請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99650完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳復國 | zh_TW |
| dc.contributor.advisor | Fuh-Kuo Chen | en |
| dc.contributor.author | 江亞璇 | zh_TW |
| dc.contributor.author | Ya-Hsuan Chiang | en |
| dc.date.accessioned | 2025-09-17T16:15:52Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-08 | - |
| dc.identifier.citation | [1] 李昱勳,《明膠玻璃溫間拉伸成形之研究》,國立台灣大學機械工程學系碩士論文,2023。
[2] 梁煜晨,《明膠玻璃慢速延展成型之模擬分析》,國立台灣大學機械工程學系碩士論文,2024。 [3] P. Moy, C. Allan Gunnarsson, Tusit Weerasooriya, and W. Chen, “Stress-Strain Response of PMMA as a Function of Strain-Rate and Temperature,” Conference proceedings of the Society for Experimental Mechanics, pp. 125–133, Jan. 2011. [4] G. I. Taylor and H. A. Quinney, “The latent energy remaining in a metal after cold working,” Proceedings of the Royal Society of London, vol. 143, no. 849, pp. 307–326, Jan. 1934. [5] J. J. Mason, A. J. Rosakis, and G. Ravichandran, “On the Strain and Strain Rate Dependence of the Fraction of Plastic Work Converted to Heat: An Experimental Study Using High Speed Infrared Detectors and the Kolsky bar,” vol. 17, no. 2–3, pp. 135–145, Mar. 1994. [6] A. Dorogoy and D. Rittel, “Effect of confinement on thick polycarbonate plates impacted by long and AP projectiles,” International Journal of Impact Engineering, vol. 76, pp. 38–48, Sep. 2014. [7] 彭宇恆,《明膠玻璃之溫間材料特性與拉伸成形探討》,國立台灣大學機械工程學系碩士論文,2025。 [8] C. Weng, T. Ding, M. Zhou, J. Liu, and H. Wang, “Formation Mechanism of Residual Stresses in Micro-Injection Molding of PMMA: A Molecular Dynamics Simulation,” Polymers, vol. 12, no. 6, pp. 1368–1368, Jun. 2020. [9] S. Eim et al., “Insights into the Thermal Expansion of Amorphous Polymers,” ACS Macro Letters, vol. 13, no. 11, pp. 1490–1494, Oct. 2024. [10] J. D. Coe, M. Lentz, K. A. Velizhanin, J. T. Gammel, and K. R. Cochrane, “The equation of state and shock-driven decomposition of polymethylmethacrylate (PMMA),” Journal of Applied Physics, vol. 131, no. 12, p. 125108, Mar. 2022. [11] 李瑋宸,《薄膜PET黏彈塑性之有限元素材料模型建立》,國立陽明交通大學機械工程學系碩士論文,,2021。 [12] 戴暘,《熱沖壓成形高溫摩擦特性之分析》,國立台灣大學機械工程學系碩士論文,2013。 [13] 羅偉綸,《高溫摩擦試驗設備研發與硼鋼之摩擦特性研究》,國立台灣大學機械工程學系碩士論文,2016。 [14] “Abaqus Analysis User’s Manual (6.11),” Nchc.org.tw, 2025. [15] L. Zhao, L. Wu, and Y. Fang, “Surface reconstruction and thickness error calculation of optical components with a complex curved surface,” Applied Optics, vol. 63, no. 11, pp. 2922–2929, Apr. 2024. [16] “Login | 3DEXPERIENCE ID | Dassault Systèmes,” 3ds.com, 2023. https://help.3ds.com/2023/English/DSSIMULIA_Established/SIMACAEELMRefMap/simaelm-c-connectorelem.htm?contextscope=all (accessed Jun. 16, 2025). [17] M. Dixon et al., “Measuring optical distortion in aircraft transparencies: a fully automated system for quantitative evaluation,” Machine Vision and Applications, vol. 22, no. 5, pp. 791–804, Apr. 2010. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99650 | - |
| dc.description.abstract | 飛機之風擋及座艙罩等明膠玻璃產品,傳統上多依賴人工操作或低階自動化方式進行生產,隨著產品外型日益複雜且不等曲率之設計需求提升,傳統生產方法難以滿足高精度與穩定性之需求。為了提升生產效率和產品品質,本研究旨在建立一套自動化拉伸成形系統,結合電動及油壓伺服拉伸缸進行明膠玻璃產品拉伸成形,並藉由電腦輔助工程(Computer Aided Engineering, CAE)模擬技術,建立完整製程分析之模擬模型,以優化自動化拉伸成形製程。
為建立完善拉伸成形模擬模型,首先需詳細探討明膠玻璃之材料特性,本研究進行了明膠玻璃之高溫拉伸實驗、熱膨脹實驗以及透過熱機械分析儀進行其餘相關熱性質實驗,並且透過上述實驗所得之參數,建構與溫度具有高依賴關係之材料模型。透過參考文獻並選用彈塑性材料模型,於有限元素分析軟體Abaqus中選用隱式(Implicit)靜態分析步驟(Statics, General)模擬變形行為,並驗證材料模型準確性。 本論文首先以縮小比例模型建立基礎拉伸成形技術,並參考實際載具建立CAE模擬模型,探討拉伸缸設備之作動方式及其對於明膠玻璃拉伸成形中潛在缺陷之影響,接著透過實際實驗驗證拉伸設備作動之可行性,為自動化拉伸成形技術建立基礎。 完成基礎拉伸設備之設計與作動驗證後,本研究進一步針對明膠玻璃實際座艙罩產品之拉伸成形進行其設備與模擬模型之建立。根據座艙罩模具之幾何特徵,結合拉伸設備不同作動型態,建立完整CAE模擬模型。模擬中針對不同下料尺寸與製程參數對成形過程中潛在缺陷進行探討,並針對不同製程產生之缺陷進行分析及改善,作為後續其他製程參數優化與產品品質提升之依據,進一步建立完整明膠玻璃拉伸成形技術。 本研究亦針對尺寸精度及其光學品質進行探討,結合模擬結果與光學理論,分析影像扭曲、偏折等問題,建立製程參數與成品品質之對應關係。此結果不僅有助於明膠玻璃成形製程之優化設計,亦可作為未來自動化生產系統之理論依據及實務參考。 | zh_TW |
| dc.description.abstract | Traditional production methods for aircraft transparency components, such as windshields and canopies made of acrylic glass, predominantly rely on manual operations or low-level automation. As product geometries become increasingly complex with demanding linear curvature requirements, conventional manufacturing approaches struggle to meet precision and stability requirements. To enhance production efficiency and product quality, this study establishes an automated stretch-forming system incorporating electro-hydraulic servo-controlled stretch cylinders for acrylic glass forming. Computer-Aided Engineering (CAE) simulation technology is employed to develop a comprehensive process analysis model for optimizing automated stretch-forming parameters.
To construct an accurate stretch-forming simulation model, this research first investigates the material properties of acrylic glass through high-temperature tensile testing, thermal expansion analysis, and thermomechanical characterization using a Dynamic Mechanical Analyzer (DMA). The experimental data is used to develop a temperature-dependent material model. Based on literature review, an elastoplastic material model is selected and implemented in Abaqus finite element analysis (FEA) software, where implicit static analysis (Static, General) simulates deformation behavior, with subsequent validation of the material model's accuracy. This study initially develops fundamental stretch-forming techniques using scaled-down prototypes, establishing CAE simulation models based on actual aircraft transparency geometries. The actuation mechanisms of stretch cylinders and their influence on potential forming defects are systematically analyzed. Experimental validation confirms the feasibility of the stretch-forming apparatus, laying the groundwork for automated forming technology. Following the preliminary validation, the research advances to full-scale canopy stretch-forming by developing corresponding equipment and simulation models. The CAE model integrates the geometric characteristics of canopy molds with diverse cylinder actuation modes to predict forming defects. Parametric studies on blank dimensions and process variables identify defect formation mechanisms, enabling process optimization for enhanced product quality. The study further investigates dimensional accuracy and optical performance by correlating simulation results with optical theory to analyze image distortion and light deviation. The established process-quality relationships provide critical insights for optimizing acrylic glass forming processes and serve as a theoretical foundation for future automated production systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:15:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:15:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract v 目次 vii 圖次 x 表次 xvi 第一章 緒論 1 1.1 研究背景與目的 2 1.2 文獻回顧 4 1.3 研究方法與步驟 5 1.4 論文總覽 6 第二章 材料模型探討與建立 7 2.1 明膠玻璃材料實驗 7 2.1.1 高溫單軸拉伸實驗 8 2.1.2 熱膨脹實驗 13 2.1.3 比熱實驗 16 2.1.4 潛變實驗 18 2.2 明膠玻璃材料模擬模型建立 20 2.2.1 有效成形性分析 20 2.2.2 明膠玻璃材料模型介紹與建立 22 2.3 章節小節 23 第三章 明膠玻璃拉伸成形模擬優化與缺陷分析 24 3.1 拉伸成形機構模型優化建立 24 3.1.1 機構特徵與成形流程介紹 24 3.1.2 模具幾何優化 29 3.1.3 夾爪幾何優化 30 3.2 CAE模擬設定建立 31 3.2.1 模擬模型建立 31 3.2.2 拉伸機構模型建立 32 3.2.3 模型邊界條件設定 39 3.2.4 成形製程參數優化 40 3.3 成形缺陷與成因分析 41 3.3.1 貼模度不足成因分析 43 3.3.2 成品尺寸量測方式 44 3.4 製程參數對貼模度不足改善之影響 45 3.5 模擬收斂性分析 48 3.6 模擬驗證 50 3.6.1 製程作動流程驗證 51 3.6.2 厚度量測 54 3.6.3 尺寸量測 58 3.7 明膠玻璃實驗之熱膨脹現象 59 第四章 座艙罩拉伸成形技術建立與缺陷分析 61 4.1 模具特徵與機構設備介紹 61 4.1.1 模具特徵介紹 61 4.1.2 機構設備介紹 63 4.2 機構強度分析 65 4.2.1 模擬模型建立 65 4.2.2 模型邊界條件設定 65 4.2.3 模擬結果 66 4.2.4 模擬模型收斂性分析 67 4.3 座艙罩拉伸模擬模型建立 68 4.3.1 模擬模型建立 68 4.3.2 模擬邊界條件設定 73 4.4 成形缺陷之分析與探討 74 4.4.1 製程參數對貼模度不足之影響 77 4.4.2 成形作動流程分析 87 4.5 製程參數對成品品質影響 93 4.5.1 成品品質項目與檢測方式 93 4.5.2 板材滑移行為對光學性質之影響 101 第五章 結論及未來展望 103 5.1 結論 103 5.2 未來展望 105 參考文獻 106 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 明膠玻璃材料特性 | zh_TW |
| dc.subject | 拉伸成形作動分析 | zh_TW |
| dc.subject | 拉伸機構CAE模擬模型 | zh_TW |
| dc.subject | 慢速拉伸成形 | zh_TW |
| dc.subject | 彈塑性模型 | zh_TW |
| dc.subject | 影像扭曲 | zh_TW |
| dc.subject | 光彈原理 | zh_TW |
| dc.subject | stretch forming process analysis | en |
| dc.subject | photoelasticity principle | en |
| dc.subject | image distortion | en |
| dc.subject | elastic-plastic model | en |
| dc.subject | stretch forming | en |
| dc.subject | stretching mechanism CAE simulation | en |
| dc.subject | Acrylic glass material properties | en |
| dc.title | 大曲率明膠玻璃拉伸成形製程研析 | zh_TW |
| dc.title | A Study on High-curvature Stretch Forming Process of Acrylic Glass | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 徐瑞坤;洪景華;楊侑倫;陳為祥 | zh_TW |
| dc.contributor.oralexamcommittee | Ray-Quen Hsu;Ching-Hua Hung;Yo-Lun Yang;Wei-Shiung Chen | en |
| dc.subject.keyword | 明膠玻璃材料特性,拉伸成形作動分析,拉伸機構CAE模擬模型,慢速拉伸成形,彈塑性模型,影像扭曲,光彈原理, | zh_TW |
| dc.subject.keyword | Acrylic glass material properties,stretch forming process analysis,stretching mechanism CAE simulation,stretch forming,elastic-plastic model,image distortion,photoelasticity principle, | en |
| dc.relation.page | 107 | - |
| dc.identifier.doi | 10.6342/NTU202503433 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2030-07-31 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 11.24 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
