Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99685
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林致廷zh_TW
dc.contributor.advisorChih-Ting Linen
dc.contributor.author張凱俐zh_TW
dc.contributor.authorKai-Li Changen
dc.date.accessioned2025-09-17T16:22:19Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-07-
dc.identifier.citation[1] Katherine E Uyhazi, Jean Bennett, et al. A crispr view of the 2020 nobel prize in chemistry. The Journal of clinical investigation, 131(1), 2021.
[2] Janice S. Chen, Enbo Ma, Lucas B. Harrington, Maria Da Costa, Xinran Tian, Joel M. Palefsky, and Jennifer A. Doudna. Crispr-cas12a target binding unleashes indiscriminate single-stranded dnase activity. Science, 360(6387):436–439, 2018.
[3] Yi Wang, Jieqiong Li, Shijun Li, Xiong Zhu, Xiaoxia Wang, Junfei Huang, Xinggui Yang, and Jun Tai. Lamp-crispr-cas12-based diagnostic platform for detection of mycobacterium tuberculosis complex using real-time fluorescence or lateral flow test. Microchimica Acta, 188(10):347, 2021.
[4] Jaya Baranwal, Brajesh Barse, Gianluca Gatto, Gabriela Broncova, and Amit Kumar. Electrochemical sensors and their applications: A review. Chemosensors, 10(9),2022.
[5] Parisa Sadat Miri, Negin Khosroshahi, Moein Darabi Goudarzi, and Vahid Safarifard. Mof-biomolecule nanocomposites for electrosensing. Nanochemistry Research, 6(2):213–222, 2021.
[6] Valentina Donzella and Francesco Crea. Optical biosensors to analyze novel biomarkers in oncology. Journal of Biophotonics, 4(6):442–452, 2011.
[7] Naoki Inomata, Masaya Toda, and Takahito Ono. Highly sensitive thermometer using a vacuum-packed si resonator in a microfluidic chip for the thermal measurement of single cells. Lab on a Chip, 16(18):3597–3603, 2016.
[8] Bright Katey, Ioana Voiculescu, Anita Nikolova Penkova, and Alexandrina Untaroiu. A review of biosensors and their applications. ASME Open Journal of Engineering,2:020201, 11 2023.
[9] Ghazala Yunus, Rachana Singh, Sindhu Raveendran, and Mohammed Kuddus. Electrochemical biosensors in healthcare services: bibliometric analysis and recent developments. PeerJ, 11:e15566, 2023.
[10] Dorothee Grieshaber, Robert MacKenzie, Janos Vörös, and Erik Reimhult. Electrochemical biosensors-sensor principles and architectures. Sensors, 8(3):1400–1458,2008.
[11] Chao Chen, Qingji Xie, Dawei Yang, Hualing Xiao, Yingchun Fu, Yueming Tan, and Shouzhuo Yao. Recent advances in electrochemical glucose biosensors: a review. RSC Adv., 3:4473–4491, 2013.
[12] Chao Chen, Qingji Xie, Dawei Yang, Hualing Xiao, Yingchun Fu, Yueming Tan, and Shouzhuo Yao. Recent advances in electrochemical glucose biosensors: a review. Rsc Advances, 3(14):4473–4491, 2013.
[13] Anoop Singh, Asha Sharma, Aamir Ahmed, Ashok K. Sundramoorthy, Hidemitsu Furukawa, Sandeep Arya, and Ajit Khosla. Recent advances in electrochemical biosensors: Applications, challenges, and future scope. Biosensors, 11(9), 2021.
[14] Hongmei Bi and Xiaojun Han. 10 - chemical sensors for environmental pollutant determination. In Kohji Mitsubayashi, Osamu Niwa, and Yuko Ueno, editors, Chemical, Gas, and Biosensors for Internet of Things and Related Applications,pages 147–160. Elsevier, 2019.
[15] Rongguo Yan, Shuai Qiu, Lei Tong, and Yin Qian. Review of progresses on clinical applications of ion selective electrodes for electrolytic ion tests: from conventional ises to graphene-based ises. Chemical Speciation & Bioavailability, 28(1-4):72–77,2016.
[16] Ömer Isildak and Oguz Özbek. Application of potentiometric sensors in real samples. Critical Reviews in Analytical Chemistry, 51(3):218–231, 2021.
[17] Md Aminur Rahman, Pankaj Kumar, Deog-Su Park, and Yoon-Bo Shim. Electrochemical sensors based on organic conjugated polymers. Sensors, 8(1):118–141,2008.
[18] Jiří Janata, Mira Josowicz, Petr Vanỳsek, and D Michael DeVaney. Chemical sensors.Analytical Chemistry, 70(12):179–208, 1998.
[19] Bingqian Li, Guangyu Zhai, Yaru Dong, Lan Wang, and Peng Ma. Recent progress on the crispr/cas system in optical biosensors. Anal. Methods, 16:798–816, 2024.
[20] Fan Li, Qinghua Ye, Moutong Chen, Baoqing Zhou, Jumei Zhang, Rui Pang, Liang Xue, Juan Wang, Haiyan Zeng, Shi Wu, Youxiong Zhang, Yu Ding, and Qingping Wu. An ultrasensitive crispr/cas12a based electrochemical biosensor for listeria monocytogenes detection. Biosensors and Bioelectronics, 179:113073, 2021.
[21] Decai Zhang, Yurong Yan, Haiying Que, Tiantian Yang, Xiaoxue Cheng, ShijiaDing, Xiuming Zhang, and Wei Cheng. Crispr/cas12a-mediated interfacial cleaving of hairpin dna reporter for electrochemical nucleic acid sensing. ACS Sensors, 5(2):557–562, 2020. PMID: 32013399.
[22] Akash Kumaran, Nathan Jude Serpes, Tisha Gupta, Abija James, Avinash Sharma, Deepak Kumar, Rupak Nagraik, Vaneet Kumar, and Sadanand Pandey. Advancements in crispr-based biosensing for next-gen point of care diagnostic application.Biosensors, 13(2), 2023.
[23] Clianta Yudin Kharismasari, Irkham, Muhammad Ihda H.L. Zein, Ari Hardianto, Salma Nur Zakiyyah, Abdullahi Umar Ibrahim, Mehmet Ozsoz, and Yeni Wahyuni Hartati. Crispr/cas12-based electrochemical biosensors for clinical diagnostic and food monitoring. Bioelectrochemistry, 155:108600, 2024.
[24] M. Raoof, K. Jans, G. Bryce, Sh. Ebrahim, L. Lagae, and A. Witvrouw. Improving the selectivity by using different blocking agents in dna hybridization assays for sige bio-molecular sensors. Microelectronic Engineering, 111:421–424, 2013.
[25] Ye Xiao, Rui Xu, Yan Chong, Jia-Qi Huang, Qiang Zhang, and Minggao Ouyang. A toolbox of reference electrodes for lithium batteries. Advanced Functional Materials, 32, 12 2021.
[26] Li Li Zhang and X. S. Zhao. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev., 38:2520–2531, 2009.
[27] Noémie Elgrishi, Kelley J. Rountree, Brian D. McCarthy, Eric S. Rountree, Thomas T. Eisenhart, and Jillian L. Dempsey. A practical beginner's guide to cyclic voltammetry. Journal of Chemical Education, 95(2):197–206, 2018.
[28] K. Wijeratne. Conducting Polymer Electrodes for Thermogalvanic Cells. Linköping Studies in Science and Technology. Dissertations. Linkopings Universitet, 2019.
[29] Jennifer A. Doudna and Emmanuelle Charpentier. The new frontier of genome engineering with crispr-cas9. Science, 346(6213):1258096, 2014.
[30] Michael T McManus and Phillip A Sharp. interfering rnas. Nature reviews genetics, 3(10):737–747, 2002. Gene silencing in mammals by small interfering rnas. Nature reviews genetics, 3(10):737–747, 2002.
[31] Norah Rudin, Elaine Sugarman, and James E Haber. Genetic and physical analysis of double-strand break repair and recombination in saccharomyces cerevisiae. Genetics, 122(3):519–534, 1989.
[32] Barry L Stoddard. Homing endonuclease structure and function. Quarterly reviews of biophysics, 38(1):49–95, 2005.
[33] Jeffry D Sander, Elizabeth J Dahlborg, Mathew J Goodwin, Lindsay Cade, Feng Zhang, Daniel Cifuentes, Shaun J Curtin, Jessica S Blackburn, Stacey Thibodeau Beganny, Yiping Qi, et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (coda). Nature methods, 8(1):67–69, 2011.
[34] Deepak Reyon, Shengdar Q Tsai, Cyd Khayter, Jennifer A Foden, Jeffry D Sander, and J Keith Joung. Flash assembly of talens for high-throughput genome editing. Nature biotechnology, 30(5):460–465, 2012.
[35] Pablo Tebas, David Stein, Winson W Tang, Ian Frank, Shelley Q Wang, Gary Lee, S Kaye Spratt, Richard T Surosky, Martin A Giedlin, Geoff Nichol, et al. Gene editing of ccr5 in autologous cd4 t cells of persons infected with hiv. New England Journal of Medicine, 370(10):901–910, 2014.
[36] Pilar Redondo, Jesús Prieto, Inés G Munoz, Andreu Alibés, Francois Stricher, Luis Serrano, Jean-Pierre Cabaniols, Fayza Daboussi, Sylvain Arnould, Christophe Perez, et al. Molecular basis of xeroderma pigmentosum group c dna recognition by engineered meganucleases. Nature, 456(7218):107–111, 2008.
[37] Martin Jinek, Krzysztof Chylinski, Ines Fonfara, Michael Hauer, Jennifer A Doudna, and Emmanuelle Charpentier. A programmable dual-rna–guided dna endonuclease in adaptive bacterial immunity. science, 337(6096):816–821, 2012.
[38] Yuanyuan Xu and Zhanjun Li. Crispr-cas systems: Overview, innovations and applications in human disease research and gene therapy. Computational and structural biotechnology journal, 18:2401–2415, 2020.
[39] Ruud Jansen, Jan DA van Embden, Wim Gaastra, and Leo M Schouls. Identification of genes that are associated with dna repeats in prokaryotes. Molecular microbiology, 43(6):1565–1575, 2002.
[40] Francisco JM Mojica, Chc) sar Díez-Villaseñor, Jesús García-Martínez, and Elena Soria. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of molecular evolution, 60:174–182, 2005.
[41] Rodolphe Barrangou, Christophe Fremaux, Hélène Deveau, Melissa Richards, Patrick Boyaval, Sylvain Moineau, Dennis A Romero, and Philippe Horvath. Crispr provides acquired resistance against viruses in prokaryotes. Science, 315(5819):1709–1712, 2007.
[42] Addison V. Wright, James K. Nuñez, and Jennifer A. Doudna. Biology and applications of crispr systems: Harnessing nature' s toolbox for genome engineering. Cell, 164(1):29–44, 2016.
[43] Kira S Makarova, Daniel H Haft, Rodolphe Barrangou, Stan JJ Brouns, Emmanuelle Charpentier, Philippe Horvath, Sylvain Moineau, Francisco JM Mojica, Yuri I Wolf, Alexander F Yakunin, et al. Evolution and classification of the crispr–cas systems. Nature Reviews Microbiology, 9(6):467–477, 2011.
[44] Kira S Makarova, Yuri I Wolf, Omer S Alkhnbashi, Fabrizio Costa, Shiraz A Shah, Sita J Saunders, Rodolphe Barrangou, Stan JJ Brouns, Emmanuelle Charpentier, Daniel H Haft, et al. An updated evolutionary classification of crispr–cas systems. Nature reviews microbiology, 13(11):722–736, 2015.
[45] Kun Du, Qinlong Zeng, Mingjun Jiang, Zhiqing Hu, Miaojin Zhou, and Kun Xia. Crispr/cas12a-based biosensing: Advances in mechanisms and applications for nucleic acid detection. Biosensors, 15(6), 2025.
[46] Bernd Zetsche, Jonathan S Gootenberg, Omar O Abudayyeh, Ian M Slaymaker, Kira S Makarova, Patrick Essletzbichler, Sara E Volz, Julia Joung, John Van Der Oost, Aviv Regev, et al. Cpf1 is a single rna-guided endonuclease of a class 2 crispr-cas system. cell, 163(3):759–771, 2015.
[47] Sverre-Henning Brorson. Bovine serum albumin (bsa) as a reagent against non-specific immunogold labeling on lr-white and epoxy resin. Micron, 28(3):189–195,1997.
[48] Y. L. Jeyachandran, E. Mielczarski, B. Rai, and J. A. Mielczarski. Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces. Langmuir, 25(19):11614–11620, 2009. PMID:19788219.
[49] Yuhong Xiao and Stuart N. Isaacs. Enzyme-linked immunosorbent assay (elisa) and blocking with bovine serum albumin (bsa)—not all bsas are alike. Journal of Immunological Methods, 384(1):148–151, 2012.
[50] Zihan Li, Wenchang Zhao, Shixin Ma, Zexu Li, Yingjia Yao, and Teng Fei. A chemical-enhanced system for crispr-based nucleic acid detection. Biosensors and Bioelectronics, 192:113493, 2021.
[51] Zongfu Zheng, Jicheng Jiang, Meilin Zheng, Chengfei Zhao, Kai Peng, Xinhua Lin, and Shaohuang Weng. A facile and effective electrochemical dna biosensor for the detection of gardnerellavaginalis based on one-step bsa blocked electrode. International Journal of Electrochemical Science, 11(10):8354–8362, 2016.
[52] 電位窗範圍. https://www.zensor.com.tw/Article09.html.
[53] Claudia Sissi and Manlio Palumbo. Effects of magnesium and related divalent metal ions in topoisomerase structure and function. Nucleic acids research, 37(3):702–711, 2009.
[54] Zhiyan Zhang, Zongbiao Ye, Zhijun Wang, Fujun Gou, Bizhou Shen, Andong Wu, Yuan He, Pingni He, Hongbin Wang, Bo Chen, Jianjun Chen, Kun Zhang, and Jian-jun Wei. The mechanism study of mixed ar/o2 plasma-cleaning treatment on niobiumsurface for work function improvement. Applied Surface Science, 475:143–150, 2019.
[55] Renu Singh, G. Sumana, Rachna Verma, Seema Sood, M.K. Pandey, Rajinder K. Gupta, and B.D. Malhotra. Dna biosensor for detection of neisseria gonorrhoeae causing sexually transmitted disease. Journal of Biotechnology, 150(3):357–365, 2010.
[56] Nebuffer™ set (r1.1, r2.1, r3.1 and rcutsmart™). https://www.neb.com/en/products/b7030-nebuffer-set-r11-r21-r31-and-rcutsmart?srsltid=AfmBOoowZQ2CBwbaIeKAnPiE6rJNtvrdhL4GUqFV8q0TWvWZN7iau2-S.
[57] Recombinant albumin, molecular biology grade. https://www.neb.com/en/products/b9200-recombinant-albumin-molecular-biology-grade?srsltid=AfmBOoqyyhDrFfbX6zbwsIWtgrJuFNuRBbD5dNQ-HeRzuuQM3tDaXaXZ.
[58] Yuxuan He, Wei Yan, Likun Long, Liming Dong, Yue Ma, Congcong Li, Yanbo Xie, Na Liu, Zhenjuan Xing, Wei Xia, et al. The crispr/cas system: a customizable toolbox for molecular detection. Genes, 14(4):850, 2023.
[59] Andrea Bonini, Noemi Poma, Federico Vivaldi, Denise Biagini, Daria Bottai, Arianna Tavanti, and Fabio Di Francesco. A label-free impedance biosensing assay based on crispr/cas12a collateral activity for bacterial dna detection. Journal of Pharmaceutical and Biomedical Analysis, 204:114268, 2021.
[60] Lee M. Fischer, Maria Tenje, Arto R. Heiskanen, Noriyuki Masuda, Jaime Castillo, Anders Bentien, Jenny Émneus, Mogens H. Jakobsen, and Anja Boisen. Gold cleaning methods for electrochemical detection applications. Microelectronic Engineering, 86(4):1282–1285, 2009. MNE'08.
[61] Felix Widdascheck, Michael Kothe, Alrun A. Hauke, and Gregor Witte. The effect of oxygen plasma treatment of gold electrodes on the molecular orientation of cupc films. Applied Surface Science, 507:145039, 2020.
[62] Stefano Bonaldo, Lara Franchin, Elisabetta Pasqualotto, Erica Cretaio, Carmen Losasso, Arianna Peruzzo, and Alessandro Paccagnella. Influence of bsa protein on electrochemical response of genosensors. IEEE Sensors Journal, 23(3):1786–1794, 2023.
[63] Chenxi Zhao, Lijie Du, Dike Jiang, Jing Hu, and Xiandeng Hou. Regulating crispr/cas12a trans-cleavage on the hairpin dna–mb nanointerface for enhanced multiplexed sensing application. Chemical Science, 16(25):11456–11463, 2025.
[64] Irina V. Safenkova, Alexey V. Samokhvalov, Kseniya V. Serebrennikova, Sergei A. Eremin, Anatoly V. Zherdev, and Boris B. Dzantiev. Dna probes for cas12a-based assay with fluorescence anisotropy enhanced due to anchors and salts. Biosensors, 13(12), 2023.
[65] Hongbo Li, Weihua Zhao, Jiamei Pu, Shengliang Zhong, Suqin Wang, and Ruqin Yu. Combining functional hairpin probes with disordered cleavage of crispr/cas12a protease to screen for b lymphocytic leukemia. Biosensors and Bioelectronics, 201:113941, 2022.
[66] Qian Wang, Yaqi Liu, Jixian Yan, Yunqing Liu, Chaomin Gao, Shenguang Ge, and Jinghua Yu. 3d dna walker-assisted crispr/ cas12a trans-cleavage for ultrasensitive electrochemiluminescence detection of mirna-141. Analytical Chemistry,93(39):13373–13381, 2021. PMID: 34553925.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99685-
dc.description.abstract本論文旨在建立一套結合 CRISPR/Cas 系統與以金為電極材料搭配 hairpin DNA 探針之電化學量測方法,並探討實驗中可能影響訊號表現的潛在干擾因子。研究中發現,當以電化學阻抗分析(Electrochemical Impedance Spectroscopy, EIS)量測 Cas12a 系統的剪切反應時,商用反應緩衝液中的重組白蛋白(recombinant albumin)可能造成非特異性吸附與介面阻擋效應,導致背景訊號上升,進而干擾目標訊號的辨識與解析。
為解決此問題,本研究調整量測流程,改以蛋白質預先覆蓋後的電極狀態作為新的基線條件,以降低蛋白質成分對 EIS 量測的干擾。此外,在使用排除蛋白質成分的緩衝液條件下進行剪切反應時,我們亦觀察到 hairpin DNA 探針的二級結構穩定性可能影響其作為 Cas12a 反式剪切底物的效果。因此,我們進一步參考相關文獻,整理過往 hairpin DNA 做為 Cas12a 反式剪切目標之設計,並歸納出在結構穩定性與反應效率間可進一步優化之方向。
綜合本研究結果,初步測試以hairpin DNA做為金電極表面探針之CRISPR/Cas12a 電化學生物感測方法,並針對其訊號準確性之干擾來源與潛在解決方案進行探討,期望能作為後續相關系統優化之參考依據。
zh_TW
dc.description.abstractThis thesis aims to establish an electrochemical sensing platform that integrates the CRISPR/Cas system with gold electrodes modified by hairpin DNA probes, and to investigate potential interfering factors that may affect signal performance. During measurements of the Cas12a cleavage reaction using Electrochemical Impedance Spectroscopy (EIS), we found that recombinant albumin, commonly present in commercial reaction buffers, may lead to nonspecific adsorption and interfacial blocking effects. These effects result in elevated background signals, thereby interfering with the identification and interpretation of target signals.
To address this issue, we modified the measurement workflow by using the electrode surface pre-coated with proteins as a new baseline condition, which helped reduce the interference caused by protein components during EIS detection. In addition, under buffer conditions without albumin, we observed that the secondary structure stability of hairpin DNA probes could also influence their suitability as trans-cleavage substrates for Cas12a. Therefore, we further reviewed relevant literature and summarized prior designs of hairpin DNA used as Cas12a trans-cleavage targets, identifying possible directions for structural optimization to balance stability and reaction efficiency.
In summary, this study provides preliminary testing of a CRISPR/Cas12a electrochemical biosensing approach based on hairpin DNA probes immobilized on gold electrodes, and discusses key sources of signal interference as well as potential solutions. The findings are expected to serve as a reference for future optimization of related sensing systems.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:22:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:22:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 iii
摘要 v
Abstract vii
目次 ix
圖次 xiii
表次 xv
第一章 緒論 1
1.1 研究背景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 生物感測技術及其發展 . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 電化學生物感測 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 基於 CRISPR/Cas 系統之電化學檢測 . . . . . . . . . . . . . . . . . . 5
1.5 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
第二章 理論及實驗原理 9
2.1 電化學原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 法拉第與非法拉第過程 . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 電雙層成因及其結構 . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 電化學量測 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 循環伏安法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 電化學阻抗譜 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 CRISPR/Cas 技術 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 基因編輯技術發展 . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 CRISPR-Cas 系統的研究演進歷程 . . . . . . . . . . . . . . . . . 24
2.3.3 CRISPR-Cas 系統不同類型的原理與機制 . . . . . . . . . . . . . 25
2.4 DNA 探針表面封閉劑選擇 . . . . . . . . . . . . . . . . . . . . . . . 26
第三章 實驗架設與方法 29
3.1 實驗機制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 實驗材料介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 商用晶片材料 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 自製金電極製程 . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 生物材料介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.4 CRISPR/Cas 系統相關序列及探針序列 . . . . . . . . . . . . . . . 35
3.3 實驗步驟 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 電極前處理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 DNA 固定化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.3 CRISPR/Cas 實驗條件 . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 電化學量測方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
第四章 實驗結果與討論 41
4.1 使用商用晶片用於感測 Cas12a 之剪切 . . . . . . . . . . . . . . . . . 41
4.1.1 商用晶片穩定度分析 . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 表面改質結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Cas12a 剪切測試 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 CRISPR/Cas 目標 DNA 之陰性對照測試 . . . . . . . . . . . . . .45
4.2.2 Cas12a 結合緩衝液測試 . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.3 實驗條件對晶片之影響 . . . . . . . . . . . . . . . . . . . . . . . 51
4.3使用自製電極選擇可用於 Cas12a 剪切之基線 . . . . . . . . . . . . .52
4.3.1 自製電極前處理方式選擇 . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2 重組白蛋白與牛血清蛋白對自製電極影響比較 . . . . . . . . . . 54
4.3.3 牛血清蛋白空位阻擋條件選擇 . . . . . . . . . . . . . . . . . . . 55
4.4Hairpin DNA 探針穩定性分析與未來設計方向 . . . . . . . . . . . . 58
第五章 結論 61
參考文獻 63
-
dc.language.isozh_TW-
dc.subjectDNA 生物 感測器zh_TW
dc.subjectCRISPR/Cas 系統zh_TW
dc.subject電化學zh_TW
dc.subject電化學阻抗圖譜zh_TW
dc.subject循環伏安法zh_TW
dc.subjectDNA biosensoren
dc.subjectelectrochemical impedance spectroscopyen
dc.subjectelectrochemistryen
dc.subjectCRISPR/Cas systemen
dc.subjectcyclic voltammetryen
dc.title應用於 CRISPR/Cas12a 之電化學阻抗量測方法研究zh_TW
dc.titleInvestigation of Electrochemical Impedance-Based Detection Methods for CRISPR/Cas12aen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳靖宙;余靈珊;張子璿zh_TW
dc.contributor.oralexamcommitteeChing-Chou Wu;Ling-Shan Yu;Tzu-Hsuan Changen
dc.subject.keywordCRISPR/Cas 系統,電化學,電化學阻抗圖譜,循環伏安法,DNA 生物 感測器,zh_TW
dc.subject.keywordCRISPR/Cas system,electrochemistry,electrochemical impedance spectroscopy,cyclic voltammetry,DNA biosensor,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202503313-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-11-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
dc.date.embargo-lift2030-08-01-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-08-01
11.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved