請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99657完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 范致豪 | zh_TW |
| dc.contributor.advisor | Chihhao Fan | en |
| dc.contributor.author | 黃祠妗 | zh_TW |
| dc.contributor.author | Cih-Jin Huang | en |
| dc.date.accessioned | 2025-09-17T16:17:10Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | Adu, J. T., & Kumarasamy, M. V. (2018). Assessing non-point source pollution models: a review. Polish Journal of Environmental Studies, 27(5).
Agency, U. S. E. P. (2020). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018. U. S. EPA. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19-33. Al-Rawajfeh, A. E., Alrbaihat, M. R., & AlShamaileh, E. M. (2021). Chapter 4 - Characteristics and types of slow- and controlled-release fertilizers. In F. B. Lewu, T. Volova, S. Thomas, & R. K.R (Eds.), Controlled Release Fertilizers for Sustainable Agriculture (pp. 57-78). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-819555-0.00004-2 Alkharabsheh, H. M., Seleiman, M. F., Battaglia, M. L., Shami, A., Jalal, R. S., Alhammad, B. A., Almutairi, K. F., & Al-Saif, A. M. (2021). Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy, 11(5), 993. Almutari, M. M. (2023). Synthesis and modification of slow-release fertilizers for sustainable agriculture and environment: a review. Arabian Journal of Geosciences, 16(9), 518. https://doi.org/10.1007/s12517-023-11614-8 Arabi, M., Govindaraju, R. S., & Hantush, M. M. (2007). A probabilistic approach for analysis of uncertainty in the evaluation of watershed management practices. Journal of Hydrology, 333(2-4), 459-471. Ashitha, A., & Rakhimol, K. (2021). Fate of the conventional fertilizers in environment. In Controlled release fertilizers for sustainable agriculture (pp. 25-39). Elsevier. Ashraf, S., Naveed, M., Afzal, M., Seleiman, M. F., Al-Suhaibani, N. A., Zahir, Z. A., Mustafa, A., Refay, Y., Alhammad, B. A., & Ashraf, S. (2020). Unveiling the potential of novel macrophytes for the treatment of tannery effluent in vertical flow pilot constructed wetlands. Water, 12(2), 549. Bastianoni, S., Marchi, M., Caro, D., Casprini, P., & Pulselli, F. M. (2014). The connection between 2006 IPCC GHG inventory methodology and ISO 14064-1 certification standard – A reference point for the environmental policies at sub-national scale. Environmental Science & Policy, 44, 97-107. https://doi.org/https://doi.org/10.1016/j.envsci.2014.07.015 Blanco-Canqui, H., Gantzer, C., Anderson, S., Alberts, E., & Thompson, A. (2004). Grass barrier and vegetative filter strip effectiveness in reducing runoff, sediment, nitrogen, and phosphorus loss. Soil Science Society of America Journal, 68(5), 1670-1678. Blesh, J., & Drinkwater, L. (2013). The impact of nitrogen source and crop rotation on nitrogen mass balances in the Mississippi River Basin. Ecological applications, 23(5), 1017-1035. Bolan, S., Sharma, S., Mukherjee, S., Kumar, M., Rao, C. S., Nataraj, K. C., Singh, G., Vinu, A., Bhowmik, A., Sharma, H., El-Naggar, A., Chang, S. X., Hou, D., Rinklebe, J., Wang, H., Siddique, K. H. M., Abbott, L. K., Kirkham, M. B., & Bolan, N. (2024). Biochar modulating soil biological health: A review. Science of The Total Environment, 914, 169585. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.169585 Brezonik, P. (2018). Chemical kinetics and process dynamics in aquatic systems. Routledge. Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and bioenergy, 38, 68-94. Briggs, C., Breiner, J. M., & Graham, R. C. (2012). Physical and chemical properties of Pinus ponderosa charcoal: implications for soil modification. Soil Science, 177(4), 263-268. Brix, H., & Arias, C. A. (2005). Danish guidelines for small-scale constructed wetland systems for onsite treatment of domestic sewage. Water Science and Technology, 51(9), 1-9. Brookes, P., Tate, K., & Jenkinson, D. (1983). The adenylate energy charge of the soil microbial biomass. Soil Biology and Biochemistry, 15(1), 9-16. Cannavo, P., Recous, S., Valé, M., Bresch, S., Paillat, L., Benbrahim, M., & Guénon, R. (2022). Organic fertilization of growing media: response of N mineralization to temperature and moisture. Horticulturae, 8(2), 152. Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological applications, 8(3), 559-568. Carver, R. E., Nelson, N. O., Roozeboom, K. L., Kluitenberg, G. J., Tomlinson, P. J., Kang, Q., & Abel, D. S. (2022). Cover crop and phosphorus fertilizer management impacts on surface water quality from a no-till corn-soybean rotation. Journal of Environmental Management, 301, 113818. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.113818 Cha, J. S., Park, S. H., Jung, S.-C., Ryu, C., Jeon, J.-K., Shin, M.-C., & Park, Y.-K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1-15. Chandran, V., shaji, H., & Mathew, L. (2021). Chapter 5 - Methods for controlled release of fertilizers. In F. B. Lewu, T. Volova, S. Thomas, & R. K.R (Eds.), Controlled Release Fertilizers for Sustainable Agriculture (pp. 79-93). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-819555-0.00005-4 Change, I. P. o. C. (2021). Climate Change 2021: The Physical Science Basis (Contribution of Working Group I to the Sixth Assessment Report of the IPCC, Issue. IPCC. https://www.ipcc.ch/report/ar6/wg1/ Chen, B., Zhang, N., & Ye, X. (2012). Overview on progress of researches on artificial ecological floating island. Proceedings of the 2012 Second International Conference on Electric Technology and Civil Engineering, Chen, L., Wang, G., Zhong, Y., & Shen, Z. (2016). Evaluating the impacts of soil data on hydrological and nonpoint source pollution prediction. Science of The Total Environment, 563-564, 19-28. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.04.107 Chen, Z., Sawyer, A. H., Lee, J., & Costa, O. S. (2025). Effects of polyculture on nutrient removal from residential raw sewage using field-scale artificial floating islands. Journal of Environmental Management, 377, 124562. https://doi.org/https://doi.org/10.1016/j.jenvman.2025.124562 Chun, Y., Lee, S. K., Yoo, H. Y., & Kim, S. W. (2021). Recent advancements in biochar production according to feedstock classification, pyrolysis conditions, and applications: A review. BioResources, 16(3), 6512-6547. https://doi.org/https://doi.org/10.15376/biores.16.3.Chun Clausen, J., Jokela, W., Potter Iii, F., & Williams, J. (1996). Paired watershed comparison of tillage effects on runoff, sediment, and pesticide losses (0047-2425). Cooper, P. F., Job, G., Green, M., & Shutes, R. (1996). Reed beds and constructed wetlands for wastewater treatment. Water Research Centre Swindon. Cotrufo, M. F., & Lavallee, J. M. (2022). Chapter One - Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 172, pp. 1-66). Academic Press. https://doi.org/https://doi.org/10.1016/bs.agron.2021.11.002 Dai, L., Tan, F., Li, H., Zhu, N., He, M., Zhu, Q., Hu, G., Wang, L., & Zhao, J. (2017). Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal. Journal of Environmental Management, 198, 70-74. DBT, C. (2019). Manual on constructed wetland as an alternative technology for sewage management in India. Department of Bio Technology (DBT) New Delhi. Delgado, A., Quemada, M., & Villalobos, F. J. (2016). Fertilizers. In F. J. Villalobos & E. Fereres (Eds.), Principles of Agronomy for Sustainable Agriculture (pp. 321-339). Springer International Publishing. https://doi.org/10.1007/978-3-319-46116-8_23 Deng, X., Teng, F., Chen, M., Du, Z., Wang, B., Li, R., & Wang, P. (2024). Exploring negative emission potential of biochar to achieve carbon neutrality goal in China. Nature Communications, 15(1), 1085. https://doi.org/10.1038/s41467-024-45314-y Dhankhar, N., & Kumar, J. (2023). Impact of increasing pesticides and fertilizers on human health: A review. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2023.03.766 Díaz, F. J., Anthony, T., & Dahlgren, R. A. (2012). Agricultural pollutant removal by constructed wetlands: Implications for water management and design. Agricultural Water Management, 104, 171-183. Ding, Y., Dong, F., Zhao, J., Peng, W., Chen, Q., & Ma, B. (2020). Non-point source pollution simulation and best management practices analysis based on control units in Northern China. International Journal of Environmental Research and Public Health, 17(3), 868. Dollinger, J., Dagès, C., Bailly, J.-S., Lagacherie, P., & Voltz, M. (2015). Managing ditches for agroecological engineering of landscape. A review. Agronomy for Sustainable Development, 35(3), 999-1020. https://doi.org/10.1007/s13593-015-0301-6 Dong, Y., Wiliński, P. R., Dzakpasu, M., & Scholz, M. (2011). Impact of hydraulic loading rate and season on water contaminant reductions within integrated constructed wetlands. Wetlands, 31, 499-509. Downie, A., Crosky, A., & Munroe, P. (2012). Physical properties of biochar. In Biochar for environmental management (pp. 45-64). Routledge. E, P., Sarkar, S., & Maji, P. K. (2024). A review on slow-release fertilizer: Nutrient release mechanism and agricultural sustainability. Journal of Environmental Chemical Engineering, 12(4), 113211. https://doi.org/https://doi.org/10.1016/j.jece.2024.113211 El-Refaie, G. (2010). Temperature impact on operation and performance of Lake Manzala Engineered Wetland, Egypt. Ain Shams Engineering Journal, 1(1), 1-9. Fernandes, H., Jungles, M. K., Hoffmann, H., Antonio, R. V., & Costa, R. H. (2013). Full-scale sequencing batch reactor (SBR) for domestic wastewater: performance and diversity of microbial communities. Bioresource Technology, 132, 262-268. Fortune, S., Lu, J., Addiscott, T. M., & Brookes, P. C. (2005). Assessment of phosphorus leaching losses from arable land. Plant and Soil, 269(1), 99-108. https://doi.org/10.1007/s11104-004-1659-4 Fu, J., Wang, C., Chen, X., Huang, Z., & Chen, D. (2018). Classification research and types of slow controlled release fertilizers (SRFs) used-a review. Communications in soil science and plant analysis, 49(17), 2219-2230. Garcia, J., Rousseau, D. P., Morato, J., Lesage, E., Matamoros, V., & Bayona, J. M. (2010). Contaminant removal processes in subsurface-flow constructed wetlands: a review. Critical Reviews in Environmental Science and Technology, 40(7), 561-661. Gentry, L. E., David, M. B., Below, F. E., Royer, T. V., & McIsaac, G. F. (2009). Nitrogen mass balance of a tile‐drained agricultural watershed in east‐central Illinois. Journal of environmental quality, 38(5), 1841-1847. Giordano, M., Petropoulos, S. A., & Rouphael, Y. (2021). The fate of nitrogen from soil to plants: Influence of agricultural practices in modern agriculture. Agriculture, 11(10), 944. Goulding, K., Murrell, T. S., Mikkelsen, R. L., Rosolem, C., Johnston, J., Wang, H., & Alfaro, M. A. (2021). Outputs: potassium losses from agricultural systems. Improving potassium recommendations for agricultural crops, 75. Gregoire, C., Elsaesser, D., Huguenot, D., Lange, J., Lebeau, T., Merli, A., Mose, R., Passeport, E., Payraudeau, S., Schütz, T., Schulz, R., Tapia-Padilla, G., Tournebize, J., Trevisan, M., & Wanko, A. (2009). Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems. Environmental Chemistry Letters, 7(3), 205-231. https://doi.org/10.1007/s10311-008-0167-9 Groenendyk, D. G., Ferre, T. P., Thorp, K. R., & Rice, A. K. (2015). Hydrologic-process-based soil texture classifications for improved visualization of landscape function. PloS one, 10(6), e0131299. Gu, Y., Wei, Y., Xiang, Q., Zhao, K., Yu, X., Zhang, X., Li, C., Chen, Q., Xiao, H., & Zhang, X. (2019). C: N ratio shaped both taxonomic and functional structure of microbial communities in livestock and poultry breeding wastewater treatment reactor. Science of The Total Environment, 651, 625-633. Gu, Y.-J., Han, C.-L., Kong, M., Shi, X.-Y., Zdruli, P., & Li, F.-M. (2018). Plastic film mulch promotes high alfalfa production with phosphorus-saving and low risk of soil nitrogen loss. Field Crops Research, 229, 44-54. https://doi.org/https://doi.org/10.1016/j.fcr.2018.09.011 Guo, H., Wu, Z., Li, J., Lu, Z., Luan, S., Hu, S., Liu, X., Li, N., & Han, X. (2025). A nine-year study: continuous application of biochar achieves efficient potassium supply by modifying soil clay mineral composition and its potassium adsorption sites. Journal of Soils and Sediments, 1-17. Guo, J., & Lua, A. C. (1998). Characterization of chars pyrolyzed from oil palm stones for the preparation of activated carbons. Journal of Analytical and applied Pyrolysis, 46(2), 113-125. Guo, W., Fu, Y., Ruan, B., Ge, H., & Zhao, N. (2014). Agricultural non-point source pollution in the Yongding River Basin. Ecological Indicators, 36, 254-261. https://doi.org/10.1016/j.ecolind.2013.07.012 Guo, X., Dong, H., Yang, C., Zhang, Q., Liao, C., Zha, F., & Gao, L. (2016). Application of goethite modified biochar for tylosin removal from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 502, 81-88. Harindintwali, J. D., Zhou, J., Muhoza, B., Wang, F., Herzberger, A., & Yu, X. (2021). Integrated eco-strategies towards sustainable carbon and nitrogen cycling in agriculture. Journal of Environmental Management, 293, 112856. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.112856 Hassan, I., Chowdhury, S. R., Prihartato, P. K., & Razzak, S. A. (2021). Wastewater treatment using constructed wetland: Current trends and future potential. Processes, 9(11), 1917. Heinze, S., Raupp, J., & Joergensen, R. G. (2010). Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture. Plant and Soil, 328(1), 203-215. https://doi.org/10.1007/s11104-009-0102-2 Holland, J. M. (2004). The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agriculture, Ecosystems & Environment, 103(1), 1-25. Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., Kirkham, M. B., Chowdhury, S., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2(4), 379-420. https://doi.org/10.1007/s42773-020-00065-z Hou, J., Pugazhendhi, A., Sindhu, R., Vinayak, V., Thanh, N. C., Brindhadevi, K., Lan Chi, N. T., & Yuan, D. (2022). An assessment of biochar as a potential amendment to enhance plant nutrient uptake. Environmental Research, 214, 113909. https://doi.org/https://doi.org/10.1016/j.envres.2022.113909 Hu, Y., Zhao, Y., Zhao, X., & Kumar, J. L. (2012). High rate nitrogen removal in an alum sludge-based intermittent aeration constructed wetland. Environmental Science & Technology, 46(8), 4583-4590. Huang, Y.-Z., Lee, Y.-Y., & Fan, C. (2025). Innovative fertilization strategies for in-situ pollution control and carbon negativity enhancement in agriculture. Agricultural Water Management, 307, 109270. https://doi.org/https://doi.org/10.1016/j.agwat.2024.109270 Ippolito, J., Berry, C., Strawn, D., Novak, J., Levine, J., & Harley, A. (2017). Biochars reduce mine land soil bioavailable metals. Journal of environmental quality, 46(2), 411-419. Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizabal, T., Cayuela, M. L., Sigua, G., Novak, J., Spokas, K., & Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2(4), 421-438. https://doi.org/10.1007/s42773-020-00067-x Irfan, S. A., Razali, R., KuShaari, K., Mansor, N., Azeem, B., & Versypt, A. N. F. (2018). A review of mathematical modeling and simulation of controlled-release fertilizers. Journal of Controlled Release, 271, 45-54. Jariwala, H., Santos, R. M., Lauzon, J. D., Dutta, A., & Wai Chiang, Y. (2022). Controlled release fertilizers (CRFs) for climate-smart agriculture practices: a comprehensive review on release mechanism, materials, methods of preparation, and effect on environmental parameters. Environmental Science and Pollution Research, 29(36), 53967-53995. https://doi.org/10.1007/s11356-022-20890-y Ji, Z., Tang, W., & Pei, Y. (2022). Constructed wetland substrates: A review on development, function mechanisms, and application in contaminants removal. Chemosphere, 286, 131564. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.131564 Jiang, J., & Fu, Y. (2013). Prospect for physical type slow/controlled release fertilizers. World Journal of Forestry, 2, 35-39. Jiang, T., Wang, M., Zhang, W., Zhu, C., & Wang, F. (2024). A comprehensive analysis of agricultural non-point source pollution in China: Current status, risk assessment and management strategies. Sustainability, 16(6), 2515. Jing, S.-R., Lin, Y.-F., Lee, D.-Y., & Wang, T.-W. (2001). Nutrient removal from polluted river water by using constructed wetlands. Bioresource Technology, 76(2), 131-135. https://doi.org/https://doi.org/10.1016/S0960-8524(00)00100-0 Joseph, S., Cowie, A. L., Van Zwieten, L., Bolan, N., Budai, A., Buss, W., Cayuela, M. L., Graber, E. R., Ippolito, J. A., & Kuzyakov, Y. (2021). How biochar works, and when it doesn't: A review of mechanisms controlling soil and plant responses to biochar. Gcb Bioenergy, 13(11), 1731-1764. Kadlec, R. H. (2016). Large constructed wetlands for phosphorus control: A review. Water, 8(6), 243. Kamilya, T., Majumder, A., Yadav, M. K., Ayoob, S., Tripathy, S., & Gupta, A. K. (2022). Nutrient pollution and its remediation using constructed wetlands: Insights into removal and recovery mechanisms, modifications and sustainable aspects. Journal of Environmental Chemical Engineering, 10(3), 107444. https://doi.org/https://doi.org/10.1016/j.jece.2022.107444 Kim, K. H., Kim, J.-Y., Cho, T.-S., & Choi, J. W. (2012). Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresource Technology, 118, 158-162. Kinney, T., Masiello, C., Dugan, B., Hockaday, W., Dean, M., Zygourakis, K., & Barnes, R. (2012). Hydrologic properties of biochars produced at different temperatures. Biomass and bioenergy, 41, 34-43. Korsaeth, A., & Eltun, R. (2000). Nitrogen mass balances in conventional, integrated and ecological cropping systems and the relationship between balance calculations and nitrogen runoff in an 8-year field experiment in Norway. Agriculture, Ecosystems & Environment, 79(2), 199-214. https://doi.org/https://doi.org/10.1016/S0167-8809(00)00129-8 Kurniawan, T. A., Othman, M. H. D., Liang, X., Goh, H. H., Gikas, P., Chong, K.-K., & Chew, K. W. (2023). Challenges and opportunities for biochar to promote circular economy and carbon neutrality. Journal of Environmental Management, 332, 117429. Laanbroek, H. (1990). Bacterial cycling of minerals that affect plant growth in waterlogged soils: a review. Aquatic Botany, 38(1), 109-125. Lawrencia, D., Wong, S. K., Low, D. Y. S., Goh, B. H., Goh, J. K., Ruktanonchai, U. R., Soottitantawat, A., Lee, L. H., & Tang, S. Y. (2021). Controlled release fertilizers: A review on coating materials and mechanism of release. Plants, 10(2), 238. Lee, C. g., Fletcher, T. D., & Sun, G. (2009). Nitrogen removal in constructed wetland systems. Engineering in life sciences, 9(1), 11-22. Lehmann, J., Cowie, A., Masiello, C. A., Kammann, C., Woolf, D., Amonette, J. E., Cayuela, M. L., Camps-Arbestain, M., & Whitman, T. (2021). Biochar in climate change mitigation. Nature Geoscience, 14(12), 883-892. https://doi.org/10.1038/s41561-021-00852-8 Li, S., & Tasnady, D. (2023). Biochar for soil carbon sequestration: Current knowledge, mechanisms, and future perspectives. C, 9(3), 67. Li, T., Wang, S., Zhao, L., Yuan, X., Gao, Y., Fu, D., Liu, C. e., & Duan, C. (2024). Improvement of soil nutrient cycling by dominant plants in natural restoration of heavy metal polluted areas. Environmental Research, 263, 120030. https://doi.org/https://doi.org/10.1016/j.envres.2024.120030 Li, T., Wang, Z., Wang, C., Huang, J., Feng, Y., Shen, W., Zhou, M., & Yang, L. (2022). Ammonia volatilization mitigation in crop farming: A review of fertilizer amendment technologies and mechanisms. Chemosphere, 303, 134944. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.134944 Liang, K., He, X., He, B., Guo, X., & Li, T. (2022). Runoff-associated nitrogen and phosphorus losses under natural rainfall events in purple soil area: the role of land disturbance and slope length. Water Supply, 22(2), 1995-2007. Lin, B., Qi, F., An, X., Zhao, C., Gao, Y., Liu, Y., Zhong, Y., Qiu, B., Wang, Z., Hu, Q., Li, C., & Sun, D. (2024). Review: The application of source analysis methods in tracing urban non-point source pollution: categorization, hotspots, and future prospects. Environ Sci Pollut Res Int, 31(16), 23482-23504. https://doi.org/10.1007/s11356-024-32602-9 Liu, H., Hu, Z., Zhang, J., Ngo, H. H., Guo, W., Liang, S., Fan, J., Lu, S., & Wu, H. (2016). Optimizations on supply and distribution of dissolved oxygen in constructed wetlands: A review. Bioresource Technology, 214, 797-805. https://doi.org/https://doi.org/10.1016/j.biortech.2016.05.003 Liu, R., Zhang, P., Wang, X., Chen, Y., & Shen, Z. (2013). Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed. Agricultural Water Management, 117, 9-18. Luo, M., Liu, X., Legesse, N., Liu, Y., Wu, S., Han, F. X., & Ma, Y. (2023). Evaluation of Agricultural Non-point Source Pollution: a Review. Water, Air, & Soil Pollution, 234(10). https://doi.org/10.1007/s11270-023-06686-x Ma, Y., Dai, W., Zheng, P., Zheng, X., He, S., & Zhao, M. (2020). Iron scraps enhance simultaneous nitrogen and phosphorus removal in subsurface flow constructed wetlands. Journal of Hazardous Materials, 395, 122612. Ma, Z., Luo, M., Wang, Q., Li, C., Guo, L., Wu, S., Kazery, J., Yan, Y., Zhai, L., Liu, H., Ma, Y., & Han, F. X. (2022). Long-Term Agronomic Practices in Reducing Nitrogen and Phosphorus Loss from Intensive Croplands. ACS Earth and Space Chemistry, 6(6), 1627-1639. https://doi.org/10.1021/acsearthspacechem.2c00097 Malyan, S. K., Yadav, S., Sonkar, V., Goyal, V., Singh, O., & Singh, R. (2021). Mechanistic understanding of the pollutant removal and transformation processes in the constructed wetland system. Water Environment Research, 93(10), 1882-1909. Marcińczyk, M., & Oleszczuk, P. (2022). Biochar and engineered biochar as slow- and controlled-release fertilizers. Journal of Cleaner Production, 339, 130685. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.130685 Mazahar, S., & Umar, S. (2022). Soil Potassium Availability and Role of Microorganisms in Influencing Potassium Availability to Plants. In N. Iqbal & S. Umar (Eds.), Role of Potassium in Abiotic Stress (pp. 77-87). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-4461-0_4 McCauley, A., Jones, C., & Jacobsen, J. (2009). Soil pH and organic matter. Nutrient management module, 8(2), 1-12. Menezes-Blackburn, D., Giles, C., Darch, T., George, T. S., Blackwell, M., Stutter, M., Shand, C., Lumsdon, D., Cooper, P., Wendler, R., Brown, L., Almeida, D. S., Wearing, C., Zhang, H., & Haygarth, P. M. (2018). Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review. Plant and Soil, 427(1), 5-16. https://doi.org/10.1007/s11104-017-3362-2 Mesa, A. C., & Spokas, K. A. (2011). Impacts of biochar (black carbon) additions on the sorption and efficacy of herbicides. Herbicides and environment, 13, 315-340. Moeder, M., Carranza-Diaz, O., López-Angulo, G., Vega-Aviña, R., Chávez-Durán, F. A., Jomaa, S., Winkler, U., Schrader, S., Reemtsma, T., & Delgado-Vargas, F. (2017). Potential of vegetated ditches to manage organic pollutants derived from agricultural runoff and domestic sewage: A case study in Sinaloa (Mexico). Science of The Total Environment, 598, 1106-1115. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.04.149 Moradi, S., Babapoor, A., Ghanbarlou, S., Kalashgarani, M. Y., Salahshoori, I., & Seyfaee, A. (2024). Toward a new generation of fertilizers with the approach of controlled-release fertilizers: a review. Journal of Coatings Technology and Research, 21(1), 31-54. https://doi.org/10.1007/s11998-023-00817-z Morgan, K. T., Cushman, K. E., & Sato, S. (2009). Release Mechanisms for Slow- and Controlled-release Fertilizers and Strategies for Their Use in Vegetable Production. HortTechnology, 19(1), 10-12. https://doi.org/10.21273/HORTTECH.19.1.10 Morrison, G., Revitt, D., Ellis, J., Svensson, G., & Balmer, P. (1984). Variations of dissolved and suspended solid heavy metals through an urban hydrograph. Environmental Technology, 5(1-11), 313-318. Muduli, M., Choudharya, M., & Ray, S. (2024). A review on constructed wetlands for environmental and emerging contaminants removal from wastewater: traditional and recent developments. Environment, Development and Sustainability, 26(12), 30181-30220. https://doi.org/10.1007/s10668-023-04190-0 Mustafa, G., Hayat, N., & Alotaibi, B. A. (2023). Chapter fifteen - How and why to prevent over fertilization to get sustainable crop production. In T. Aftab & K. R. Hakeem (Eds.), Sustainable Plant Nutrition (pp. 339-354). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-443-18675-2.00019-5 Nadarajan, S., & Sukumaran, S. (2021). Chapter 12 - Chemistry and toxicology behind chemical fertilizers. In F. B. Lewu, T. Volova, S. Thomas, & R. K.R (Eds.), Controlled Release Fertilizers for Sustainable Agriculture (pp. 195-229). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-819555-0.00012-1 Olaniyan, F. T., Alori, E. T., Adekiya, A. O., Ayorinde, B. B., Daramola, F. Y., Osemwegie, O. O., & Babalola, O. O. (2022). The use of soil microbial potassium solubilizers in potassium nutrient availability in soil and its dynamics. Annals of Microbiology, 72(1), 45. https://doi.org/10.1186/s13213-022-01701-8 Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B., & Kamili, A. N. (2021). Chemical Fertilizers and Their Impact on Soil Health. In G. H. Dar, R. A. Bhat, M. A. Mehmood, & K. R. Hakeem (Eds.), Microbiota and Biofertilizers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs (pp. 1-20). Springer International Publishing. https://doi.org/10.1007/978-3-030-61010-4_1 Parde, D., Patwa, A., Shukla, A., Vijay, R., Killedar, D. J., & Kumar, R. (2021). A review of constructed wetland on type, treatment and technology of wastewater. Environmental Technology & Innovation, 21, 101261. https://doi.org/https://doi.org/10.1016/j.eti.2020.101261 Paredes, D., Kuschk, P., Mbwette, T., Stange, F., Müller, R., & Köser, H. (2007). New aspects of microbial nitrogen transformations in the context of wastewater treatment–a review. Engineering in life sciences, 7(1), 13-25. Penuelas, J., Coello, F., & Sardans, J. (2023). A better use of fertilizers is needed for global food security and environmental sustainability. Agriculture & Food Security, 12(1), 5. https://doi.org/10.1186/s40066-023-00409-5 Prakash, S., & Verma, J. P. (2016). Global Perspective of Potash for Fertilizer Production. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium Solubilizing Microorganisms for Sustainable Agriculture (pp. 327-331). Springer India. https://doi.org/10.1007/978-81-322-2776-2_23 Qian, C. (2017). Effect of real and simulated traffic on coated fertilizer prill integrity and nitrogen release Auburn University]. Qiao, C., Liu, L., Hu, S., Compton, J. E., Greaver, T. L., & Li, Q. (2015). How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Global change biology, 21(3), 1249-1257. Rajan, M., Shahena, S., Chandran, V., & Mathew, L. (2021). Chapter 3 - Controlled release of fertilizers—concept, reality, and mechanism. In F. B. Lewu, T. Volova, S. Thomas, & R. K.R (Eds.), Controlled Release Fertilizers for Sustainable Agriculture (pp. 41-56). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-819555-0.00003-0 Ramírez-Rodríguez, G. B., Dal Sasso, G., Carmona, F. J., Miguel-Rojas, C., Pérez-de-Luque, A., Masciocchi, N., Guagliardi, A., & Delgado-López, J. M. (2020). Engineering biomimetic calcium phosphate nanoparticles: A green synthesis of slow-release multinutrient (NPK) nanofertilizers. ACS Applied Bio Materials, 3(3), 1344-1353. Randive, K., Raut, T., & Jawadand, S. (2021). An overview of the global fertilizer trends and India’s position in 2020. Mineral Economics, 1-14. Ranjan, R., & Yadav, R. (2019). Targeting nitrogen use efficiency for sustained production of cereal crops. Journal of Plant Nutrition, 42(9), 1086-1113. Rawat, J., Sanwal, P., & Saxena, J. (2016). Potassium and its role in sustainable agriculture. In Potassium solubilizing microorganisms for sustainable agriculture (pp. 235-253). Springer. Reddy, K., Patrick, W., & Broadbent, F. (1984). Nitrogen transformations and loss in flooded soils and sediments. Critical Reviews in Environmental Science and Technology, 13(4), 273-309. Reddy, K. R., Wetzel, R. G., & Kadlec, R. H. (2005). Biogeochemistry of phosphorus in wetlands. Phosphorus: Agriculture and the environment, 46, 263-316. Ritchey, E. L., McGrath, J. M., & Gehring, D. (2015). Determining soil texture by feel. Rossmann, M., de Matos, A. T., Abreu, E. C., e Silva, F. F., & Borges, A. C. (2012). Performance of constructed wetlands in the treatment of aerated coffee processing wastewater: Removal of nutrients and phenolic compounds. Ecological Engineering, 49, 264-269. https://doi.org/https://doi.org/10.1016/j.ecoleng.2012.08.017 Saeed, T., & Sun, G. (2012). A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. Journal of Environmental Management, 112, 429-448. Sánchez-Monedero, M., Aguilar, M. I., Fenoll, R., & Roig, A. (2008). Effect of the aeration system on the levels of airborne microorganisms generated at wastewater treatment plants. Water research, 42(14), 3739-3744. Santhi, C., Srinivasan, R., Arnold, J. G., & Williams, J. R. (2006). A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas. Environmental modelling & software, 21(8), 1141-1157. Schoumans, O., Chardon, W., Bechmann, M., Gascuel-Odoux, C., Hofman, G., Kronvang, B., Rubæk, G. H., Ulén, B., & Dorioz, J.-M. (2014). Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a review. Science of The Total Environment, 468, 1255-1266. Shaji, H., Chandran, V., & Mathew, L. (2021). Chapter 13 - Organic fertilizers as a route to controlled release of nutrients. In F. B. Lewu, T. Volova, S. Thomas, & R. K.R (Eds.), Controlled Release Fertilizers for Sustainable Agriculture (pp. 231-245). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-819555-0.00013-3 Sharma, R., Sindhu, S. S., & Glick, B. R. (2024). Potassium Solubilizing Microorganisms as Potential Biofertilizer: A Sustainable Climate-Resilient Approach to Improve Soil Fertility and Crop Production in Agriculture. Journal of Plant Growth Regulation, 43(8), 2503-2535. https://doi.org/10.1007/s00344-024-11297-9 Shaviv, A. (2001). Advances in controlled-release fertilizers. In Advances in Agronomy (Vol. 71, pp. 1-49). Academic Press. https://doi.org/https://doi.org/10.1016/S0065-2113(01)71011-5 Sheshukov, A. Y., Douglas-Mankin, K. R., Sinnathamby, S., & Daggupati, P. (2016). Pasture BMP effectiveness using an HRU-based subarea approach in SWAT. Journal of Environmental Management, 166, 276-284. Singh, T. B., Ali, A., Prasad, M., Yadav, A., Shrivastav, P., Goyal, D., & Dantu, P. K. (2020). Role of Organic Fertilizers in Improving Soil Fertility. In M. Naeem, A. A. Ansari, & S. S. Gill (Eds.), Contaminants in Agriculture: Sources, Impacts and Management (pp. 61-77). Springer International Publishing. https://doi.org/10.1007/978-3-030-41552-5_3 Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). Chapter 2 - A Review of Biochar and Its Use and Function in Soil. In Advances in Agronomy (Vol. 105, pp. 47-82). Academic Press. https://doi.org/https://doi.org/10.1016/S0065-2113(10)05002-9 Srinivas, R., Singh, A. P., Dhadse, K., & Garg, C. (2020). An evidence based integrated watershed modelling system to assess the impact of non-point source pollution in the riverine ecosystem. Journal of Cleaner Production, 246, 118963. Srivastava, P., Edwards, D. R., Daniel, T. C., Moore Jr, P. A., & Costello, T. A. (1996). Performance of vegetative filter strips with varying pollutant source and filter strip lengths. Transactions of the ASAE, 39(6), 2231-2239. Stefanakis, A. I. (2019). The role of constructed wetlands as green infrastructure for sustainable urban water management. Sustainability, 11(24), 6981. Stein, L. Y., & Klotz, M. G. (2016). The nitrogen cycle. Current Biology, 26(3), R94-R98. https://doi.org/10.1016/j.cub.2015.12.021 Sun, B., Zhang, L., Yang, L., Zhang, F., Norse, D., & Zhu, Z. (2012). Agricultural Non-Point Source Pollution in China: Causes and Mitigation Measures. Ambio, 41(4), 370-379. https://doi.org/10.1007/s13280-012-0249-6 Swarnakar, A. K., Bajpai, S., & Ahmad, I. (2022). Various types of constructed wetland for wastewater treatment-a review. IOP Conference Series: Earth and Environmental Science, Tang, J., Zhu, W., Kookana, R., & Katayama, A. (2013). Characteristics of biochar and its application in remediation of contaminated soil. Journal of Bioscience and Bioengineering, 116(6), 653-659. https://doi.org/https://doi.org/10.1016/j.jbiosc.2013.05.035 Tate, K. (1984). The biological transformation of P in soil. Plant and Soil, 76, 245-256. Unz, R. F., & Shuttleworth, K. L. (1996). Microbial mobilization and immobilization of heavy metals. Current Opinion in Biotechnology, 7(3), 307-310. Van de Graaf, A. A., Mulder, A., De Bruijn, P., Jetten, M., Robertson, L. A., & Kuenen, J. G. (1995). Anaerobic oxidation of ammonium is a biologically mediated process. Applied and environmental microbiology, 61(4), 1246-1251. Vymazal, J. (1998). Removal mechanisms and types of constructed wetlands. Constructed wetlands for wastewater treatment in Europe, 17-66. Vymazal, J. (2001). Types of constructed wetlands for wastewater treatment: their potential for nutrient removal. Transformations of nutrients in natural and constructed wetlands, 1-93. Vymazal, J. (2005). Constructed wetlands with horizontal sub-surface flow and hybrid systems for wastewater treatment. Ecol. Eng, 25, 478-490. Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of The Total Environment, 380(1), 48-65. https://doi.org/https://doi.org/10.1016/j.scitotenv.2006.09.014 Vymazal, J. (2010). Constructed wetlands for wastewater treatment. Water, 2(3), 530-549. Vymazal, J. (2011a). Constructed Wetlands for Wastewater Treatment: Five Decades of Experience. Environmental Science & Technology, 45(1), 61-69. https://doi.org/10.1021/es101403q Vymazal, J. (2011b). Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia, 674(1), 133-156. Vymazal, J., & Březinová, T. D. (2018). Removal of nutrients, organics and suspended solids in vegetated agricultural drainage ditch. Ecological Engineering, 118, 97-103. https://doi.org/https://doi.org/10.1016/j.ecoleng.2018.04.013 Vymazal, J., & Kröpfelová, L. (2008). Wastewater treatment in constructed wetlands with horizontal sub-surface flow (Vol. 14). Springer science & business media. Waly, M. M., Ahmed, T., Abunada, Z., Mickovski, S. B., & Thomson, C. (2022). Constructed wetland for sustainable and low-cost wastewater treatment. Land, 11(9), 1388. Wang, H., He, P., Shen, C., & Wu, Z. (2019). Effect of irrigation amount and fertilization on agriculture non-point source pollution in the paddy field. Environ Sci Pollut Res Int, 26(10), 10363-10373. https://doi.org/10.1007/s11356-019-04375-z Wang, J., Long, Y., Yu, G., Wang, G., Zhou, Z., Li, P., Zhang, Y., Yang, K., & Wang, S. (2022). A review on microorganisms in constructed wetlands for typical pollutant removal: species, function, and diversity. Frontiers in microbiology, 13, 845725. Wang, J., & Wang, S. (2019). Preparation, modification and environmental application of biochar: A review. Journal of Cleaner Production, 227, 1002-1022. Wang, M., Jiang, T., Mao, Y., Wang, F., Yu, J., & Zhu, C. (2023). Current Situation of Agricultural Non-Point Source Pollution and Its Control. Water, Air, & Soil Pollution, 234(7), 471. https://doi.org/10.1007/s11270-023-06462-x Wang, M., Zhang, D. Q., Dong, J. W., & Tan, S. K. (2017). Constructed wetlands for wastewater treatment in cold climate — A review. Journal of Environmental Sciences, 57, 293-311. https://doi.org/https://doi.org/10.1016/j.jes.2016.12.019 Wang, R., Zhao, X., Wang, T., Guo, Z., Hu, Z., Zhang, J., Wu, S., & Wu, H. (2022). Can we use mine waste as substrate in constructed wetlands to intensify nutrient removal? A critical assessment of key removal mechanisms and long-term environmental risks. Water research, 210, 118009. Wang, S., Wang, Y., Wang, Y., & Wang, Z. (2022). Assessment of influencing factors on non-point source pollution critical source areas in an agricultural watershed. Ecological Indicators, 141, 109084. https://doi.org/https://doi.org/10.1016/j.ecolind.2022.109084 Wang, Y., Liu, G., Zhao, Z., Wu, C., & Yu, B. (2021). Using soil erosion to locate nonpoint source pollution risks in coastal zones: A case study in the Yellow River Delta, China. Environmental Pollution, 283, 117117. https://doi.org/https://doi.org/10.1016/j.envpol.2021.117117 Wang, Z.-H., & Li, S.-X. (2019). Chapter Three - Nitrate N loss by leaching and surface runoff in agricultural land: A global issue (a review). In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 156, pp. 159-217). Academic Press. https://doi.org/https://doi.org/10.1016/bs.agron.2019.01.007 Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240-261. https://doi.org/https://doi.org/10.1016/j.fuel.2017.12.054 Weerakoon, G. M. P. R., Jinadasa, K. B. S. N., Herath, G. B. B., Mowjood, M. I. M., & van Bruggen, J. J. A. (2013). Impact of the hydraulic loading rate on pollutants removal in tropical horizontal subsurface flow constructed wetlands. Ecological Engineering, 61, 154-160. https://doi.org/https://doi.org/10.1016/j.ecoleng.2013.09.016 Weil, R. R., Brady, N. C., & Weil, R. R. (2017). The nature and properties of soils (Vol. 1104). Pearson London, UK. Wen-Ling, Z., Li-Hua, C., Cui-Fen, L., & Xiao-Dan, T. (2011). Kinetic adsorption of ammonium nitrogen by substrate materials for constructed wetlands. Pedosphere, 21(4), 454-463. Weng, L., Temminghoff, E. J., Lofts, S., Tipping, E., & Van Riemsdijk, W. H. (2002). Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environmental Science & Technology, 36(22), 4804-4810. Weng, Z. H., & Cowie, A. L. (2025). Estimates vary but credible evidence points to gigaton-scale climate change mitigation potential of biochar. Communications Earth & Environment, 6(1), 259. https://doi.org/10.1038/s43247-025-02228-x Wu, H., Wang, R., Yan, P., Wu, S., Chen, Z., Zhao, Y., Cheng, C., Hu, Z., Zhuang, L., Guo, Z., Xie, H., & Zhang, J. (2023). Constructed wetlands for pollution control. Nature Reviews Earth & Environment, 4(4), 218-234. https://doi.org/10.1038/s43017-023-00395-z Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., Fan, J., & Liu, H. (2015). A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresource Technology, 175, 594-601. Wu, Y., Hu, Z., Yang, L., Graham, B., & Kerr, P. G. (2011). The removal of nutrients from non-point source wastewater by a hybrid bioreactor. Bioresource Technology, 102(3), 2419-2426. https://doi.org/https://doi.org/10.1016/j.biortech.2010.10.113 Xia, Y., Zhang, M., Tsang, D. C. W., Geng, N., Lu, D., Zhu, L., Igalavithana, A. D., Dissanayake, P. D., Rinklebe, J., Yang, X., & Ok, Y. S. (2020). Recent advances in control technologies for non-point source pollution with nitrogen and phosphorous from agricultural runoff: current practices and future prospects. Applied Biological Chemistry, 63(1), 8. https://doi.org/10.1186/s13765-020-0493-6 Xu, H., Tan, X., Liang, J., Cui, Y., & Gao, Q. (2022). Impact of Agricultural Non-Point Source Pollution on River Water Quality: Evidence From China. Frontiers in Ecology and Evolution, 10. https://doi.org/10.3389/fevo.2022.858822 Xu, L., Jiang, J., Lu, M., & Du, J. (2022). Spatial-temporal evolution characteristics of agricultural intensive management and its influence on agricultural non-point source pollution in China. Sustainability, 15(1), 371. Xu, N., Tan, G., Wang, H., & Gai, X. (2016). Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. European journal of soil biology, 74, 1-8. Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788. Yang, J., Liang, J., Yang, G., Feng, Y., Ren, G., Ren, C., Han, X., & Wang, X. (2020). Characteristics of non-point source pollution under different land use types. Sustainability, 12(5), 2012. Yao, Y., Zhang, M., Tian, Y., Zhao, M., Zhang, B., Zeng, K., Zhao, M., & Yin, B. (2018). Urea deep placement in combination with Azolla for reducing nitrogen loss and improving fertilizer nitrogen recovery in rice field. Field Crops Research, 218, 141-149. https://doi.org/https://doi.org/10.1016/j.fcr.2018.01.015 Ye, R. W., Averill, B. A., & Tiedje, J. M. (1994). Denitrification: production and consumption of nitric oxide. Applied and environmental microbiology, 60(4), 1053-1058. Yi, X., Lin, D., Li, J., Zeng, J., Wang, D., & Yang, F. (2021). Ecological treatment technology for agricultural non-point source pollution in remote rural areas of China. Environmental Science and Pollution Research, 28(30), 40075-40087. https://doi.org/10.1007/s11356-020-08587-6 Yin, X., Zhang, J., Hu, Z., Xie, H., Guo, W., Wang, Q., Ngo, H. H., Liang, S., Lu, S., & Wu, W. (2016). Effect of photosynthetically elevated pH on performance of surface flow-constructed wetland planted with Phragmites australis. Environmental Science and Pollution Research, 23(15), 15524-15531. https://doi.org/10.1007/s11356-016-6730-1 Zhang, C., Liu, L., Zhao, M., Rong, H., & Xu, Y. (2018). The environmental characteristics and applications of biochar. Environmental Science and Pollution Research, 25(22), 21525-21534. https://doi.org/10.1007/s11356-018-2521-1 Zhang, N., Lu, D., Kan, P., Yangyao, J., Yao, Z., Zhu, D. Z., Gan, H., & Zhu, B. (2022). Impact analysis of hydraulic loading rate on constructed wetland: insight into the response of bulk substrate and root-associated microbiota. Water research, 216, 118337. Zhao, Y. J., Liu, B., Zhang, W. G., Ouyang, Y., & An, S. Q. (2010). Performance of pilot-scale vertical-flow constructed wetlands in responding to variation in influent C/N ratios of simulated urban sewage. Bioresource Technology, 101(6), 1693-1700. Zheng, X., Xu, W., Dong, J., Yang, T., Shangguan, Z., Qu, J., Li, X., & Tan, X. (2022). The effects of biochar and its applications in the microbial remediation of contaminated soil: a review. Journal of Hazardous Materials, 438, 129557. Zhong, S., Chen, F., Xie, D., Shao, J., Yong, Y., Zhang, S., Zhang, Q., Wei, C., Yang, Q., & Ni, J. (2020). A three-dimensional and multi-source integrated technology system for controlling rural non-point source pollution in the Three Gorges Reservoir Area, China. Journal of Cleaner Production, 272, 122579. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122579 Zhu, H., Yan, B., Xu, Y., Guan, J., & Liu, S. (2014). Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios. Ecological Engineering, 63, 58-63. https://doi.org/https://doi.org/10.1016/j.ecoleng.2013.12.018 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99657 | - |
| dc.description.abstract | 近年來,隨著農業集約化發展,提升作物產量,這也伴隨著肥料使用量的增加,進而引發了農業非點源污染的問題,農業非點源污染物主要為肥料中的氮與磷,透過降雨及灌溉所產生之逕流水及入滲水移動至地表水及地下水,造成土壤退化、優養化、水質下降等問題,然而,此類污染形成過程受地形、耕作方式、土壤質地、灌溉方式等農業條件影響,複雜的形成機制導致汙染難以管理及控制。針對農業非點源污染,常見的控制方式根據污染發生前後分為從源頭控制以及末端處理。
本研究選定小白菜作為目標作物,在源頭控制面採用不同肥料、調整施肥量以及生物炭等策略;而在末端處理方面採用人工濕地。第一階段為盆栽試驗,使用三種不同肥料 (化學肥料、緩效性肥料及有機肥料),不同肥料劑量及有無施用生物炭進行比較,並進行暴雨模擬,探討肥料有效性以及營養鹽流失情況。第二階段是中尺度砂箱試驗,根據盆栽試驗結果篩選出表現較佳的幾種組合進行種植面積放大,進行暴雨模擬,暴雨所產生之逕流水進行人工濕地試驗,藉此探討尺度放大後的差異及濕地對於逕流水營養鹽降解效果。第三階段為現地試驗,其試驗條件與砂箱試驗相同,主要目的是探討模擬結果與實際情境之間的差異。 試驗結果顯示在盆栽試驗中,加入生物炭對三種肥料均能減少氮流失。在施肥量100%、75%以及50%情況下,化肥組降低氮流失21-31%、23-25%及11-58%,緩效肥分別為22-25%、17-21%及10-19%,有機肥分別為33-36%、23-43%及21-61%。砂箱試驗中,生物炭結合半量施肥減少的氮流失量優於全量施肥。化肥、緩效肥以及有機肥分別為11%、7%和8%。現地試驗中,半量施肥結合生物炭與傳統全量化肥相比,化肥、緩效肥以及有機肥減少11-19%、23-39%和24-40%氮流失量。濕地系統對氮具有淨化效能,氮平均去除率在25天達61.6%。然而,由於暴雨模擬產生的逕流水量較少,濕地即使有很好的氮去除效果但去除總量仍然很低,因此有效控制農業非點源污染的關鍵在於選擇緩效肥或是有機肥代替化肥、減少施肥量及結合生物炭,未來極端氣候下暴雨頻率與強度增加,導致逕流水量上升,末端處理 (例如人工濕地) 仍可以有效的淨化逕流水中的營養鹽,成為應對極端氣候的重要設施。 | zh_TW |
| dc.description.abstract | In recent years, intensive agricultural practices have been adopted to enhance crop yields for food production. Therefore, increase the use of fertilizer. Agricultural non-point source pollutants are mainly nitrogen and phosphorus from fertilizers, which migrate to surface water and groundwater through runoff water and infiltration water generated by rainfall and irrigation, causing problems such as soil degradation, eutrophication, and decline in water quality. The non-point source pollution control is diverse and difficult to manage because of several factors. For agricultural non-point source pollution, common control methods are divided into source control and endpoint treatment.
In this study, Brassica Chinensis L.(Pak-Choi) was chosen as the model crop. The cultivation experiments were divided into three phases including pot, pilot-scale, and field experiments. In the pot experiment, biochar and three different types of fertilizers (i.e., chemical, slow-release, and organic) at different application rates were applied in this study. Simulated intense rainfalls were operated to evaluate fertilizer efficiency and nutrient loss. Based on the results of the pot experiments, several selected fertilization conditions were applied in the pilot-scale experiment for scaling up. Simulated intense rainfalls were operated and the surface runoff was introduced to the constructed wetland for further nutrient removal. Finally, the field experiment aimed to evaluate the differences between controlled simulations and actual field conditions. In recent years, intensive agricultural practices have been adopted to enhance crop yields for food production. Therefore, increase the use of fertilizer. Agricultural non-point source pollutants are mainly nitrogen and phosphorus from fertilizers, which migrate to surface water and groundwater through runoff water and infiltration water generated by rainfall and irrigation, causing problems such as soil degradation, eutrophication, and decline in water quality. The non-point source pollution control is diverse and difficult to manage because of several factors. For agricultural non-point source pollution, common control methods are divided into source control and endpoint treatment. In this study, Brassica Chinensis L.(Pak-Choi) was chosen as the model crop. For source control, strategies such as the use of different fertilizers, adjustment of fertilizer application rates, and the incorporation of biochar were adopted; for endpoint treatment, constructed wetlands were employed. The cultivation experiments were divided into three phases including pot, pilot-scale, and field experiments. In the pot experiment, biochar and three different types of fertilizers (i.e., chemical, slow-release, and organic) at different application rates were applied in this study. Simulated intense rainfalls were operated to evaluate fertilizer efficiency and nutrient loss. Based on the results of the pot experiments, several selected fertilization conditions were applied in the pilot-scale experiment for scaling up. Simulated intense rainfalls were operated and the surface runoff was introduced to the constructed wetland for further nutrient removal. Finally, the field experiment aimed to evaluate the differences between controlled simulations and actual field conditions. The experimental results indicated that adding biochar reduced nitrogen loss for all fertilizer types in pot experiments. Under 100%, 75%, and 50% fertilization levels, nitrogen loss was reduced by 21-31%, 23-25%, and 11-58% in the chemical fertilizer group; 22-25%, 17-21%, and 10-19% for slow-release fertilizers; 33-36%, 23-43%, and 21-61% for organic fertilizers, respectively. In the pilot-scale experiment, combining biochar with reduced half-rate fertilization showed better nitrogen loss reduction compared to full-rate fertilization, achieving reductions of 11%, 7%, and 8% for chemical, slow-release, and organic fertilizers, respectively. In field trials, compared to the traditional full-rate chemical fertilization method, half-rate fertilization with biochar reduced nitrogen loss by 11-19%, 23-39%, and 24-40% for chemical, slow-release, and organic fertilizers, respectively. Constructed wetland demonstrated nitrogen purification effectiveness, with an average removal rate of 61.6% achieved within 25 days. However, due to lower runoff volumes generated during simulated intense rainfalls, the total nitrogen removal was limited despite the high purification efficiency. In conclusion, effective control of agricultural non-point source pollution hinges on adopting slow-release or organic fertilizers as substitutes for chemical fertilizers, reducing fertilization rates, and applying biochar. As the frequency and intensity of extreme weather events increased, leading to higher runoff flow, endpoint treatment (i.e., constructed wetland) are able to effectively purify nutrients in runoff water, making them a critical facility for mitigating the impacts of extreme climate conditions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:17:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:17:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 iii ABSTRACT v 目次 vii 圖次 x 表次 xii 第一章 前言 1 第二章 文獻回顧 5 2.1 農業非點源污染 5 2.1.1 農業非點源污染定義與特徵 5 2.1.2 農業非點源污染治理方法 7 2.2 肥料釋放和流失機制 11 2.2.1 營養鹽流失機制 11 2.2.2 化學肥料 12 2.2.3 緩效性肥料 14 2.2.4 有機肥料 16 2.3 生物炭 17 2.3.1 生物炭生成與特性 17 2.3.2 生物炭的應用 19 2.4 人工濕地 22 2.4.1 人工濕地分類與特性 22 2.4.2 污染物去除機制 24 2.4.3 影響人工濕地去除污染物效率之因素 26 2.5 氮肥流布與減碳效益 28 第三章 材料與方法 30 3.1 試驗架構 30 3.2 試驗材料 31 3.3 試驗規劃與裝置 36 3.3.1 盆栽試驗 36 3.3.2 砂箱試驗 37 3.3.3 現地試驗 41 3.4 分析方法 43 3.4.1 土壤物理性質 43 3.4.2 土壤基本性質 44 3.4.3 土壤肥力 44 3.4.4 土壤營養鹽 44 3.4.5 水樣基本性質 45 3.4.6 水樣營養鹽 45 3.4.7 作物分析方法 45 3.5 試驗藥品及儀器 46 第四章 結果與討論 49 4.1 試驗土壤基本物理性質 49 4.1.1 土壤質地、總體密度、孔隙度 49 4.1.2 陽離子交換容量、有機碳含量 50 4.2 盆栽試驗 53 4.2.1 土壤基本性質 53 4.2.2 土壤肥力 58 4.2.3 土壤營養鹽 62 4.2.4 水體基本性質 67 4.2.5 水體營養鹽 70 4.2.6 植體生長狀況 75 4.3 砂箱試驗 78 4.3.1 土壤基本性質 78 4.3.2 土壤肥力 80 4.3.3 土壤營養鹽 82 4.3.4 水體基本性質 84 4.3.5 水體營養鹽 91 4.3.6 溼地營養鹽 93 4.3.7 植體生長狀況 95 4.4 現地試驗 96 4.4.1 土壤基本性質 96 4.4.2 土壤肥力及營養鹽 97 4.4.3 水體基本性質 100 4.4.4 水體營養鹽 103 4.4.5 植體生長狀況 107 4.5 氮肥流布與減碳效益 109 第五章 結論 114 REFERENCE 116 APPENDIX. 口試委員審查意見回覆對照表 129 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 最佳管理作業 | zh_TW |
| dc.subject | 農業非點源污染 | zh_TW |
| dc.subject | 生物炭 | zh_TW |
| dc.subject | biochar | en |
| dc.subject | agricultural non-point source pollution | en |
| dc.subject | best management practices | en |
| dc.title | 結合源頭減量及濕地治理控制農業非點源污染 | zh_TW |
| dc.title | Non-point source pollution control in farmland by source-reduction strategies coupled with wetland treatment | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王尚禮;王聖瑋 | zh_TW |
| dc.contributor.oralexamcommittee | Shan-Li Wang;Sheng-Wei Wang | en |
| dc.subject.keyword | 農業非點源污染,最佳管理作業,生物炭, | zh_TW |
| dc.subject.keyword | agricultural non-point source pollution,best management practices,biochar, | en |
| dc.relation.page | 141 | - |
| dc.identifier.doi | 10.6342/NTU202503920 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物環境系統工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 29.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
