Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99644
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李坤彥zh_TW
dc.contributor.advisorKung-Yen Leeen
dc.contributor.author盧采裴zh_TW
dc.contributor.authorTsai-Pei Luen
dc.date.accessioned2025-09-17T16:14:47Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-08-
dc.identifier.citation[1]R. F. Davis, J. W. Palmour, and J. A. Edmond, "A review of the status of diamond and silicon carbide devices for high-power, -temperature, and -frequency applications," in International Technical Digest on Electron Devices, 9-12 Dec. 1990 1990, pp. 785-788, doi: 10.1109/IEDM.1990.237044.
[2]H.-S. Lee, "High power bipolar junction transistors in silicon carbide," Licentiate thesis, comprehensive summary, Trita-EKT, KTH, Stockholm, 2005:6, 2005. [Online]. Available: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3854
[3]T. P. Chow, N. Ramungul, J. Fedison, and Y. Tang, "SiC Power Bipolar Transistors and Thyristors," in Silicon Carbide: Recent Major Advances, W. J. Choyke, H. Matsunami, and G. Pensl Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 737-767.
[4]B. J. Baliga, "Power semiconductor device figure of merit for high-frequency applications," IEEE Electron Device Letters, vol. 10, no. 10, pp. 455-457, 1989, doi: 10.1109/55.43098.
[5]Y. Sun et al., "Review of the Recent Progress on GaN-Based Vertical Power Schottky Barrier Diodes (SBDs)," Electronics, vol. 8, no. 5, doi: 10.3390/electronics8050575.
[6]X. Yuan, I. Laird, and S. Walder, "Opportunities, Challenges, and Potential Solutions in the Application of Fast-Switching SiC Power Devices and Converters," IEEE Transactions on Power Electronics, vol. 36, no. 4, pp. 3925-3945, 2021, doi: 10.1109/TPEL.2020.3024862.
[7]V. V. Afanasev, M. Bassler, G. Pensl, and M. Schulz, "Intrinsic SiC/SiO2 Interface States," physica status solidi (a), vol. 162, no. 1, pp. 321-337, 1997, doi: https://doi.org/10.1002/1521-396X(199707)162:1<321::AID-PSSA321>3.0.CO;2-F.
[8]J. Xin, L. Zheng, Q. Dai, M. Du, Z. Ouyang, and E. Zhou, "Threshold Voltage Monitoring Method for SiC MOSFET Based on Body Diode Voltage under Body Effect," in 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), 28-30 May 2021 2021, pp. 1-6, doi: 10.1109/CIEEC50170.2021.9510634.
[9]T. Aichinger, G. Rescher, and G. Pobegen, "Threshold voltage peculiarities and bias temperature instabilities of SiC MOSFETs," Microelectronics Reliability, vol. 80, pp. 68-78, 2018/01/01/ 2018, doi: https://doi.org/10.1016/j.microrel.2017.11.020.
[10]M. W. Feil et al., "Gate Switching Instability in Silicon Carbide MOSFETs—Part I: Experimental," IEEE Transactions on Electron Devices, vol. 71, no. 7, pp. 4210-4217, 2024, doi: 10.1109/TED.2024.3397636.
[11]Y. Ji, L. Zhao, S. Yang, C. Lu, X. Gu, and W. T. Ng, "Degradation mechanisms for static and dynamic characteristics in 1.2 kV 4H-SiC MOSFETs under repetitive short-circuit tests," Solid-State Electronics, vol. 226, p. 109082, 2025/06/01/ 2025, doi: https://doi.org/10.1016/j.sse.2025.109082.
[12]J. Wei, S. Liu, S. Li, J. Fang, T. Li, and W. Sun, "Comprehensive Investigations on Degradations of Dynamic Characteristics for SiC Power MOSFETs Under Repetitive Avalanche Shocks," IEEE Transactions on Power Electronics, vol. 34, no. 3, pp. 2748-2757, 2019, doi: 10.1109/TPEL.2018.2843559.
[13]M. Ji et al., "Influence of JFET Region on Heavy-Ion-Induced Gate Damage in SiC Power MOSFET," IEEE Transactions on Nuclear Science, vol. 72, no. 5, pp. 1726-1733, 2025, doi: 10.1109/TNS.2025.3555307.
[14]Y. Zhong, X. He, Z. Wang, J. Luo, B. Wang, and Q. Li, "Review of HTRB and HTGB Reliability of SiC MOSFETs," in 2024 7th International Conference on Energy, Electrical and Power Engineering (CEEPE), 26-28 April 2024 2024, pp. 1161-1168, doi: 10.1109/CEEPE62022.2024.10586507.
[15]H. Zhao et al., "Study of Influence of HTGB and HTRB Tests on Parameters of 1200V SiC MOSFETs," in 2024 3rd International Symposium on Semiconductor and Electronic Technology (ISSET), 23-25 Aug. 2024 2024, pp. 252-255, doi: 10.1109/ISSET62871.2024.10779939.
[16]B. J. Baliga, Fundamentals of Power Semiconductor Devices. Springer US, 2010.
[17]E. Ugur, F. Yang, S. Pu, S. Zhao, and B. Akin, "Degradation Assessment and Precursor Identification for SiC MOSFETs Under High Temp Cycling," IEEE Transactions on Industry Applications, vol. 55, no. 3, pp. 2858-2867, 2019, doi: 10.1109/TIA.2019.2891214.
[18]J. Wei et al., "Interfacial damage extraction method for SiC power MOSFETs based on C-V characteristics," in 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD), 28 May-1 June 2017 2017, pp. 359-362, doi: 10.23919/ISPSD.2017.7988992.
[19]J. L. Wang et al., "Trap Analysis Based on Low-Frequency Noise for SiC Power MOSFETs Under Repetitive Short-Circuit Stress," IEEE Journal of the Electron Devices Society, vol. 8, pp. 145-151, 2020, doi: 10.1109/JEDS.2020.2971245.
[20]M. Rashid, E. David, and I. Torshin, Power Electronics Handbook" by. 2023.
[21]S. Musumeci, "Gate charge control of high-voltage Silicon-Carbide (SiC) MOSFET in power converter applications," in 2015 International Conference on Clean Electrical Power (ICCEP), 16-18 June 2015 2015, pp. 709-715, doi: 10.1109/ICCEP.2015.7177569.
[22]B. Agrawal, M. Preindl, B. Bilgin, and A. Emadi, "Estimating switching losses for SiC MOSFETs with non-flat miller plateau region," in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 26-30 March 2017 2017, pp. 2664-2670, doi: 10.1109/APEC.2017.7931075.
[23]JESD22-A108F, High Temperature Gate Bias (HTGB) Test Method, JEDEC Solid State Technology Association, 2016.
[24]AEC-Q101 Rev. H, Stress Test Qualification for Automotive Grade Discrete Semiconductors, Automotive Electronics Council, 2020.
[25]L. Anoldo, E. Zanetti, W. Coco, A. Russo, P. Fiorenza, and F. Roccaforte, "4H-SiC MOSFET Threshold Voltage Instability Evaluated via Pulsed High-Temperature Reverse Bias and Negative Gate Bias Stresses," Materials, vol. 17, p. 1908, 04/20 2024, doi: 10.3390/ma17081908.
[26]L. Yang and A. Castellazzi, "High temperature gate-bias and reverse-bias tests on SiC MOSFETs," Microelectronics Reliability, vol. 53, no. 9, pp. 1771-1773, 2013/09/01/ 2013, doi: https://doi.org/10.1016/j.microrel.2013.07.065.
[27]S. A. Ikpe et al., "Long-term reliability of a hard-switched boost power processing unit utilizing SiC power MOSFETs," in 2016 IEEE International Reliability Physics Symposium (IRPS), 17-21 April 2016 2016, pp. ES-1-1-ES-1-8, doi: 10.1109/IRPS.2016.7574610.
[28]M. K. Das, S. K. Haney, J. Richmond, A. Olmedo, Q. J. Zhang, and Z. Ring, "SiC MOSFET Reliability Update," Materials Science Forum, vol. 717-720, pp. 1073-1076, 2012, doi: 10.4028/www.scientific.net/MSF.717-720.1073.
[29]S.-I. Hayashi and K. Wada, "Accelerated aging test for gate-oxide degradation in SiC MOSFETs for condition monitoring," Microelectronics Reliability, vol. 114, p. 113777, 2020/11/01/ 2020, doi: https://doi.org/10.1016/j.microrel.2020.113777.
[30]P. Wu, G. Tang, F. Yang, Z. Du, Y. Du, and J. Wu, "Influence of high temperature reliability test of 1200V SiC MOSFET on static parameters," Journal of Physics: Conference Series, vol. 2033, no. 1, p. 012096, 2021/09/01 2021, doi: 10.1088/1742-6596/2033/1/012096.
[31]Y. Shen et al., "Time-Dependent Degradation Mechanism of 1.2 kV SiC MOSFET Under Long-Term High-Temperature Gate Bias Stress," IEEE Transactions on Electron Devices, vol. 70, no. 3, pp. 1162-1167, 2023, doi: 10.1109/TED.2022.3213774.
[32]J. Kang, A. Zhu, Y. Chen, H. Luo, L. Yao, and Z. Xin, "An Online Gate Oxide Degradation Monitoring Method for SiC MOSFETs With Contactless PCB Rogowski Coil Approach," IEEE Transactions on Power Electronics, vol. 38, no. 8, pp. 9673-9684, 2023, doi: 10.1109/TPEL.2023.3270820.
[33]M. Xie, P. Sun, K. Wang, Q. Luo, and X. Du, "Online Gate-Oxide Degradation Monitoring of Planar SiC MOSFETs Based on Gate Charge Time," IEEE Transactions on Power Electronics, vol. 37, no. 6, pp. 7333-7343, 2022, doi: 10.1109/TPEL.2022.3142139.
[34]H. Luo, F. Iannuzzo, and M. Turnaturi, "Role of Threshold Voltage Shift in Highly Accelerated Power Cycling Tests for SiC MOSFET Modules," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 2, pp. 1657-1667, 2020, doi: 10.1109/JESTPE.2019.2894717.
[35]Z. Sarkany, H. Weikun, and M. Rencz, "Temperature change induced degradation of SiC MOSFET devices," in 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 31 May-3 June 2016 2016, pp. 1572-1579, doi: 10.1109/ITHERM.2016.7517736.
[36]J. P. Kozak, R. Zhang, J. Liu, K. D. T. Ngo, and Y. Zhang, "Degradation of SiC MOSFETs Under High-Bias Switching Events," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 5, pp. 5027-5038, 2022, doi: 10.1109/JESTPE.2021.3064288.
[37]S. H. Chen et al., "Modulation of Ciss of a 4H-SiC Planar MOSFET With a Shorter Sidewall and a Thicker Gate," IEEE Electron Device Letters, vol. 44, no. 11, pp. 1825-1828, 2023, doi: 10.1109/LED.2023.3312671.
[38]R. Ouaida et al., "Gate Oxide Degradation of SiC MOSFET in Switching Conditions," IEEE Electron Device Letters, vol. 35, no. 12, pp. 1284-1286, 2014, doi: 10.1109/LED.2014.2361674.
[39]F. Yang, E. Ugur, and B. Akin, "Evaluation of Aging's Effect on Temperature-Sensitive Electrical Parameters in SiC mosfets," IEEE Transactions on Power Electronics, vol. 35, no. 6, pp. 6315-6331, 2020, doi: 10.1109/TPEL.2019.2950311.
[40]K. Han and B. J. Baliga, "Comprehensive Physics of Third Quadrant Characteristics for Accumulation- and Inversion-Channel 1.2-kV 4H-SiC MOSFETs," IEEE Transactions on Electron Devices, vol. 66, no. 9, pp. 3916-3921, 2019, doi: 10.1109/TED.2019.2929733.
[41]G. Pobegen, J. Weisse, M. Hauck, H. B. Weber, and M. Krieger, "On the Origin of Threshold Voltage Instability under Operating Conditions of 4H-SiC n-Channel MOSFETs," Materials Science Forum, vol. 858, pp. 473-476, 2016, doi: 10.4028/www.scientific.net/MSF.858.473.
[42]C. J. Cochrane, P. M. Lenahan, and A. J. Lelis, "An electrically detected magnetic resonance study of performance limiting defects in SiC metal oxide semiconductor field effect transistors," Journal of Applied Physics, vol. 109, no. 1, 2011, doi: 10.1063/1.3530600.
[43]A. Ghosh et al., "Studies of Bias Temperature Instabilities in 4H-SiC DMOSFETs," in 2020 IEEE International Reliability Physics Symposium (IRPS), 28 April-30 May 2020 2020, pp. 1-4, doi: 10.1109/IRPS45951.2020.9128318.
[44]C. X. Zhang et al., "Origins of Low-Frequency Noise and Interface Traps in 4H-SiC MOSFETs," IEEE Electron Device Letters, vol. 34, no. 1, pp. 117-119, 2013, doi: 10.1109/LED.2012.2228161.
[45]U. Karki and F. Z. Peng, "Effect of Gate-Oxide Degradation on Electrical Parameters of Power MOSFETs," IEEE Transactions on Power Electronics, vol. 33, no. 12, pp. 10764-10773, 2018, doi: 10.1109/TPEL.2018.2801848.
[46]A. Pérez-Tomás et al., "Field-effect mobility temperature modeling of 4H-SiC metal-oxide-semiconductor transistors," Journal of Applied Physics, vol. 100, no. 11, 2006, doi: 10.1063/1.2395597.
[47]T. Kimoto and H. Watanabe, "Defect engineering in SiC technology for high-voltage power devices," Applied Physics Express, vol. 13, no. 12, p. 120101, 2020/11/26 2020, doi: 10.35848/1882-0786/abc787.
[48]P.-C. Liao et al., "The relationship of voltage variations in the third quadrant and the Schottky area ratios in a 4H-SiC SBD-embedded MOSFET," Materials Science in Semiconductor Processing, vol. 186, p. 109026, 2025/02/01/ 2025, doi: https://doi.org/10.1016/j.mssp.2024.109026.
[49]A. Fayyaz, G. Romano, and A. Castellazzi, "Body diode reliability investigation of SiC power MOSFETs," Microelectronics Reliability, vol. 64, pp. 530-534, 2016/09/01/ 2016, doi: https://doi.org/10.1016/j.microrel.2016.07.044.
[50]X. Ye, C. Chen, Y. Wang, G. Zhai, and G. J. Vachtsevanos, "Online Condition Monitoring of Power MOSFET Gate Oxide Degradation Based on Miller Platform Voltage," IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4776-4784, 2017, doi: 10.1109/TPEL.2016.2602323.
[51]D. K. Schroder, Semiconductor Material and Device Characterization. Wiley, 2015.
[52]L. Shi et al., “Gate Oxide Reliability in Silicon Carbide Planar and Trench Metal-Oxide-Semiconductor Field-Effect Transistors Under Positive and Negative Electric Field Stress,” Electronics, vol. 13, no. 22, p. 4516, Nov. 2024, doi: 10.3390/electronics13224516.
[53]X. Gao et al., "Review on Power Cycling Reliability of SiC Power Device," Electronic Materials, vol. 5, pp. 80-100, 06/10 2024, doi: 10.3390/electronicmat5020007.
[54]M. Takahashi, Z. Sun, A. Watanabe, I. Omura, S. Munk-Nielsen, and A. B. Jørgensen, "Thermo-mechanical analysis on 10 kV SiC-MOSFETs to improve the reliability of solder layers," Microelectronics Reliability, vol. 172, p. 115826, 2025/09/01/ 2025, doi: https://doi.org/10.1016/j.microrel.2025.115826.
[55]C. Schwabe, N. Seltner, and T. Basler, "Reliability of SiC MOSFETs in the High Cycle Fatigue Regime under Fast Power Pulses," Solid State Phenomena, vol. 361, pp. 7-12, 08/26 2024, doi: 10.4028/p-tR8KUM.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99644-
dc.description.abstract隨著電動車與再生能源等高功率應用迅速發展,具備高壓、高溫與高頻操作能力的碳化矽 (SiC) 功率元件已成為次世代能源轉換技術的關鍵。然而,SiC MOSFET 的長期可靠度仍受限於其氧化層與介面缺陷問題,特別是在高溫閘極偏壓 (HTGB) 與熱循環應力 (PCT) 條件下,易產生閾值電壓漂移、導通電阻上升與閘極電容變化等現象。
本研究選用三種結構不同的1200V平面型SiC MOSFET元件,透過長時間HTGB與直流功率循環測試,系統性分析包括Vth、Rds,on、VSD、Cg–Vg、VFB與Qg等電性參數之劣化行為。結果顯示,正HTGB造成電子陷阱累積,導致Vth上升與Cg–Vg右移,而負HTGB則呈現Vth初升後下降的雙階段機制,反映電洞捕獲與電荷釋放的交互影響。PCT測試中,元件因熱–機械應力交互應力產生明顯的Rds,on增加與Vth漂移,且結構設計如通道長度 (Lch) 、側壁寬度 (Sidewall) 與源極接觸重疊 (Lcont) 對劣化程度具明確關聯。
研究結果不僅揭示SiC MOSFET在靜態與動態應力下的退化行為,亦建立了結構參數與可靠度表現之對應關係。此成果可作為未來高可靠度元件設計與壽命預測的實證基礎,對於車用、高頻與極端環境應用中之SiC元件開發具高度參考價值。
zh_TW
dc.description.abstractWith the rapid growth of electric vehicles and renewable energy systems, Silicon Carbide (SiC) power MOSFETs have emerged as essential components due to their superior high-voltage, high-temperature, and high-frequency capabilities. However, long-term reliability remains a critical challenge, particularly under High-Temperature Gate Bias (HTGB) and Power Cycling Test (PCT) conditions, where gate oxide degradation and interface instability can induce threshold voltage shifts, increased on-resistance, and altered gate capacitance.
This work investigates the degradation behaviors of three 1200 V planar SiC MOSFETs with varying structural parameters under prolonged HTGB and PCT stresses. Key electrical characteristics including Vth, Rds,on, VSD, Cg–Vg, VFB, and Qg were analyzed. Under positive HTGB, electron trapping causes Vth increase and Cg–Vg right-shift, while negative HTGB reveals a two-stage Vth behavior driven by hole capture and interface charge release. PCT results indicate stress-induced Rds,on increase and Vth drift due to thermal–mechanical fatigue, with structural factors such as channel length (Lch), sidewall width, and source contact length (Lcont) playing critical roles in degradation severity.
The findings provide a comprehensive correlation between device structure and reliability performance under combined electrical and thermal stresses. This study not only clarifies key degradation mechanisms but also offers practical guidelines for future SiC MOSFET design targeting high-reliability automotive and high-frequency applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:14:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:14:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
目次 v
圖次 viii
表次 xi
第一章、緒論 1
1.1 研究背景 1
1.2 碳化矽 (SiC) 材料特性 1
1.2.1 SiC 相較於 Si 的優勢 2
1.2.2 SiC 的挑戰與可靠度問題 3
1.3 論文架構 3
1.4 研究動機與目的 4
第二章、文獻回顧與理論基礎 6
2.1 SiC Power MOSFET元件原理 6
2.1.1 結構介紹 6
2.1.2 導通與關斷操作原理 7
2.1.3 閘極電容-電壓特性 (Cg-Vg) 12
2.1.4 閘極電荷與切換行為特性 (Qg) 17
2.2 高溫閘極偏壓測試 (HTGB) 規範與文獻回顧 19
2.2.1 HTGB測試規範 20
2.2.2 HTGB文獻回顧 20
2.3 直流功率循環測試 (PCT) 原理與應用 22
2.3.1 PCT測試規範 22
2.3.2 PCT文獻回顧 23
第三章、實驗元件與測試方法 25
3.1 測試元件介紹 25
3.2 基本靜態與動態測量方法 28
3.2.1 閾值電壓 (Vth) 28
3.2.2 導通電阻 (Rds,on) 29
3.2.3 第三象限導通電壓 (VSD) 30
3.2.4 閘極電容特性 (Cg–Vg) 與平帶電壓 (VFB) 31
3.2.5 總閘極電荷 (Qg) 33
3.3 高溫閘極偏壓測試 (HTGB) 方法 35
3.3.1 正閘極偏壓條件 (+HTGB) 37
3.3.2 負閘極偏壓條件 (−HTGB) 37
3.4 直流功率循環測試 (PCT) 方法 38
第四章、HTGB測試結果與分析 40
4.1 元件結構與初始電性 40
4.2 閾值電壓 (Vth) 變化分析 42
4.2.1 正 HTGB 下的 Vth 變化分析 42
4.2.2 負 HTGB 下的 Vth 變化分析 45
4.3 導通電阻 (Rds,on) 變化分析 47
4.3.1 正HTGB 下的 Rds,on 變化分析 49
4.3.2 負HTGB 下的 Rds,on 變化分析 52
4.4 第三象限導通電壓 (VSD) 變化分析 55
4.4.1 正HTGB 下的 VSD 變化分析 55
4.4.2 負HTGB 下的 VSD 變化分析 57
4.5 Cg–Vg特性變化分析 59
4.6 閘極電荷 (Qg) 變化分析 64
4.7 總結與機制分析 69
第五章、直流功率循環測試 (PCT) 結果與分析 73
5.1 元件結構與初始電性 73
5.2 閾值電壓 (Vth) 變化分析 74
5.3 導通電阻 (Rds,on) 變化分析 76
5.4 總結與機制分析 79
第六章、結論及未來展望 82
6.1 結論 82
6.2 未來展望 83
參考文獻 85
-
dc.language.isozh_TW-
dc.subject碳化矽zh_TW
dc.subject平面式金氧半場效電晶體zh_TW
dc.subject閘極氧化層zh_TW
dc.subject高溫閘極偏壓zh_TW
dc.subject功率循環測試zh_TW
dc.subject閥值電壓zh_TW
dc.subject導通電阻zh_TW
dc.subjectPower MOSFETen
dc.subjectOn-Resistance (Rdsen
dc.subjectThreshold Voltage (Vth)en
dc.subjectPower Cycling Test (PCT)en
dc.subjectHigh-Temperature Gate Bias (HTGB)en
dc.subjectGate Oxideen
dc.subjectSilicon Carbide (SiC)en
dc.subjecton)en
dc.title不同結構參數調變之碳化矽平面金氧半場效電晶體於高溫閘極偏壓下之電性參數分析zh_TW
dc.titleElectrical Parameters Analysis of SiC Planar MOSFET with Structural Variations under High-Temperature Gate Bias Stressen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee胡振國;張瑞益zh_TW
dc.contributor.oralexamcommitteeJenn-Gwo Hwu;Ray-I Changen
dc.subject.keyword碳化矽,平面式金氧半場效電晶體,閘極氧化層,高溫閘極偏壓,功率循環測試,閥值電壓,導通電阻,zh_TW
dc.subject.keywordSilicon Carbide (SiC),Power MOSFET,Gate Oxide,High-Temperature Gate Bias (HTGB),Power Cycling Test (PCT),Threshold Voltage (Vth),On-Resistance (Rds,on),en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202503743-
dc.rights.note未授權-
dc.date.accepted2025-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
2.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved