_TW |
| dc.title | Development of a Global Renormalization Group Theory for Predicting Thermodynamic Properties and Phase Behavior of Mixtures in the Critical Region | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 游琇伃;崔宏瑋;汪上曉;洪英傑;黃晨軒 | zh_TW |
| dc.contributor.oralexamcommittee | Hsiu-Yu Yu;Hung-Wei Tsui;David Shan-Hill Wong;Ying-Chieh Hung;Chen-Hsuan Huang | en |
| dc.subject.keyword | 臨界現象,重整化群理論,局部組成模型,組成波動,液-液平衡(LLE),相平衡,Ising模型, | zh_TW |
| dc.subject.keyword | Critical phenomena,Renormalization group,Local composition models,Composition fluctuations,Liquid-liquid equilibrium (LLE),Phase equilibrium,Ising model, | en |
| dc.relation.page | 182 | - |
| dc.identifier.doi | 10.6342/NTU202501082 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2026-08-03 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2026-08-03 | 9.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
