請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99653完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱雅萍 | zh_TW |
| dc.contributor.advisor | Ya-Ping Chiu | en |
| dc.contributor.author | 林宇婕 | zh_TW |
| dc.contributor.author | Yu-Chieh Lin | en |
| dc.date.accessioned | 2025-09-17T16:16:24Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | 1. Novoselov KS, et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
2. Novoselov KS, Fal'ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. A roadmap for graphene. Nature 490, 192–200 (2012). 3. Geim AK. Graphene: Status and Prospects. Science 324, 1530–1534 (2009). 4. Bonaccorso F, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015). 5. Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. 2D transition metal dichalcogenides. Nat Rev Mater 2, 17033 (2017). 6. Lin J, Zhong J, Zhong S, Li H, Zhang H, Chen W. Modulating electronic transport properties of MoS2 field effect transistor by surface overlayers. Appl Phys Lett 103, 063109 (2013). 7. Ji H, et al. Temperature-Dependent Opacity of the Gate Field Inside MoS2 Field-Effect Transistors. ACS Appl Mater Interfaces 11, 29022–29028 (2019). 8. Geim AK, Novoselov KS. The rise of graphene. Nat Mater 6, 183–191 (2007). 9. Cho SR, et al. Overlaying Monolayer Metal–Organic Framework on PtSe2-Based Gas Sensor for Tuning Selectivity. Adv Funct Mater 32, 2207265 (2022). 10. Cotrufo M, Sun LY, Choi JH, Alu A, Li XQ. Enhancing functionalities of atomically thin semiconductors with plasmonic nanostructures. Nanophotonics-Berlin 8, 577–598 (2019). 11. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5, 263–275 (2013). 12. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5, 263–275 (2013). 13. Ayari A, Cobas E, Ogundadegbe O, Fuhrer MS. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J Appl Phys 101, 014507 (2007). 14. Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A. Ultrasensitive photodetectors based on monolayer MoS. Nat Nanotechnol 8, 497–501 (2013). 15. Gao D, et al. Ferromagnetism in freestanding MoS2 nanosheets. Nanoscale Res Lett 8, 129 (2013). 16. Rani S, Sharma M, Verma D, Ghanghass A, Bhatia R, Sameera I. Two-dimensional transition metal dichalcogenides and their heterostructures: Role of process parameters in top-down and bottom-up synthesis approaches. Mat Sci Semicon Proc 139, 106313 (2022). 17. Bhowmik S, Govind Rajan A. Chemical vapor deposition of 2D materials: A review of modeling, simulation, and machine learning studies. iScience 25, 103832 (2022). 18. Ferrari AC, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015). 19. Ling X, Wang H, Huang SX, Xia FN, Dresselhaus MS. The renaissance of black phosphorus. P Natl Acad Sci USA 112, 4523–4530 (2015). 20. Li LK, et al. Black phosphorus field-effect transistors. Nat Nanotechnol 9, 372–377 (2014). 21. Dubertret B, Heine T, Terrones M. The Rise of Two-Dimensional Materials. Accounts Chem Res 48, 1–2 (2015). 22. Bhimanapati GR, et al. Recent Advances in Two-Dimensional Materials beyond Graphene. Acs Nano 9, 11509–11539 (2015). 23. Yu J, Hu XZ, Li HQ, Zhou X, Zhai TY. Large-scale synthesis of 2D metal dichalcogenides. J Mater Chem C 6, 4627–4640 (2018). 24. Chavalekvirat P, Hirunpinyopas W, Deshsorn K, Jitapunkul K, Iamprasertkun P. Liquid Phase Exfoliation of 2D Materials and Its Electrochemical Applications in the Data-Driven Future. Precis Chem 2, 300–329 (2024). 25. Islam MR, Afroj S, Karim N. Scalable Production of 2D Material Heterostructure Textiles for High-Performance Wearable Supercapacitors. Acs Nano 17, 18481–18493 (2023). 26. Zhang J, et al. Janus Monolayer Transition-Metal Dichalcogenides. Acs Nano 11, 8192–8198 (2017). 27. Lu A-Y, et al. Janus monolayers of transition metal dichalcogenides. Nat Nanotechnol 12, 744–749 (2017). 28. Tang X, Kou L. 2D Janus Transition Metal Dichalcogenides: Properties and Applications. Phy Status Solidi b 259, 2100562 (2022). 29. Szałowski K. Janus Monolayer of 1T-TaSSe: A Computational Study (2024). 30. Shi J, et al. Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor. Nat Commun 14, 4953 (2023). 31. Pai H-C, Wu Y-R. Investigating the high field transport properties of Janus WSSe and MoSSe by DFT analysis and Monte Carlo simulations. J Appl Phys 131, 144303 (2022). 32. Maghirang AB, et al. Predicting two-dimensional topological phases in Janus materials by substitutional doping in transition metal dichalcogenide monolayers. Npj 2d Mater Appl 3, 35 (2019). 33. Li R, Cheng Y, Huang W. Recent Progress of Janus 2D Transition Metal Chalcogenides: From Theory to Experiments. Small 14, 1802091 (2018). 34. Sino PAL, et al. Controllable structure-engineered janus and alloy polymorphic monolayer transition metal dichalcogenides by plasma-assisted selenization process toward high-yield and wafer-scale production. Mater Today 69, 97–106 (2023). 35. Trivedi DB, et al. Room-Temperature Synthesis of 2D Janus Crystals and their Heterostructures. Adv Mater 32, 2006320 (2020). 36. Guo Y, et al. Designing artificial two-dimensional landscapes via atomic-layer substitution. Proceedings of the National Academy of Sciences 118, e2106124118 (2021). 37. Yin WJ, Wen B, Nie GZ, Wei XL, Liu LM. Tunable dipole and carrier mobility for a few layer Janus MoSSe structure. J Mater Chem C 6, 1693–1700 (2018). 38. Li H, et al. Growth of alloy MoS(2x)Se2(1-x) nanosheets with fully tunable chemical compositions and optical properties. J Am Chem Soc 136, 3756–3759 (2014). 39. Jin C, Tang X, Tan X, Smith SC, Dai Y, Kou LZ. A Janus MoSSe monolayer: a superior and strain-sensitive gas sensing material. J Mater Chem A 7, 1099–1106 (2019). 40. Chiu Y-P, Huang H-W, Wu Y-R. Utilizing the Janus MoSSe surface polarization in designing complementary metal-oxide-semiconductor field-effect transistors. Phys Rev Appl 21, 044046 (2024). 41. Xiao K-X, et al. Intrinsic dipole-induced self-doping in Janus MXY-based (M = Mo, W; X = S; Y = Se, Te) p–n junctions. J Phys D: Appl Phys 55, 435303 (2022). 42. Zhang KY, et al. Spectroscopic Signatures of Interlayer Coupling in Janus MoSSe/MoS2 Heterostructures. Acs Nano 15, 14394–14403 (2021). 43. Tian L, He CY, Peng M, Li XR. Hydrogen evolution reaction in the hBNC/Janus MoSSe heterojunction: First-principles calculations. Int J Hydrogen Energ 60, 369–377 (2024). 44. Shi WW, Li GQ, Wang ZG. Triggering Catalytic Active Sites for Hydrogen Evolution Reaction by Intrinsic Defects in Janus Monolayer MoSSe. J Phys Chem C 123, 12261–12267 (2019). 45. Picker J, et al. Atomic Structure and Electronic Properties of Janus SeMoS Monolayers on Au(111). Nano Lett 25, 3330–3336 (2025). 46. Wang TT, et al. Atomic Manipulation of 2D Materials by Scanning Tunneling Microscopy: Advances in Graphene and Transition Metal Dichalcogenides. Nanomaterials 15,(12):888 (2025). 47. Liu H, et al. Strain engineering the structures and electronic properties of Janus monolayer transition-metal dichalcogenides. J Appl Phys 125, 082516 (2018). 48. Binnig G, Rohrer H. Scanning Tunneling Microscopy. Helv Phys Acta 55, 726–735 (1982). 49. Binning G, Rohrer H, Gerber C, Weibel E. Surface Studies by Scanning Tunneling Microscopy. Phys Rev Lett 49, 57–61 (1982). 50. Binnig G, Rohrer H, Gerber C, Weibel E. Tunneling through a Controllable Vacuum Gap. Appl Phys Lett 40, 178–180 (1982). 51. Binnig G, Rohrer H. Scanning Tunneling Microscopy. Surf Sci 126, 236–244 (1983). 52. Stroscio JA, Feenstra RM, Fein AP. Electronic-Structure of the Si(111)2x1 Surface by Scanning-Tunneling Microscopy. Phys Rev Lett 57, 2579–2582 (1986). 53. Feenstra RM, Stroscio JA, Fein AP. Tunneling Spectroscopy of the Si(111)2x1 Surface. Surf Sci 181, 295–306 (1987). 54. VAC AERO International Inc. Oil-Sealed Rotary Vane Pumps. VAC AERO International, March 5, 2019. https://vacaero.com/information-resources/vacuum-pump-technology-education-and-training/195875-oil-sealed-rotary-vane-pumps.html. 55. Yekta, V. et al. Turbomolecular Pump. MBE Lab, UVIC. https://slideplayer.com/slide/8506066/. 56. Matsusada Precision. et al. Ion Pumps. Matsusada Application Notes, August 22, 2019. https://www.matsusada.com/application/ps/ion_pumps/. 57. ULVAC I. What is a Titanium Sublimation Pump (TSP)? https://showcase.ulvac.co.jp/en/how-to/product-knowledge02/sublimation-pump.html. 58. Peacock RN, Peacock NT, Hauschulz DS. Comparison of Hot Cathode and Cold-Cathode Ionization Gauges. J Vac Sci Technol A 9, 1977–1985 (1991). 59. Jousten K, et al. A review on hot cathode ionisation gauges with focus on a suitable design for measurement accuracy and stability. Vacuum 179, 109545 (2020). 60. Jousten K. Total Pressure Vacuum Gauges. In: Handbook of Vacuum Technology (2016). 61. Kendall BRF, Drubetsky E. Cold cathode gauges for ultrahigh vacuum measurements. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 15, 740–746 (1997). 62. Instruments JV. Cold Cathode Tough Gauge. https://jpvacinst.co.uk/ColdCathodeToughGaunge 63. Beshir BT, Obodo KO, Asres GA. Janus transition metal dichalcogenides in combination with MoS2 for high-efficiency photovoltaic applications: a DFT study. Rsc Adv 12, 13749–13755 (2022). 64. Yin K, et al. Effects of Se substitution on the Schottky barrier of a MoSxSe(2−x)/graphene heterostructure. Journal of Physics D: Applied Physics 54, 265302 (2021). 65. Picker J, et al. Structural and electronic properties of MoS2 and MoSe2 monolayers grown by chemical vapor deposition on Au(111). Nanoscale Adv 6, 92–101 (2023). 66. Chang YS, et al. Surface electron accumulation and enhanced hydrogen evolution reaction in MoSe2 basal planes. Nano Energy 84, 105922 (2021). 67. Liu B, Zhuang Y, Que Y, Xu C, Xiao X. STM study of selenium adsorption on Au(111) surface*. Chinese Phys B 29, 056801 (2020). 68. Wang JG, Ma FC, Sun MT. Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. Rsc Adv 7, 16801–16822 (2017). 69. Yang X-Y, Hussain T, Wärnå JPA, Xu Z, Ahuja R. Exploring Janus MoSSe monolayer as a workable media for SOF6 decompositions sensing based on DFT calculations. Comp Mater Sci 186, 109976 (2021). 70. Jain A, Mandal D, Bera C. Quasi-harmonic approach to evaluate pyroelectric properties in Janus CrSeBr monolayer. Journal of Physics: Condensed Matter 35, 415401 (2023). 71. Yoon D, Son YW, Cheong H. Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy. Nano Lett 11, 3227–3231 (2011). 72. Kriegel MA, Omambac KM, Franzka S, Meyer zu Heringdorf F-J, Horn-von Hoegen M. Incommensurability and negative thermal expansion of single layer hexagonal boron nitride. Appl Surf Sci 624, 157156 (2023). 73. Leven I, Krepel D, Shemesh O, Hod O. Robust Superlubricity in Graphene/h-BN Heterojunctions. J Phys Chem Lett 4, 115–120 (2013). 74. Wei Y, Ru G, Qi W, Tang K, Xue T. Interlayer Friction in Graphene/MoS2, Graphene/NbSe2, Tellurene/MoS2 and Tellurene/NbSe2 van der Waals Heterostructures. Frontiers in Mechanical Engineering 8 - 2022, (2022). 75. Sachs B, Wehling TO, Katsnelson MI, Lichtenstein AI. Adhesion and electronic structure of graphene on hexagonal boron nitride substrates. Phys Rev B 84, 195414 (2011). 76. Bhuyan CA, Madapu, K. K., Prabhakar, K., Pradhan, J., Dasgupta, A., Polaki, S. R., Dhara, S. Evaluation of strain and charge-transfer doping in wet-polymeric transferred monolayer MoS₂. arXiv:2504.03275 (2025). 77. Jain A, et al. Minimizing residues and strain in 2D materials transferred from PDMS. Nanotechnology 29, 265203 (2018). 78. Kim C, et al. Damage-free transfer mechanics of 2-dimensional materials: competition between adhesion instability and tensile strain. Npg Asia Mater 13, 44 (2021). 79. Li P, et al. Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat Commun 11, 2645 (2020). 80. Pham PV, et al. Transfer of 2D Films: From Imperfection to Perfection. Acs Nano 18, 14841–14876 (2024). 81. Hallam T, Berner NC, Yim C, Duesberg GS. Strain, Bubbles, Dirt, and Folds: A Study of Graphene Polymer-Assisted Transfer. Adv Mater Interfaces 1, 1400115 (2014). 82. Zhao Y, et al. Large-area transfer of two-dimensional materials free of cracks, contamination and wrinkles via controllable conformal contact. Nat Commun 13, 4409 (2022). 83. Kim SW, et al. Understanding Solvent-Induced Delamination and Intense Water Adsorption in Janus Transition Metal Dichalcogenides for Enhanced Device Performance. Adv Funct Mater 34, 2308709 (2024). 84. Michail A, et al. Biaxial Strain Transfer in Monolayer MoS2 and WSe2 Transistor Structures. Acs Appl Mater Inter 16, 49602–49611 (2024). 85. Lee HY, et al. Strong and Localized Luminescence from Interface Bubbles Between Stacked hBN Multilayers. Nat Commun 13, 5000 (2022). 86. Schuler B, et al. How Substitutional Point Defects in Two-Dimensional WS2 Induce Charge Localization, Spin-Orbit Splitting, and Strain. Acs Nano 13, 10520–10534 (2019). 87. Mehdipour H, Kratzer P. Structural defects in a Janus MoSSe monolayer: A density functional theory study. Phys Rev B 106, 235414 (2022). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99653 | - |
| dc.description.abstract | 本研究運用掃描穿隧式顯微鏡和掃描穿隧式光譜,對單層硫硒化鉬的電子結構進行了全面性探討。我們著重分析不完全硒化、機械應變以及負電荷缺陷所帶來的影響,並深入討論奈米尺度組成變化和結構擾動如何影響材料的局部電子性質。
我們的研究結果顯示,相較於完全硒化區域,不完全硒化的區域展現出更強的能隙內峰值強度。此觀察結果與理論預測相符,表明在這些區域中,硫相關態在價帶最大值附近佔據主導地位,其效應類似於硫摻雜。我們還發現,能隙內峰的能量位置隨著硒化程度的不同而移動,硒化程度低的區域的能隙內峰位於較負的能量位置。此外,能隙內峰的半高寬在不同組成變化下仍保持一致,進一步支持這些能隙態的本徵性質,並證實這些變化來自於受控的硒化過程而非缺陷。 此外,我們還研究了機械應變對電子結構的影響。掃描穿隧式顯微鏡影像展示了表面不規則性與複雜性。經由快速傅立葉變換與實空間間距量測,證實了晶格常數的縮小,並觀察到這些受應變區域的能帶間隙顯著變窄。此現象與理論計算受應變的二維材料特性一致,而此應變則歸因於製備過程以及材料固有的物理性質。 最後,我們對負電荷缺陷的研究揭示了其獨特的電子特徵。依偏壓而異的形貌證實了負電荷缺陷隨電荷變化的行為:在負偏壓下,它們由於陷阱態中的電子積累而呈現為亮點;而在正偏壓下則變暗。光譜分析識別出帶隙內空間分佈不均勻的局域缺陷態,這些缺陷態也與觀察到的形貌特徵相關。我們進一步區分了兩種 負電荷缺陷類型:A 型負電荷缺陷呈現出「核-環」結構,伴隨顯著的能帶彎曲和帶隙縮窄,這與硒空位一致。相反地,B 型負電荷缺陷是一種更局限於「核心」的構型,引起價帶的顯著擾動並表現出類絕緣體行為。 本研究強調了單層硫硒化鉬的電子結構對奈米尺度組成和結構變化的高度敏感性,並展示了掃描穿隧式顯微鏡和掃描穿隧式光譜在原子尺度解析這些效應中的應用潛力。這些發現為理解二維詹努斯過渡金屬硫族化合物及其在電子學和光電子學中的潛在應用提供了重要的貢獻。 | zh_TW |
| dc.description.abstract | This study employs Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS) to comprehensively investigate the electronic structure of monolayer (ML) MoSSe. We focus on analyzing the impacts of incomplete selenization, mechanical strain, and Negative Charge Defects (NCDs), providing a discussion on how nanoscale compositional variations and structural perturbations influence the material's local electronic properties.
Our findings reveal that regions with incomplete selenization exhibit stronger in-gap peak intensities compared to fully selenized areas. This observation aligns with theoretical predictions, indicating that sulfur-related states dominate near the Valence Band Maximum (VBM) in these regions, mimicking the effects of sulfur doping. We also demonstrate that the energy position of the in-gap peak shifts with the degree of selenization, with lower selenization regions showing the peak at more negative energies. Furthermore, the Full Width at Half Maximum (FWHM) of the in-gap peak remains consistent across compositional variations, further supporting the intrinsic nature of these in-gap states and the hypothesis that these changes stem from controlled selenization rather than defects. Additionally, we investigated the influence of mechanical strain on the electronic structure. STM images reveal surface irregularities and complexities. Through Fast Fourier Transform (FFT) and real-space profile measurements, a reduction in the lattice constant was confirmed, and a significant band gap narrowing in these strained regions was observed. This phenomenon is consistent with theoretical predictions for strained Two-Dimensional (2D) materials, with the strain attributed to fabrication processes and the inherent physical properties of the material. Finally, our investigation into NCDs revealed their distinct electronic signatures. Bias-dependent STM topographies confirmed the charge-dependent behavior of NCDs: they appear as bright spots under negative bias due to electron accumulation in localized trap states, and diminish under positive bias. Spectroscopic analyses identified spatially inhomogeneous localized defect states within the band gap, which also correlated with observed topographical features. We further differentiated two types of NCDs: Type A NCDs exhibited a "core-ring" structure with significant band bending and a narrowed band gap, consistent with selenium vacancies (VSe). Conversely, Type B NCDs were a more localized "core"-dominated configuration, inducing significant perturbations in the Valence Band (VB) and exhibiting insulating-like behavior. This research highlights the high sensitivity of MoSSe's electronic structure to nanoscale compositional and structural variations and demonstrates the potential application of STM and STS in resolving these effects at the atomic scale. These findings provide significant contributions to the understanding of Janus Transition Metal Dichalcogenides (TMDs) and their potential applications in electronics and optoelectronics. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:16:24Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:16:24Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Master’s Thesis Acceptance Certificate i
Acknowledgements ii 摘要 iii Abstract v CONTENTS viii List of Figures xii List of Abbreviations xiv Chapter 1 Introduction 1 1.1 A New Era for Two-Dimensional (2D) Materials 1 1.2 Definition and Characteristics of 2D Materials 2 1.3 Fabrication Techniques for 2D Materials 4 1.3.1 Top-Down Method 4 1.3.2 Bottom-Up Approaches 5 1.4 Applications and Challenges of 2D Materials 7 1.5 Janus 2D Materials 8 1.5.1 Synthesis of Janus TMDs 9 1.5.2 Janus–MoSSe 11 Chapter 2 Motivation 14 Chapter 3 Experiment Method 16 3.1 Scanning Tunneling Microscopy, STM 16 3.2 Tunneling Mechanism 17 3.2.1 Quantum Tunneling Effect 17 3.2.2 Tunneling Current 19 3.2.3 Quantitative Description of Tunneling Current 21 3.2.4 Local Density of State, LDOS 23 3.3 Scanning Modes 25 3.3.1 Constant Current Mode, CCM 26 3.3.2 Constant Hight Mode, CHM 27 3.3.3 I(v)Spectroscopy 28 3.3.4 Lock-in technique of dI/dV mapping 30 Chapter 4 Experiment Instrument 33 4.1 Low-Temperature STM(LT-STM) 33 4.2 Ultra-High Vacuum (UHV) System 34 4.2.1 Vacuum Pump 34 4.2.2 Baking Chamber 41 4.2.3 Outgas 42 4.2.4 Vacuum Gauge 43 4.3 STM Scanning System 47 4.3.1 Scanner 47 4.3.2 Stepper 49 4.3.3 Tip 50 4.3.4 Suspension System 53 Chapter 5 Experimental Result and Discussion 54 5.1 Sample Information 54 5.1.1 Sample Synthesis and Fabrication Methods 55 5.2 ML MoSSe Topography and Electronic Structure 58 5.2.1 ML MoSSe Topography and dI/dV Spectra 58 5.2.2 Peak Analysis of the In-Gap State 62 5.3 Strain-Induced Electronic Modulation in MoSSe 74 5.3.1 Characterization of Strain in ML MoSSe 74 5.3.2 Strain-Induced Band Gap Modulation 77 5.3.3 Origin of Lattice Contraction 79 5.4 Negative Charge Defects (NCDs) in Janus MoSSe 86 5.4.1 Bias-Dependent Behavior of NCDs 86 5.4.2 Electronic Structure Analysis of NCD 89 5.4.3 Further Analysis of NCD Electronic Properties 91 5.4.4 Link between NCD and Device-Scale Behavior 94 Chapter 6 Conclusion 97 Reference 101 Supporting Information 109 1. Theoretical Calculations of MoSSe (from Prof. Chou lab.) 109 2. Special Phenomenon: Vacancy Evolution under CITS 111 3. CITS-Driven Structural Healing and Band Edge Modulation at Se Vacancies 115 | - |
| dc.language.iso | en | - |
| dc.subject | 詹努斯(指代具有兩面結構的材料) | zh_TW |
| dc.subject | 不完全硒化 | zh_TW |
| dc.subject | 負電荷缺陷 | zh_TW |
| dc.subject | 掃描式穿隧顯微鏡 | zh_TW |
| dc.subject | 單層硫硒化鉬 | zh_TW |
| dc.subject | 二維材料 | zh_TW |
| dc.subject | 電子結構 | zh_TW |
| dc.subject | Scanning Tunneling Microscopy (STM) | en |
| dc.subject | 2D material | en |
| dc.subject | Janus | en |
| dc.subject | Negative Charge Defects (NCDs) | en |
| dc.subject | Incomplete Selenization | en |
| dc.subject | Electronic Structure | en |
| dc.subject | Monolayer MoSSe | en |
| dc.title | 原子級探討單層非對稱過渡金屬二硫化物的電子結構 | zh_TW |
| dc.title | Atomic-level investigation of the electronic structure of monolayer asymmetric transition metal dichalcogenides | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 闕郁倫;周至品 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Lun Chueh;Jyh-Pin Chou | en |
| dc.subject.keyword | 掃描式穿隧顯微鏡,詹努斯(指代具有兩面結構的材料),二維材料,單層硫硒化鉬,電子結構,不完全硒化,負電荷缺陷, | zh_TW |
| dc.subject.keyword | Scanning Tunneling Microscopy (STM),Janus,2D material,Monolayer MoSSe,Electronic Structure,Incomplete Selenization,Negative Charge Defects (NCDs), | en |
| dc.relation.page | 118 | - |
| dc.identifier.doi | 10.6342/NTU202503554 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 重點科技研究學院 | - |
| dc.contributor.author-dept | 奈米工程與科學學位學程 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 奈米工程與科學學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 4.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
