Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99656
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪一平zh_TW
dc.contributor.advisorYi-Ping Hungen
dc.contributor.author吳浩平zh_TW
dc.contributor.authorHao-Ping Wuen
dc.date.accessioned2025-09-17T16:16:56Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis,” in ECCV, 2020.
[2] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3D Gaussian Splatting for Real-Time Radiance Field Rendering,” ACM Transactions on Graphics, vol. 42, no. 4, July 2023. [Online]. Available: https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
[3] G. Wu, T. Yi, J. Fang, L. Xie, X. Zhang, W. Wei, W. Liu, Q. Tian, and X. Wang, “4D Gaussian Splatting for Real-Time Dynamic Scene Rendering,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2024, pp. 20310–20320.
[4] P. Wang, Z. Zhang, L. Wang, K. Yao, S. Xie, J. Yu, M. Wu, and L. Xu, “V^3: Viewing Volumetric Videos on Mobiles via Streamable 2D Dynamic Gaussians,” ACM Transactions on Graphics (TOG), vol. 43, no. 6, pp. 1–13, 2024.
[5] S. Lin, A. Ryabtsev, S. Sengupta, B. Curless, S. Seitz, and I. Kemelmacher Shlizerman, “Real-Time High-Resolution Background Matting,” 2020, arXiv preprint arXiv:2012.07810.
[6] Z. Yang, H. Yang, Z. Pan, and L. Zhang, “Real-time Photorealistic Dynamic Scene Representation and Rendering with 4D Gaussian Splatting,” in International Conference on Learning Representations (ICLR), 2024.
[7] Z. Xu, Y. Xu, Z. Yu, S. Peng, J. Sun, H. Bao, and X. Zhou, “Representing Long Volumetric Video with Temporal Gaussian Hierarchy,” ACM Transactions on Graphics, vol. 43, no. 6, November 2024. [Online]. Available: https://zju3dv.github.io/longvolcap
[8] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick, “Segment Anything,” arXiv:2304.02643, 2023.
[9] N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr, R. Rädle, C. Rolland, L. Gustafson, E. Mintun, J. Pan, K. V. Alwala, N. Carion, C.-Y. Wu, R. Girshick, P. Dollár, and C. Feichtenhofer, “SAM 2: Segment Anything in Images and Videos,” arXiv preprint arXiv:2408.00714, 2024. [Online]. Available: https://arxiv.org/abs/2408.00714
[10] Z. Ke, J. Sun, K. Li, Q. Yan, and R. W. Lau, “MODNet: Real-Time Trimap-Free Portrait Matting via Objective Decomposition,” in AAAI, 2022.
[11] S. Lin, L. Yang, I. Saleemi, and S. Sengupta, “Robust High-Resolution Video Matting with Temporal Guidance,” 2021, arXiv preprint arXiv:2108.11515.
[12] J. L. Schönberger and J.-M. Frahm, “Structure-from-Motion Revisited,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[13] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm, “Pixelwise View Selection for Unstructured Multi-View Stereo,” in European Conference on Computer Vision (ECCV), 2016.
[14] Y. Wang, Q. Han, M. Habermann, K. Daniilidis, C. Theobalt, and L. Liu, “NeuS2: Fast Learning of Neural Implicit Surfaces for Multi-view Reconstruction,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023.
[15] RunPod, “RunPod: Serverless GPU Cloud,” 2025. [Online]. Available: https://www.runpod.io/
[16] A. Pranckevičius, “Unity Gaussian Splatting,” 2023. [Online]. Available: https://github.com/aras-p/UnityGaussianSplatting
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99656-
dc.description.abstract隨著虛擬實境(VR)與沉浸式媒體的發展,如何有效重建具真實感的人物動作場景,成為影像處理與互動內容設計中的重要課題。現有動態人像捕捉系統雖可產出高品質結果,卻多仰賴昂貴設備與複雜後製流程,應用門檻高。近年新興之高斯潑灑(Gaussian Splatting)技術,提供實現動態人像重建的低成本替代方案。
本研究提出一套基於四維高斯潑灑(4D Gaussian Splatting)之人物動作重建與處理流程。針對說書演講、太極拳教學等以人物為主之表演,先進行多視角同步拍攝,並以 Background Matting V2 擷取每影格前景,保留人物、椅子與道具等作為重建目標。為解決 V^3 原始方法於 3D 重建階段可能殘留背景色點雲之問題,本研究設計一套基於背景顏色的高斯點過濾機制,以去除非目標高斯點並保留動作連貫性。最終,重建成果整合至 Unity 並部署於 Meta Quest 3 平台,支援使用者於 VR 環境中自由視角觀看表演內容。
zh_TW
dc.description.abstractWith the growth of virtual reality (VR) and immersive media, reconstructing realistic human-centric motion has become an important challenge. Gaussian Splatting offers a lightweight alternative for dynamic reconstruction.
This study proposes a pipeline based on 4D Gaussian Splatting for scenes such as storytelling or Tai Chi. Multi-view videos are processed with Background Matting V2 to extract foreground elements. To address the issue of background-colored splats in the original V^3 method, we introduce a color-based filtering strategy to enhance foreground clarity and motion consistency. Finally, the reconstructed results are integrated into Unity and deployed on Meta Quest 3, enabling free-viewpoint playback in VR.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:16:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:16:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 iii
Abstract iv
Contents v
List of Figures viii
List of Tables ix
Chapter 1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Existing Methods and Challenges . . . . . . . . . . . . . . . . . . . 2
1.3 Research Objectives and Contributions . . . . . . . . . . . . . . . . 2
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Chapter 2 Related Work 4
2.1 Gaussian Splatting and Its Extensions . . . . . . . . . . . . . . . . . 4
2.2 Foreground Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Camera Parameter Estimation . . . . . . . . . . . . . . . . . . . . . 8
Chapter 3 Methods 10
3.1 Overview of the Proposed System Pipeline . . . . . . . . . . . . . . 10
3.2 Camera Calibration and Undistortion . . . . . . . . . . . . . . . . . 12
3.3 Foreground Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Training of Dynamic Gaussian Splatting . . . . . . . . . . . . . . . . 14
3.4.1 Training Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.2 Background Color Contamination and Filtering Mechanism . . . . . 14
3.4.3 Multi-GPU Segment-Based Training Strategy . . . . . . . . . . . . 17
3.5 Unity Integration and Playback System . . . . . . . . . . . . . . . . 18
3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Chapter 4 Experiments 21
4.1 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Scaling Strategy for Foreground Extraction . . . . . . . . . . . . . . 22
4.2.1 Experiment Objective and Setup . . . . . . . . . . . . . . . . . . . 22
4.2.2 Result Presentation and Comparison . . . . . . . . . . . . . . . . . 23
4.2.3 Analysis and Discussion . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Impact of Background Color Choice on Color-Based Filtering . . . . 26
4.3.1 Experiment Objective and Setup . . . . . . . . . . . . . . . . . . . 26
4.3.2 Result Presentation and Comparison . . . . . . . . . . . . . . . . . 27
4.3.3 Analysis and Discussion . . . . . . . . . . . . . . . . . . . . . . . 31
Chapter 5 Applications 33
5.1 Application Scenario Demonstrations . . . . . . . . . . . . . . . . . 33
5.1.1 Storytelling Performance . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.2 Tai Chi Push Hands Demonstration . . . . . . . . . . . . . . . . . . 35
5.1.3 Stylized Character Presentation: Background Effect . . . . . . . . . 36
5.2 Extended Discussion and Application Potential . . . . . . . . . . . . 37
Chapter 6 Conclusion 39
References 42
-
dc.language.isoen-
dc.subject四維高斯潑灑zh_TW
dc.subject人物體積影片zh_TW
dc.subject多視角影片zh_TW
dc.subject動態重建zh_TW
dc.subject虛擬實境zh_TW
dc.subjectMulti-view Videoen
dc.subject4D Gaussian Splattingen
dc.subjectHuman-centric Volumetric Videoen
dc.subjectVirtual Realityen
dc.subjectDynamic Reconstructionen
dc.title基於四維高斯潑灑之人物動作重建與處理zh_TW
dc.titleHuman Motion Reconstruction and Processing Based on 4D Gaussian Splattingen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee歐陽明;王鈺強;林經堯;陳昱吉zh_TW
dc.contributor.oralexamcommitteeMing Ouhyoung;Yu-Chiang Wang;Jin-Yao Lin;Yu-Chi Chenen
dc.subject.keyword四維高斯潑灑,人物體積影片,多視角影片,動態重建,虛擬實境,zh_TW
dc.subject.keyword4D Gaussian Splatting,Human-centric Volumetric Video,Multi-view Video,Dynamic Reconstruction,Virtual Reality,en
dc.relation.page44-
dc.identifier.doi10.6342/NTU202503784-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
dc.date.embargo-lift2030-08-05-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-08-05
61.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved