請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99665完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖國偉 | zh_TW |
| dc.contributor.advisor | Kuo-Wei Liao | en |
| dc.contributor.author | 陳語晞 | zh_TW |
| dc.contributor.author | Yu-Hsi Chen | en |
| dc.date.accessioned | 2025-09-17T16:18:37Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | 中文部分
日本地滑對策技術協會(1978)。地滑對策技術設計實施要領。日本地滑對策技術協會。 王金山、鍾明劍、譚志豪、冀樹勇、蘇泰維、李錦發、與費立沅(2009)。颱風事件引致崩塌地滑動之研究—以濁水溪流域萬大崩塌地為例。第十三屆大地工程學術研討會論文集,宜蘭,臺灣。 經濟部中央地質調查所(2022)。臺灣坡地環境地質圖集說明書。經濟部中央地質調查所。ISBN 978-986-533-346-1。 羅偉與楊昭男(2002)霧社[臺灣地質圖幅及說明書1/50,000]。經濟部中央地質調查所。 王士榮. (2019). 濁水溪流域地下水資源開發與管理. 台灣水利, 67(1), 43-67. 鄧屬予. (2007). 臺灣第四紀大地構造. 經濟部中央地質調查所特刊第十八號, 第 1-24 頁, 民國九十六年九月. 英文部分 Basahel, H., & Mitri, H. (2019). Probabilistic assessment of rock slopes stability using the response surface approach - A case study [Article]. International Journal of Mining Science and Technology, 29(3), 357-370. https://doi.org/10.1016/j.ijmst.2018.11.002 Brabb, E. (1993). Proposal for worldwide landslide hazard maps. Ceccato, F., Yerro, A., & Di Carluccio, G. (2024). Simulating landslides with the material point method: Best practices, potentialities, and challenges [Article]. Engineering Geology, 338, 16, Article 107614. https://doi.org/10.1016/j.enggeo.2024.107614 Ceccato, F., Yerro, A., Girardi, V., & Simonini, P. (2021). Two-phase dynamic MPM formulation for unsaturated soil [Article]. Computers and Geotechnics, 129, 13, Article 103876. https://doi.org/10.1016/j.compgeo.2020.103876 Crozier, M. J. (2010). Deciphering the effect of climate change on landslide activity: A review [Article; Proceedings Paper]. Geomorphology, 124(3-4), 260-267. https://doi.org/10.1016/j.geomorph.2010.04.009 Cuomo, S., Di Perna, A., & Martinelli, M. (2021). Modelling the spatio-temporal evolution of a rainfall-induced retrogressive landslide in an unsaturated slope [Article]. Engineering Geology, 294, 16, Article 106371. https://doi.org/10.1016/j.enggeo.2021.106371 Deng, X. L., Li, L. H., & Tan, Y. F. (2017). Validation of Spatial Prediction Models for Landslide Susceptibility Mapping by Considering Structural Similarity [Article]. Isprs International Journal of Geo-Information, 6(4), 16, Article 103. https://doi.org/10.3390/ijgi6040103 Ding, Q. L., Wang, Y. R., Zheng, Y., Wang, F. Y., Zhou, S. D., Pan, D. H., Xiong, Y. C., & Zhang, Y. (2024). Subsurface Geological Profile Interpolation Using a Fractional Kriging Method Enhanced by Random Forest Regression [Article]. Fractal and Fractional, 8(12), 17, Article 717. https://doi.org/10.3390/fractalfract8120717 Duncan, J. M. (2000). Factors of safety and reliability in geotechnical engineering [Article]. Journal of Geotechnical and Geoenvironmental Engineering, 126(4), 307-316. https://doi.org/10.1061/(asce)1090-0241(2000)126:4(307) Echard, B., Gayton, N., & Lemaire, M. (2011). AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation [Article]. Structural Safety, 33(2), 145-154. https://doi.org/10.1016/j.strusafe.2011.01.002 Galve, J. P., Cevasco, A., Brandolini, P., & Soldati, M. (2015). Assessment of shallow landslide risk mitigation measures based on land use planning through probabilistic modelling [Article]. Landslides, 12(1), 101-114. https://doi.org/10.1007/s10346-014-0478-9 Girardi, V., Yerro, A., Simonini, P., Gabrieli, F., & Ceccato, F. (2023). Wetting induced instabilities in layered slopes: A Material Point Method analysis [Article]. Engineering Geology, 313, 13, Article 106978. https://doi.org/10.1016/j.enggeo.2022.106978 Griffiths, D., & Fenton, G. A. (2000). Influence of soil strength spatial variability on the stability of an undrained clay slope by finite elements. In Slope stability 2000 (pp. 184-193). Griffiths, D. V., & Fenton, G. A. (1993). SEEPAGE BENEATH WATER RETAINING STRUCTURES FOUNDED ON SPATIALLY RANDOM SOIL [Article]. Geotechnique, 43(4), 577-587. https://doi.org/10.1680/geot.1993.43.4.577 Hamza, T., & Raghuvanshi, T. K. (2017). GIS based landslide hazard evaluation and zonation - A case from Jeldu District, Central Ethiopia [Article]. Journal of King Saud University Science, 29(2), 151-165. https://doi.org/10.1016/j.jksus.2016.05.002 Haque, U., da Silva, P. F., Devoli, G., Pilz, J., Zhao, B. X., Khaloua, A., Wilopo, W., Andersen, P., Lu, P., Lee, J., Yamamoto, T., Keellings, D., Wu, J. H., & Glass, G. E. (2019). The human cost of global warming: Deadly landslides and their triggers (1995-2014) [Article]. Science of the Total Environment, 682, 673-684. https://doi.org/10.1016/j.scitotenv.2019.03.415 He, W. C., Chen, G. P., Zhao, J. S., Lin, Y. L., Qin, B. G., Yao, W. L., & Cao, Q. (2023). Landslide Susceptibility Evaluation of Machine Learning Based on Information Volume and Frequency Ratio: A Case Study of Weixin County, China [Article]. Sensors, 23(5), 27, Article 2549. https://doi.org/10.3390/s23052549 He, Y. P., & Beighley, R. E. (2008). GIS-based regional landslide susceptibility mapping: a case study in southern California [Article]. Earth Surface Processes and Landforms, 33(3), 380-393. https://doi.org/10.1002/esp.1562 Huang, J., Lyamin, A. V., Griffiths, D. V., Krabbenhoft, K., & Sloan, S. W. (2013). Quantitative risk assessment of landslide by limit analysis and random fields [Article]. Computers and Geotechnics, 53, 60-67. https://doi.org/10.1016/j.compgeo.2013.04.009 Huang, J. C., Milliman, J. D., Lee, T. Y., Chen, Y. C., Lee, J. F., Liu, C. C., Lin, J. C., & Kao, S. J. (2017). Terrain attributes of earthquake- and rainstorm-induced landslides in orogenic mountain Belt, Taiwan [Article]. Earth Surface Processes and Landforms, 42(10), 1549-1559. https://doi.org/10.1002/esp.4112 Huang, J. S., Griffiths, D. V., & Fenton, G. A. (2010). SYSTEM RELIABILITY OF SLOPES BY RFEM [Article]. Soils and Foundations, 50(3), 343-353. <Go to ISI>://WOS:000287541100001 Jiang, S. H., Huang, J. S., Griffiths, D. V., & Deng, Z. P. (2022). Advances in reliability and risk analyses of slopes in spatially variable soils: A state-of-the-art review [Review]. Computers and Geotechnics, 141, 19, Article 104498. https://doi.org/10.1016/j.compgeo.2021.104498 Kaur, A., & Sharma, D. R. K. (2016). SLOPE STABILITY ANALYSIS TECHNIQUES : A REVIEW. Kayser, M., & Gajan, S. (2014). Application of probabilistic methods to characterize soil variability and their effects on bearing capacity and settlement of shallow foundations: state of the art. International Journal of Geotechnical Engineering, 8(4), 352-364. https://doi.org/10.1179/1938636213Z.00000000073 Li, K. P., Zhao, X. Y., & Xiao, D. (2021). Acid rain: an unsuspected factor predisposing Panzhihua airport landslide, China [Article]. Environmental Science and Pollution Research, 28(27), 36753-36764. https://doi.org/10.1007/s11356-021-13308-8 Li, L. P., Lan, H. X., Guo, C. B., Zhang, Y. S., Li, Q. W., & Wu, Y. M. (2017). A modified frequency ratio method for landslide susceptibility assessment. Landslides, 14(2), 727-741. https://doi.org/10.1007/s10346-016-0771-x Liu, S. L., Wang, L. Q., Zhang, W. A., Sun, W. X., Fu, J., Xiao, T., & Dai, Z. W. (2023). A physics-informed data-driven model for landslide susceptibility assessment in the Three Gorges Reservoir area [Article]. Geoscience Frontiers, 14(5), 16, Article 101621. https://doi.org/10.1016/j.gsf.2023.101621 Liu, X., Jiang, S. H., Xie, J. W., & Li, X. Y. (2025). Bayesian inverse analysis with field observation for slope failure mechanism and reliability assessment under rainfall accounting for nonstationary characteristics of soil properties [Article]. Soils and Foundations, 65(1), 16, Article 101568. https://doi.org/10.1016/j.sandf.2025.101568 Nachappa, T. G., Kienberger, S., Meena, S. R., Hölbling, D., & Blaschke, T. (2020). Comparison and validation of per-pixel and object-based approaches for landslide susceptibility mapping [Article]. Geomatics Natural Hazards & Risk, 11(1), 572-600. https://doi.org/10.1080/19475705.2020.1736190 Nandi, A., & Shakoor, A. (2010). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses [Article]. Engineering Geology, 110(1-2), 11-20. https://doi.org/10.1016/j.enggeo.2009.10.001 Park, S., Choi, C., Kim, B., & Kim, J. (2013). Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea [Article]. Environmental Earth Sciences, 68(5), 1443-1464. https://doi.org/10.1007/s12665-012-1842-5 Qu, C. X., Wang, G., Feng, K. W., & Xia, Z. D. (2021). Large deformation analysis of slope failure using material point method with cross-correlated random fields [Article]. Journal of Zhejiang University-Science A, 22(11), 856-869. https://doi.org/10.1631/jzus.A2100196 Raghuram, A. S. S., & Basha, B. M. (2021). Second-Order Reliability-Based Design of Unsaturated Infinite Soil Slopes [Article]. International Journal of Geomechanics, 21(4), 15, Article 04021024. https://doi.org/10.1061/(asce)gm.1943-5622.0001954 Raychowdhury, P. (2009). Effect of soil parameter uncertainty on seismic demand of low-rise steel buildings on dense silty sand. Soil Dynamics and Earthquake Engineering, 29(10), 1367-1378. https://doi.org/https://doi.org/10.1016/j.soildyn.2009.03.004 Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., & Guzzetti, F. (2018). A review of statistically-based landslide susceptibility models [Review]. Earth-Science Reviews, 180, 60-91. https://doi.org/10.1016/j.earscirev.2018.03.001 Safaei, M., Omar, H., Huat, B. K., Yousof, Z. B., & Ghiasi, V. (2011). Deterministic rainfall induced landslide approaches, advantage and limitation. Electronic journal of geotechnical engineering, 16, 1619-1650. Shano, L., Raghuvanshi, T. K., & Meten, M. (2020). Landslide susceptibility evaluation and hazard zonation techniques - a review [Review]. Geoenvironmental Disasters, 7(1), 19, Article 18. https://doi.org/10.1186/s40677-020-00152-0 Shirzadi, A., Chapi, K., Shahabi, H., Solaimani, K., Kavian, A., & Bin Ahmad, B. (2017). Rock fall susceptibility assessment along a mountainous road: an evaluation of bivariate statistic, analytical hierarchy process and frequency ratio [Article]. Environmental Earth Sciences, 76(4), 17, Article 152. https://doi.org/10.1007/s12665-017-6471-6 Soga, K., Alonso, E., Yerro, A., Kumar, K., & Bandara, S. (2016). Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method [Article]. Geotechnique, 66(3), 248-273. https://doi.org/10.1680/jgeot.15.LM.005 Springman, S., Askarinejad, A., Casini, F., Friedel, S., Kienzler, P., Teysseire, P., & Thielen, A. (2012). Lesson learnt from field tests in some potentially unstable slopes in Switzerland. Acta Geotechnica Slovenica, 1, 5-29. Srivastava, A., & Babu, G. L. S. (2009). Effect of soil variability on the bearing capacity of clay and in slope stability problems. Engineering Geology, 108(1), 142-152. https://doi.org/https://doi.org/10.1016/j.enggeo.2009.06.023 Sulsky, D., Chen, Z., & Schreyer, H. L. (1994). A PARTICLE METHOD FOR HISTORY-DEPENDENT MATERIALS [Article]. Computer Methods in Applied Mechanics and Engineering, 118(1-2), 179-196. https://doi.org/10.1016/0045-7825(94)00033-6 Thanh, D. Q., Nguyen, D. H., Prakash, I., Jaafari, A., Nguyen, V. T., Phong, T. V., & Pham, B. T. (2020). GIS based frequency ratio method for landslide susceptibility mapping at Da Lat City, Lam Dong province, Vietnam [Article]. Vietnam Journal of Earth Sciences, 42(1), 55-66. https://doi.org/10.15625/0866-7187/42/1/14758 Thedy, J., & Liao, K. W. (2023). Adaptive Kriging Adopting PSO with Hollow-Hypersphere space in structural reliability assessment [Article]. Probabilistic Engineering Mechanics, 74, 13, Article 103513. https://doi.org/10.1016/j.probengmech.2023.103513 Varnes, D. J. (1984). Landslide hazard zonation: a review of principles and practice. Wang, B., Hicks, M. A., & Vardon, P. J. (2016). Slope failure analysis using the random material point method [Article]. Geotechnique Letters, 6(2), 113-118. https://doi.org/10.1680/jgele.16.00019 Wu, Y. M., Tian, A. H., & Lan, H. X. (2022a). Comparisons of Dynamic Landslide Models on GIS Platforms. Applied Sciences-Basel, 12(6), Article 3093. https://doi.org/10.3390/app12063093 Wu, Y. M., Tian, A. H., & Lan, H. X. (2022b). Comparisons of Dynamic Landslide Models on GIS Platforms [Article]. Applied Sciences-Basel, 12(6), 16, Article 3093. https://doi.org/10.3390/app12063093 Wyser, E., Alkhimenkov, Y., Jaboyedoff, M., & Podladchikov, Y. Y. (2020). A fast and efficient MATLAB-based MPM solver: fMPMM-solver v1.1 [Article]. Geoscientific Model Development, 13(12), 6265-6284. https://doi.org/10.5194/gmd-13-6265-2020 Zhang, Y. X., Lan, H. X., Li, L. P., Wu, Y. M., Chen, J. H., & Tian, N. M. (2020). Optimizing the frequency ratio method for landslide susceptibility assessment: A case study of the Caiyuan Basin in the southeast mountainous area of China [Article]. Journal of Mountain Science, 17(2), 340-357. https://doi.org/10.1007/s11629-019-5702-6 Zou, Y., & Zheng, C. (2022). A Scientometric Analysis of Predicting Methods for Identifying the Environmental Risks Caused by Landslides [Review]. Applied Sciences-Basel, 12(9), 31, Article 4333. https://doi.org/10.3390/app12094333 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99665 | - |
| dc.description.abstract | 本研究針對現行崩塌災害分析多侷限於單一方法、難以掌握災害特性全貌的問題,提出一套整合廣域統計、物理模擬與可靠度分析三種方法的坡地安全評估架構,並實際以濁水溪流域及萬大崩塌地為例進行此架構之效果探討。本結果顯示,若僅依廣域統計(頻率比法)建立的崩塌敏感度地圖,雖可辨識出萬大崩塌地屬於高敏感區,但無法捕捉此坡地在滑動機制上,實際具有的滑動調適能力,可能導致防災資源投入過度;反之,若僅依物質點法模擬與AK-PSO-HHs可靠度分析,雖能指出其在極端條件下失效機率偏低、滑動具回穩特性,但也容易忽略其所處萬大區域整體敏感性及持續潛移對周圍設施的影響。唯有透過三者整合後更新出的標準常態CDF LSI平均值(μ_LSI0'' ),才得以最適當地量化推估萬大崩塌地的滑動預期損失,具體而言建議須達到10.22公尺滑動量的防護能力,才可有效防範萬大崩塌地之潛移行為對道路與建設的損害。
由此數值也反映出,本研究建議之保護標準並非在於阻止較不可能於萬大崩塌地發生的大規模崩塌,而是更貼近該坡地對於潛移行為的控制需求,並實際提出量化後的防護建議。本研究以濁水溪流域及萬大崩塌地為例,說明了所提出的「整合性坡地安全評估架構」在分析結果上初具可行性與有效性,因此建議後續可進一步精進,以使此評估架構在未來可受到更廣泛的應用與驗證。 | zh_TW |
| dc.description.abstract | This study addresses the limitations of conventional landslide hazard analyses, which often rely on a single method and fail to capture the complex mechanisms of slope behavior. To resolve this, an Integrated Slope Safety Assessment Framework is proposed, combining statistical mapping, slope mechanics simulation, and reliability analysis. The framework is applied to the Jhuoshuei River Basin and the Wanda Slope to evaluate its feasibility and effectiveness.
The results show that while statistical mapping based on the Frequency Ratio Method effectively identifies the Wanda Slope as a high-susceptibility area using terrain, geological, and land-use factors, it does not account for the slope’s actual response mechanisms under stress, potentially leading to excessive or misallocated mitigation. In contrast, the Material Point Method (MPM) and AK-PSO-HHs reliability analysis indicate a low probability of large-scale failure under extreme conditions and reveal the slope’s tendency to recover after deformation. However, relying solely on these physically-based analyses may overlook the broader susceptibility of the Wanda area and the long-term impact of creep on surrounding infrastructure. By integrating all three approaches, this study introduces a standardized posterior mean of the normal CDF-based Landslide Susceptibility Index (μ_LSI0'' ) for balanced quantification of expected slope displacement. For the Wanda Slope, the integrated results recommend that mitigation measures be designed to accommodate a displacement of 10.22 meters, targeting the control of progressive creep rather than preventing improbable large-scale collapse. These findings demonstrate the feasibility and initial effectiveness of the proposed Integrated Slope Safety Assessment Framework, suggesting its potential for further development and broader application to other complex landslide-prone regions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:18:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:18:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員會審定書 I
致謝 II 中文摘要 IV Abstract V 目 次 VII 圖 次 XI 表 次 XVIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究架構與流程 5 1.3 論文架構 7 1.4 研究區域 8 第二章 文獻回顧 10 2.1 坡地安全與崩塌研究發展及方法綜述 10 2.2 廣域統計分析 14 2.3 物理模式邊坡穩定分析 17 2.4 可靠度邊坡穩定分析 21 第三章 研究方法 26 3.1 坡地安全分析之方法間整合關係 26 3.2 頻率比法—建立崩塌敏感度地圖 27 3.2.1 頻率比法—原理與假設 28 3.2.2 頻率比法—計算過程與崩塌敏感度指數 30 3.2.3 歷史崩塌目錄 31 3.2.4 崩塌相關因子選擇 32 3.2.5 崩塌相關因子說明及產製 35 3.2.6 因子區間分類方法 43 3.2.7 崩塌敏感度地圖產製過程 56 3.2.8 崩塌敏感度分級方法 61 3.3 崩塌敏感度模型驗證與關注範圍識別 63 3.3.1 崩塌敏感度模型擬合度驗證 63 3.2.2 關注坡地範圍識別 68 3.4 物質點法—坡地運動過程模擬 72 3.4.1 物質點法 72 3.4.2 Anura3D簡介與操作流程 82 3.4.3 萬大崩塌地 87 3.4.4 萬大崩塌地之地下剖面推測 94 3.4.5 Anura3D降雨致崩模擬條件 97 3.5 AK-PSO-HHs可靠度分析與LSM回饋更新 102 3.5.1 AK-PSO-HHs 102 3.5.2 坡地失效定義方法與地工參數變異範圍 (COV) 107 3.5.3 機率式坡地安全性分析方法 111 3.5.4 以可靠度分析結果回饋崩塌敏感度地圖—貝氏更新 116 第四章 結果與討論 120 4.1 濁水溪流域廣域崩塌分析—崩塌敏感度地圖 120 4.1.1 崩塌敏感度地圖結果討論 120 4.1.2 各因子崩塌頻率比結果討論 127 4.2 萬大崩塌地運動過程模擬—物質點法模型 140 4.2.1 MPM模擬結果討論 140 4.2.2 萬大崩塌地滑動行為討論 145 4.3 萬大崩塌地可靠度分析—AK-PSO-HHs 150 4.3.1 AK-PSO-HHs效率與準確性檢查 150 4.3.2 萬大崩塌地可靠度分析結果 152 4.4 貝氏更新整合與坡地安全性評估 163 4.4.1 貝氏更新—LSI0先驗分佈計算與討論 163 4.4.2 貝氏更新—LSI0’’ 後驗分佈計算與討論 168 4.4.3 滑動預期損失及防護標準建議 177 4.5 崩塌整合分析架構可行性與成效評估 191 第五章 結論與建議 198 5.1結論 198 5.2建議與未來展望 202 參考文獻 207 附錄一 216 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 坡地安全性分析 | zh_TW |
| dc.subject | 可靠度分析 | zh_TW |
| dc.subject | 地文統計 | zh_TW |
| dc.subject | 坡地物理模擬 | zh_TW |
| dc.subject | 貝氏更新 | zh_TW |
| dc.subject | geomorphological statistics | en |
| dc.subject | reliability analysis | en |
| dc.subject | physically-based simulation | en |
| dc.subject | Bayesian updating | en |
| dc.subject | slope safety assessment | en |
| dc.title | 結合廣域統計、坡地力學模擬與可靠度分析之坡地安全評估架構可行性—以濁水溪流域及萬大崩塌地為例 | zh_TW |
| dc.title | Feasibility of an Integrated Slope Safety Assessment Framework: Statistical Mapping, Slope Mechanics Simulation, and Reliability Analysis in the Jhuoshuei River Basin and Wanda Slope | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 范正成;陳瑞華 | zh_TW |
| dc.contributor.oralexamcommittee | Jen-Chen Fan;Rwey-Hua Cherng | en |
| dc.subject.keyword | 坡地安全性分析,地文統計,坡地物理模擬,可靠度分析,貝氏更新, | zh_TW |
| dc.subject.keyword | slope safety assessment,geomorphological statistics,physically-based simulation,reliability analysis,Bayesian updating, | en |
| dc.relation.page | 223 | - |
| dc.identifier.doi | 10.6342/NTU202503954 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物環境系統工程學系 | - |
| dc.date.embargo-lift | 2027-08-11 | - |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2027-08-11 | 50.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
