請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99645完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳復國 | zh_TW |
| dc.contributor.advisor | Fuh-Kuo Chen | en |
| dc.contributor.author | 彭宇恆 | zh_TW |
| dc.contributor.author | Yu-Heng Peng | en |
| dc.date.accessioned | 2025-09-17T16:14:58Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-08 | - |
| dc.identifier.citation | [1] V. Franzen, L. Kwiatkowski, J. Neves, P. A. F. Martins, and A.E.Tekkaya, “On the Capability of Single Point Incremental Forming for Manufacturing PVC Sheet Parts,” ICTP-2008, 9th International Conference on Technology of Plasticity, Sep. 2008.
[2] P. A. F. Martins, L. Kwiatkowski, V. Franzen, A. E. Tekkaya, and M. Kleiner, “Single Point Incremental Forming of Polymers,” CIRP Annals, vol. 58, no. 1, pp. 229–232, 2009. [3] D. Simon, S. Zitzlsberger, J. Wagner, L.Kern, C. Maurer, D. Haller, and G. Reinhart., “Forming Plastic Shields on a Reconfigurable Tooling System,” Enabling Manufacturing Competitiveness and Economic Sustainability, pp. 73–78, 2014. [4] C. Su, T. Ding, X. Li, J. Cao, K. Zhang, R. Wang, Y. Lv, L. Gao, and W. Huang, “Research on the Effects of Machining Paths and Variable Parameters of Different Passes on Defects in Multi-pass Single-point Incremental Forming,” The International Journal of Advanced Manufacturing Technology, vol. 131, no. 9–10, pp. 4663–4682, Feb. 2024. [5] H. Peng, M. Li, C. Liu, and J. Cao, “Study of Multi-Point Forming for Polycarbonate Sheet,” The International Journal of Advanced Manufacturing Technology, vol. 67, no. 9–12, Aug. 2013. [6] F. Chen, H. Ou, B. Lu, and H. Long, “A Constitutive Model of Polyether-Ether-Ketone (PEEK),” Journal of the Mechanical Behavior of Biomedical Materials, vol. 53, pp. 427–433, Jan. 2016. [7] L.-L. Wang, S.-Q. Shi, J.-Y. Chen, D.-J. Huang, and L.-J. Shen, “Influences of Strain-Rate and Stress-State on Dynamic Response of Cement Mortar,” International Journal of Structural Stability and Dynamics, vol. 03, no. 03, pp. 419–433, Sep. 2003. [8] J. Zhu, S. Hu, and L. Wang, “An Analysis of Stress Uniformity for Concrete-Like Specimens During SHPB Tests,” International Journal of Impact Engineering, vol. 36, no. 1, pp. 61–72, Jan. 2009. [9] J. Jiang, J. Xu, Zhang Zhongshui, and X. Chen, “Rate-Dependent Compressive Behavior of EPDM Insulation: Experimental and Constitutive Analysis,” Mechanics of Materials, vol. 96, pp. 30–38, May 2016. [10] J. Wang, Y. Xu, and W. Zhang, “Finite Element Simulation of PMMA Aircraft Windshield Against Bird Strike by Using A Rate and Temperature Dependent Nonlinear Viscoelastic Constitutive Model,” Composite Structures, vol. 108, pp. 21–30, Feb. 2014. [11] Y. Duan, A. Saigal, R. Greif, and M. A. Zimmerman, “Impact Behavior and Modeling of Engineering Polymers,” Polymer Engineering & Science, vol. 43, no. 1, pp. 112–124, Jan. 2003. [12] H. Wang, H. Zhou, Z. Huang, Y. Zhang, H. Qiao, and Z. Yu, “Experimental Investigation and Modeling of the mechanical behavior of PC/ABS During Monotonic and Cyclic Loading,” Polymer Testing, vol. 50, pp. 216–223, Feb. 2016. [13] X. Guo, G. Yan, Lazhar Benyahia, and Sohbi Sahraoui, “Fitting Stress Relaxation Experiments with Fractional Zener Model to Predict High Frequency Moduli of Polymeric Acoustic Foams,” Mechanics of Time-Dependent Materials, vol. 20, no. 4, pp. 523–533, Mar. 2016. [14] N. Ames, V. Srivastava, S. A. Chester, and L. Anand, “A Thermo-Mechanically Coupled Theory for Large Deformations of Amorphous Polymers. Part I: Formulation,” vol. 25, no. 8, pp. 1474–1494, Aug. 2009. [15] M. R. Gudimetla and I. Doghri, “A Finite Strain Thermodynamically-Based Constitutive Framework Coupling Viscoelasticity and Viscoplasticity with Application to Glassy Polymers,” International Journal of Plasticity, vol. 98, pp. 197–216, Aug. 2017. [16] Z. Liang, J. Li, X. Zhang, and Q. Kan, “A Viscoelastic-Viscoplastic Constitutive Model and Its Finite Element Implementation of Amorphous Polymers,” Polymer Testing, vol. 117, pp. 107831–107831, Oct. 2022. [17] J. Wang, L. F. Peng, Y. J. Deng, X. M. Lai, M. W. Fu, and J. Ni, “A Finite Strain Thermodynamically-Based Constitutive Modeling and Analysis of Viscoelastic-Viscoplastic Deformation Behavior of Glassy Polymers,” International Journal of Plasticity, vol. 122, pp. 135–163, Nov. 2019. [18] “The Use of A Mathematical Model to Describe Isothermal Stress-Strain Curves in Glassy Thermoplastics,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 302, no. 1471, pp. 453–472, Jan. 1968. [19] M. C. Boyce, D. M. Parks, and A. S. Argon, “Large Inelastic Deformation of Glassy Polymers. Part I: Rate Dependent Constitutive Model,” Mechanics of Materials, vol. 7, no. 1, pp. 15–33, Sep. 1988. [20] M. C. Boyce, D. M. Parks, and A. S. Argon, “Large Inelastic Deformation of Glassy Polymers. Part II: Numerical Simulation of Hydrostatic Extrusion,” Mechanics of Materials, vol. 7, no. 1, pp. 35–47, Sep. 1988. [21] E. M. Arruda and M. C. Boyce, “A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials,” Journal of the Mechanics and Physics of Solids, vol. 41, no. 2, pp. 389–412, Feb. 1993. [22] A. D. Mulliken and M. C. Boyce, “Mechanics of the Rate-Dependent Elastic–Plastic Deformation of Glassy Polymers from Low to High Strain Rates,” International Journal of Solids and Structures, vol. 43, no. 5, pp. 1331–1356, Mar. 2006. [23] Y. Du, P. Pei, T. Suo, and G. Gao, “Large Deformation Mechanical Behavior and Constitutive Modeling of Oriented PMMA,” International Journal of Mechanical Sciences, vol. 257, p. 108520, Nov. 2023. [24] 李昱勳,《明膠玻璃溫間拉伸成形之研究》,國立台灣大學機械工程學系碩士論文,2023。 [25] M.Dixon, R. Glaubius, P. Freeman, R. Pless, M. P. Gleason, M. M. Thomas, and W. D. Smart, “Measuring Optical Distortion in Aircraft Transparencies: A Fully Automated System for Quantitative Evaluation,” Machine Vision and Applications, vol. 22, no. 5, pp. 791–804, Apr. 2010. [26] L. Zhao, L. Wu, and Y. Fang, “Surface Reconstruction and Thickness Error Calculation of Optical Components with a Complex Curved Surface,” Applied Optics, vol. 63, no. 11, pp. 2922–2929, Apr. 2024. [27] 陳家揚,《鋁合金飛機蒙皮拉伸成形缺陷分析與製程優化設計》,國立台灣大學機械工程學系碩士論文,2022。 [28] P. Moy, C. Allan Gunnarsson, Tusit Weerasooriya, and W. Chen, “Stress-Strain Response of PMMA as a Function of Strain-Rate and Temperature,” Conference proceedings of the Society for Experimental Mechanics, pp. 125–133, Jan. 2011. [29] G. I. Taylor and H. A. Quinney, “The Latent Energy Remaining in a Metal After Cold Working,” Proceedings of the Royal Society of London, vol. 143, no. 849, pp. 307–326, Jan. 1934. [30] J. J. Mason, A. J. Rosakis, and G. Ravichandran, “On the Strain and Strain Rate Dependence of the Fraction of Plastic Work Converted to Heat: An Experimental Study Using High Speed Infrared Detectors and the Kolsky Bar,” vol. 17, no. 2–3, pp. 135–145, Mar. 1994. [31] A. Dorogoy and D. Rittel, “Effect of confinement on Thick Polycarbonate Plates Impacted by Long and AP Projectiles,” International Journal of Impact Engineering, vol. 76, pp. 38–48, Sep. 2014. [32] W. D. Drotning and E. P. Roth, “Effects of Moisture on the Thermal Expansion of Poly(Methylmethacrylate),” Journal of Materials Science, vol. 24, no. 9, pp. 3137–3140, Sep. 1989. [33] C. Weng, T. Ding, M. Zhou, J. Liu, and H. Wang, “Formation Mechanism of Residual Stresses in Micro-Injection Molding of PMMA: A Molecular Dynamics Simulation,” Polymers, vol. 12, no. 6, pp. 1368–1368, Jun. 2020. [34] S. Eim et al., “Insights into the Thermal Expansion of Amorphous Polymers,” ACS Macro Letters, vol. 13, no. 11, pp. 1490–1494, Oct. 2024. [35] D. D. Wright-Charlesworth, E. P. Lautenschlager, and J. L. Gilbert, “Hot Compaction of Poly(Methyl Methacrylate) Composites Based on Fiber Shrinkage Results,” Journal of Materials Science Materials in Medicine, vol. 16, no. 10, pp. 967–975, Sep. 2005. [36] El Bahra, Shadi, “Dimensional Precision and Volumetric Shrinkage of PMMA Denture Bases Polymerized with Different Methods,” Uni-kiel.de, 2016. [37] J. D. Coe, M. Lentz, K. A. Velizhanin, J. T. Gammel, and K. R. Cochrane, “The Equation of State and Shock-Driven Decomposition of Polymethylmethacrylate (PMMA),” Journal of Applied Physics, vol. 131, no. 12, p. 125108, Mar. 2022. [38] 戴暘,《熱沖壓成形高溫摩擦特性之分析》,國立台灣大學機械工程學系碩士論文,2013。 [39] 羅偉綸,《高溫摩擦試驗設備研發與硼鋼之摩擦特性研究》,國立台灣大學機械工程學系碩士論文,2016。 [40] E. M. Arruda, M. C. Boyce, and R. Jayachandran, “Effects of Strain Rate, Temperature and Thermomechanical Coupling on the Finite Strain Deformation of Glassy Polymers,” Mechanics of Materials, vol. 19, no. 2–3, pp. 193–212, Jan. 1995. [41] Z. Li and J. Lambros, “Strain Rate Effects on the Thermomechanical Behavior of Polymers,” International Journal of Solids and Structures, vol. 38, no. 20, pp. 3549–3562, May 2001. [42] S. M. Walley and J. E. Field, “Strain Rate Sensitivity of Polymers in Compression from Low to High Rates,” vol. 1, no. 3, pp. 211–227, Jan. 1994. [43] W. R. Blumenthal, “Influence of Temperature and Strain Rate on the Compressive Behavior of PMMA and Polycarbonate Polymers,” AIP conference proceedings, Jan. 2002. [44] J. Richeton, S. Ahzi, and L. Daridon, “Thermodynamic Investigation of Yield-Stress Models for Amorphous Polymers,” The Philosophical Magazine A Journal of Theoretical Experimental and Applied Physics, vol. 87, no. 24, pp. 3629–3643, Jul. 2007. [45] G. Palm, R. B. Dupaix, and J. Castro, “Large Strain Mechanical Behavior of Poly(Methyl Methacrylate) (PMMA) Near the Glass Transition Temperature,” Journal of Engineering Materials and Technology, vol. 128, no. 4, pp. 559–563, Jan. 2006. [46] 李瑋宸,《薄膜PET黏彈塑性之有限元素材料模型建立》,國立陽明交通大學機械工程學系碩士論文,,2021。 [47] 梁煜晨,《明膠玻璃慢速延展成型之模擬分析》,國立台灣大學機械工程學系碩士論文,2024。 [48] “Abaqus Analysis User’s Manual (6.11),” Nchc.org.tw, 2025. http://orpheus.nchc.org.tw:2080/v6.11/books/usb/default.htm?startat=pt05ch22s02abm19.html [49] J. Kichenin, K. V. Dang, and K. Boytard, “Finite-Element Simulation of a New Two-Dissipative Mechanisms Model for Bulk Medium-Density Polyethylene,” Journal of Materials Science, vol. 31, no. 6, pp. 1653–1661, Mar. 1996. [50] L. Figiel and B. Gunther, “Modelling the High-Temperature Longitudinal Fatigue Behaviour of Metal Matrix Composites (Sic/Ti-6242): Nonlinear Time-Dependent Matrix Behaviour,” International Journal of Fatigue, vol. 30, no. 2, pp. 268–276, Feb. 2008. [51] A. Kossa and A. L. Horváth, “Powerful Calibration Strategy for the Two-Layer Viscoplastic Model,” Polymer Testing, vol. 99, p. 107206, Apr. 2021. [52] R. W. Hertzberg, Richard Paul Vinci, and J. L. Hertzberg, Deformation and fracture mechanics of engineering materials. Hoboken: Wiley, 2020. [53] M. E. Kassner and M.-T. Pérez-Prado, “Five-Power-Law Creep in Single Phase Metals and Alloys,” Progress in Materials Science, vol. 45, no. 1, pp. 1–102, Jan. 2000. [54] A. A. Abdel-Wahab, S. Ataya, and V. V. Silberschmidt, “Temperature-Dependent Mechanical Behaviour of PMMA: Experimental Analysis and Modelling,” Polymer Testing, vol. 58, pp. 86–95, Apr. 2017. [55] “Login | 3DEXPERIENCE ID | Dassault Systèmes,” 3ds.com, 2023. https://help.3ds.com/2023/English/DSSIMULIA_Established/SIMACAEELMRefMap/simaelm-c-connectorelem.htm?contextscope=all (accessed Jun. 16, 2025). [56] Norihisa Tanio and T. Nakanishi, “Physical Aging and Refractive Index of Poly(Methyl Methacrylate) Glass,” Polymer Journal, vol. 38, no. 8, pp. 814–818, Jul. 2006. [57] 羅元智,《透明玻璃扭曲瑕疵檢測》,朝陽科技大學工業工程與管理系碩士論文,2015。 [58] J. Mathar, “Determination of Initial Stresses by Measuring the Deformations Around Drilled Holes,” Transactions of the American Society of Mechanical Engineers, vol. 56, no. 3, pp. 249–254, Mar. 1934. [59] G. Nordmark, L. Mueller, and R. Kelsey, “Effect of Residual Stresses on Fatigue Crack Growth Rates in Weldments of Aluminum Alloy 5456 Plate,” Committee E08 on Fatigue and Fracture, pp. 44–62, Jan. 1982. [60] D. E. Bray, W. Tang, and D. S. Grewal, “Field Measurements of Ultrasonic Stress in a Compressor Rotor,” Review of Progress in Quantitative Nondestructive Evaluation, pp. 1691–1697, Jan. 1997. [61] A. C. B. Rezende and S. L. Vieira, “Ultrasonic Measurement of Acoustoelastic Coefficients of Polymethyl Methacrylate (PMMA),” 2024 IEEE UFFC Latin America Ultrasonics Symposium (LAUS), pp. 1–5, May 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99645 | - |
| dc.description.abstract | 在製造飛機之透明擋風玻璃或座艙罩時,會採用明膠玻璃材料進行溫間拉伸成形製程,但在實際加工中當材料升溫至玻璃轉換溫度附近時會遇到因熱行為所產生的材料變形狀況,此行為不僅會對明膠玻璃的成形造成影響,也會導致成品缺陷的產生,其中又以光學缺陷和幾何缺陷為主。本論文旨在透過對明膠玻璃進行玻璃轉換溫度附近的材料實驗,來對材料的溫間性質進行討論,並透過實際數據建立其材料模型,以提高CAE所使用的分析模型準確性,最後透過成形模擬的結果對成品的回彈缺陷進行探討。
透過文獻蒐集和整理建立出CAE中明膠玻璃在溫間成形模擬時所需要的材料模型參數,並進行與其對應的材料實驗,包含單軸拉伸、熱膨脹、比熱和潛變實驗,發現材料對於溫度和應變率的敏感性、平面和垂直方向的膨脹收縮差異性、隨溫度增加的比熱以及在加工溫度下發生的潛變行為。 觀察材料在加工溫度下所展現的變形行為以對明膠玻璃之材料模型進行建立,分別探討可用於描述此材料的彈塑性模型、彈塑黏模型之特性。使用曲線擬合的方式取得材料的黏性參數並透過實驗數據完成彈塑黏模型的模擬驗證,以確定參數的正確性。在詳細說明彈塑性模型與彈塑黏模型在成形模擬的使用上之限制後,選擇彈塑性模型作為後續之成形模擬分析使用。 在成品性質的探討方面,主要針對光學性質和幾何缺陷進行討論,說明與CAE模擬結果相對應的缺陷關係,包含光學方面之偏折、扭曲和霧度,以及幾何方面之回彈現象。分析影響回彈模擬結果的因子,分別對接觸面摩擦係數的改變、材料模型中黏性參數的有無和經過6個小時的退火製程之回彈模擬結果比較差異,得到加入黏性參數對成品回彈量的下降有明顯的趨勢,因此在未來對於成品性質方面的進一步探討中,正確的、多應變率的材料黏性參數取得會是一個主要需要探討的方向。 | zh_TW |
| dc.description.abstract | In the manufacturing of transparent windshields or canopies for aircraft, PMMA materials are utilized in a warm stretching forming process. However, during processing, when the material is heated to temperatures near its glass transition point, thermal behavior induces material deformation. The sensitivity of polymeric materials to temperature and processing speed also impacts manufacturers’ inspection requirements for finished products, with optical and geometric defects being the primary concerns. This study aims to characterize the properties of PMMA through material experiments conducted near its glass transition temperature, develop a material model based on empirical data to enhance the accuracy of finite element analysis (FEA) models used in computer-aided engineering (CAE), and investigate springback defects in the finished product through forming simulation results.
Through a systematic literature review, the material model parameters required for CAE simulations of PMMA during warm forming were established. Corresponding material experiments, including uniaxial tensile tests, thermal expansion measurements, specific heat capacity evaluations, and creep tests, were conducted. These experiments revealed the material’s sensitivity to temperature and strain rate, differential expansion and contraction in planar and vertical directions, increasing specific heat with rising temperature, and creep behavior under processing conditions. The deformation behavior observed under processing temperatures was used to construct a material model for PMMA. The characteristics of elastoplastic and viscoelastic-plastic models suitable for describing this material were analyzed. Viscoelastic parameters were obtained through curve-fitting techniques, and the viscoelastic-plastic model was validated using experimental data to ensure parameter accuracy. After a detailed discussion of the limitations of elastoplastic and viscoelastic-plastic models in forming simulations, the elastoplastic model was selected for subsequent forming simulation analyses. Regarding the properties of the finished product, the discussion focuses on optical and geometric defects, elucidating their correlation with CAE simulation outcomes. Optical defects, such as deflection, distortion, and haze, and geometric defects, notably springback, were examined. Factors influencing springback simulation results were analyzed, including variations in contact surface friction coefficients, the presence or absence of viscoelastic parameters in the material model, and the effects of a six-hour annealing process. The results indicate a significant trend of reduced springback when viscoelastic parameters are included. Consequently, the accurate determination of viscoelastic parameters across multiple strain rates emerges as a critical direction for future investigations into the properties of finished products. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:14:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:14:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
誌謝 ii 摘要 iv Abstract vi 目次 viii 圖次 xii 表次 xix 1 第一章 緒論 1 1.1 前言 1 1.2 研究背景與目的 2 1.3 文獻回顧 3 1.4 研究方法與步驟 6 1.5 論文總覽 7 2 第二章 明膠玻璃材料實驗 9 2.1 明膠玻璃性質介紹 9 2.2 溫間單軸拉伸實驗 10 2.2.1 實驗規劃與試片規格 10 2.2.2 實驗流程 12 2.2.3 實驗結果 14 2.2.4 明膠玻璃軟化與應變硬化機制 17 2.3 熱膨脹實驗 18 2.3.1 實驗規劃與試片規格 19 2.3.2 實驗結果 20 2.3.3 熱膨脹係數與密度變化 21 2.4 比熱實驗 23 2.4.1 實驗規劃與試片規格 23 2.4.2 實驗結果 24 2.5 潛變實驗 25 2.5.1 實驗規劃與試片規格 25 2.5.2 實驗結果 27 2.6 泡棉壓縮實驗 28 2.6.1 實驗規劃與試片規格 28 2.6.2 實驗結果 30 2.7 泡棉摩擦實驗 32 2.7.1 實驗規劃與試片規格 32 2.7.2 實驗結果 33 2.8 小結 35 3 第三章 明膠玻璃性質介紹與材料模型建立 36 3.1 玻璃轉換溫度附近的材料性質變化 36 3.2 成形溫度與速度對材料降伏行為的影響 37 3.2.1 有效成形性分析 38 3.3 潛變性質 39 3.3.1 明膠玻璃的潛變特性 40 3.4 明膠玻璃材料模型介紹與選用 41 3.4.1 彈塑性模型(Elastic-Plastic Model) 42 3.4.2 彈塑性+潛變模型(Elastic-Plastic-Creep Model) 42 3.4.3 雙層黏塑性模型(TLVP Model) 45 3.5 黏性參數校正 47 3.5.1 Creep 參數校正 47 3.5.2 Viscous 參數校正 51 3.6 材料模型驗證 52 3.6.1 細化網格收斂性分析 54 3.6.2 彈塑性模型驗證 55 3.6.3 彈塑性+潛變模型驗證 56 3.6.4 雙層黏塑性模型驗證 58 3.7 小結 60 4 第四章 明膠玻璃拉伸成形分析模型建立 62 4.1 溫間成形製程介紹 62 4.2 1:3明膠玻璃風擋成形模擬 64 4.2.1 成形模擬設定 66 4.2.2 模型收斂性分析 70 4.2.3 模擬結果 73 4.3 1:1明膠玻璃座艙罩成形模擬 78 4.3.1 成形模擬設定 81 4.3.2 模型收斂性分析 83 4.3.3 模擬結果 85 4.4 加入泡棉之成形模擬 92 4.4.1 泡棉材料設定 93 4.4.2 CAE模型設定 93 4.4.3 收斂性分析 94 4.4.4 模擬結果 95 4.4.5 模面補償 98 4.5 小結 99 5 第五章 明膠玻璃成品光學性質與幾何變形探討 100 5.1 成品性質探討 100 5.2 成品厚度檢驗方法 101 5.3 成品光學性質檢驗方法 102 5.3.1 明膠玻璃光學瑕疵 102 5.3.2 明膠玻璃光學性質量測方法文獻回顧 105 5.3.3 明膠玻璃光學檢測標準 108 5.4 殘留應力與回彈量測方法 109 5.4.1 殘留應力量測方法 109 5.4.2 回彈量量測方法 114 5.5 影響回彈的因子 119 5.5.1 接觸面摩擦對回彈的影響 120 5.5.2 黏性參數對回彈的影響 126 5.5.3 退火階段的應力鬆弛對回彈的影響 131 5.6 小結 134 6 第六章 結論與未來工作 136 6.1 結論 136 6.2 未來工作 138 7 參考文獻 139 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 明膠玻璃 | zh_TW |
| dc.subject | 高分子溫間成形 | zh_TW |
| dc.subject | 明膠玻璃溫間特性 | zh_TW |
| dc.subject | 彈塑黏模型 | zh_TW |
| dc.subject | 雙層黏塑性模型 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | PMMA Properties at Elevated Temperatures | en |
| dc.subject | PMMA | en |
| dc.subject | Finite Element Method | en |
| dc.subject | TLVP Model | en |
| dc.subject | Viscoelastic-Plastic Models | en |
| dc.subject | Warm Forming of Polymers | en |
| dc.title | 明膠玻璃之溫間材料性質與成形特性探討 | zh_TW |
| dc.title | Investigation of Thermo-mechanical Property and Stretch-forming Behavior of Acrylic Glass | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 徐瑞坤;洪景華;楊侑倫;陳為祥 | zh_TW |
| dc.contributor.oralexamcommittee | Ray-Quen Hsu;Ching-Hua Hung;Yo-Lun Yang;Wei-Shiung Chen | en |
| dc.subject.keyword | 明膠玻璃,高分子溫間成形,明膠玻璃溫間特性,彈塑黏模型,雙層黏塑性模型,有限元素法, | zh_TW |
| dc.subject.keyword | PMMA,Warm Forming of Polymers,PMMA Properties at Elevated Temperatures,Viscoelastic-Plastic Models,TLVP Model,Finite Element Method, | en |
| dc.relation.page | 146 | - |
| dc.identifier.doi | 10.6342/NTU202503406 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2030-07-31 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 11.44 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
