Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99641
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪傳揚zh_TW
dc.contributor.advisorChwan-Yang Hongen
dc.contributor.author王言鈺zh_TW
dc.contributor.authorYan-Yu Wangen
dc.date.accessioned2025-09-17T16:14:14Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation戶刈義次 (1963)。作物學試驗法 : (159-176)。東京農業技術學會印行。
林科均 (2015)。水稻非專一性脂質運輸蛋白基因對非生物性逆境的反應及OsLTP2的功能分析。臺灣大學農業化學研究所碩士學位論文。
謝政翰 (2016)。非專一性脂質運輸蛋白質 OsLTP2 對水稻生長及離層酸合成之影響。臺灣大學農業化學研究所碩士學位論文。
Ahanger, M. A., & Agarwal, R. M. (2017). Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiology and Biochemistry, 115, 449-460.
Ali, B., Hayat, S., & Ahmad, A. (2007). 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L.). Environmental and Experimental Botany, 59(2), 217-223.
Anders, C., Niewoehner, O., Duerst, A., & Jinek, M. (2014). Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 513(7519), 569-573.
Apse, M. P., Aharon, G. S., Snedden, W. A., & Blumwald, E. (1999). Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 285(5431), 1256-1258.
Asensi-Fabado, M. A., Cela, J., Müller, M., Arrom, L., Chang, C., & Munné-Bosch, S. (2012). Enhanced oxidative stress in the ethylene-insensitive (ein3-1) mutant of Arabidopsis thaliana exposed to salt stress. Journal of Plant Physiology, 169(4), 360-368.
Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27(1), 84-93.
Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1), 3-16.
Assaha, D. V. M., Ueda, A., Saneoka, H., Al-Yahyai, R., & Yaish, M. W. (2017). The Role of Na+ and K+ Transporters in Salt Stress Adaptation in Glycophytes. Frontiers in Physiology, 8, Article 509.
Barnawal, D., Bharti, N., Tripathi, A., Pandey, S. S., Chanotiya, C. S., & Kalra, A. (2016). ACC-deaminase-producing endophyte Brachybacterium paraconglomeratum strain SMR20 ameliorates Chlorophytum salinity stress via altering phytohormone generation. Journal of Plant Growth Regulation, 35, 553-564.
Barragán, V., Leidi, E. O., Andrés, Z., Rubio, L., De Luca, A., Fernández, J. A., Cubero, B., & Pardo, J. M. (2012). Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell, 24(3), 1127-1142.
Beaudoin, N., Serizet, C., Gosti, F., & Giraudat, J. (2000). Interactions between abscisic acid and ethylene signaling cascades. The Plant Cell, 12(7), 1103-1115.
Beffagna, N., Buffoli, B., & Busi, C. (2005). Modulation of reactive oxygen species production during osmotic stress in Arabidopsis thaliana cultured cells: involvement of the plasma membrane Ca2+-ATPase and H+-ATPase. Plant and Cell Physiology, 46(8), 1326-1339.
Benning, U. F., Tamot, B., Guelette, B. S., & Hoffmann-Benning, S. (2012). New aspects of phloem-mediated long-distance lipid signaling in plants. Frontiers in Plant Science, 3, 53.
Berthomieu, P., Conéjéro, G., Nublat, A., Brackenbury, W. J., Lambert, C., Savio, C., Uozumi, N., Oiki, S., Yamada, K., Cellier, F., Gosti, F., Simonneau, T., Essah, P. A., Tester, M., Véry, A. A., Sentenac, H., & Casse, F. (2003). Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO Journal, 22(9), 2004-2014.
Blein, J.-P., Coutos-Thévenot, P., Marion, D., & Ponchet, M. (2002). From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends in Plant Science, 7(7), 293-296.
Bo, W., Zhaohui, Z., Huanhuan, Z. H. A. N. G., Xia, W., Binglin, L. I. U., Lijia, Y., Xiangyan, H., Deshui, Y., Xuelian, Z., Chunguo, W., Wenqin, S., Chengbin, C., & Yong, Z. (2019). Targeted mutagenesis of NAC transcription factor gene, OsNAC041, leading to salt sensitivity in rice. Rice Science, 26(2), 98-108.
Bose, J., Munns, R., Shabala, S., Gilliham, M., Pogson, B., & Tyerman, S. D. (2017). Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. Journal of Experimental Botany, 68(12), 3129-3143.
Bushra Qayyum, B. Q., Muhammad Shahbaz, M. S., & Akram, N. (2007). Interactive effect of foliar application of 24-epibrassinolide and root zone salinity on morpho-physiological attributes of wheat (Triticum aestivum L.). International Journal of Agriculture and Biology, 9(4), 584-589.
Capecchi, M. R. (1989). Altering the genome by homologous recombination. Science, 244(4910), 1288-1292.
Carrow, R. N., Duncan, R. R., Carrow, R. N., & Duncan, R. R. (2012). Saline and Sodic Turfgrass Soils (pp. 1-415). CRC Press Taylor & Francis Group Boca Raton.
Chae, K., Gonong, B. J., Kim, S.-C., Kieslich, C. A., Morikis, D., Balasubramanian, S., & Lord, E. M. (2010). A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction. Journal of Experimental Botany, 61(15), 4277-4290.
Chae, K., Kieslich, C. A., Morikis, D., Kim, S.-C., & Lord, E. M. (2009). A gain-of-function mutation of Arabidopsis lipid transfer protein 5 disturbs pollen tube tip growth and fertilization. The Plant Cell, 21(12), 3902-3914.
Chandra, V., Bhattacharyya, S., Schmiedel, B. J., Madrigal, A., Gonzalez-Colin, C., Fotsing, S., Crinklaw, A., Seumois, G., Mohammadi, P., & Kronenberg, M. (2021). Promoter-interacting expression quantitative trait loci are enriched for functional genetic variants. Nature Genetics, 53(1), 110-119.
Chawla, S., Jain, S., & Jain, V. (2013). Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). Journal of Plant Biochemistry and Biotechnology, 22(1), 27-34.
Cheng, C. S., Chen, M. N., Lai, Y. T., Chen, T., Lin, K. F., Liu, Y. J., & Lyu, P. C. (2008). Mutagenesis study of rice nonspecific lipid transfer protein 2 reveals residues that contribute to structure and ligand binding. Proteins-Structure Function and Bioinformatics, 70(3), 695-706.
Cheng, N. H., Pittman, J. K., Shigaki, T., Lachmansingh, J., LeClere, S., Lahner, B., Salt, D. E., & Hirschi, K. D. (2005). Functional association of Arabidopsis CAX1 and CAX3 is required for normal growth and ion homeostasis. Plant Physiology, 138(4), 2048-2060.
Cohen-Tannoudji, M., Robine, S., Choulika, A., Pinto, D., El Marjou, F., Babinet, C., Louvard, D., & Jaisser, F. d. r. (1998). I-Sce I-induced gene replacement at a natural locus in embryonic stem cells. Molecular and Cellular Biology, 18(3), 1444-1448.
Cominelli, E., Sala, T., Calvi, D., Gusmaroli, G., & Tonelli, C. (2008). Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant Journal, 53(1), 53-64.
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., & Marraffini, L. A. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-823.
Crimi, M., Astegno, A., Zoccatelli, G., & Degli Esposti, M. (2006). Pro-apoptotic effect of maize lipid transfer protein on mammalian mitochondria. Archives of Biochemistry and Biophysics, 445(1), 65-71.
Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic acid: emergence of a core signaling network. Annual Review of Plant Biology, 61(1), 651-679.
Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D., & Van Breusegem, F. (2000). Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences, 57(5), 779-795.
de Oliveira Carvalho, A., & Gomes, V. M. (2007). Role of plant lipid transfer proteins in plant cell physiology—a concise review. Peptides, 28(5), 1144-1153.
Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G. H., & Schroeder, J. I. (2014). Plant salt-tolerance mechanisms. Trends in Plant Science, 19(6), 371-379.
Devnarain, N., Crampton, B., Chikwamba, R., Becker, J., & O'Kennedy, M. M. (2016). Physiological responses of selected African sorghum landraces to progressive water stress and re-watering. South African Journal of Botany, 103, 61-69.
DeWald, D. B., Torabinejad, J., Jones, C. A., Shope, J. C., Cangelosi, A. R., Thompson, J. E., Prestwich, G. D., & Hama, H. (2001). Rapid accumulation of phosphatidylinositol 4, 5-bisphosphate and inositol 1, 4, 5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiology, 126(2), 759-769.
Diaz‐Vivancos, P., Faize, M., Barba‐Espin, G., Faize, L., Petri, C., Hernández, J. A., & Burgos, L. (2013). Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotechnology Journal, 11(8), 976-985.
Diédhiou, C. J., Popova, O. V., Dietz, K.-J., & Golldack, D. (2008). The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC Plant Biology, 8, 1-13.
Doench, J. G., Hartenian, E., Graham, D. B., Tothova, Z., Hegde, M., Smith, I., Sullender, M., Ebert, B. L., Xavier, R. J., & Root, D. E. (2014). Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nature Biotechnology, 32(12), 1262-1267.
Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096.
Douliez, J. P., Michon, T., & Marion, D. (2000). Steady-state tyrosine fluorescence to study the lipid-binding properties of a wheat non-specific lipid-transfer protein (nsLTP1). Biochimica Et Biophysica Acta-Biomembranes, 1467(1), 65-72.
Eraslan, F., Inal, A., Gunes, A., & Alpaslan, M. (2007). Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Scientia Horticulturae, 113(2), 120-128.
Esposti, M. D. (2002). The roles of Bid. Apoptosis, 7, 433-440.
Finkina, E., Melnikova, D., & Bogdanov, I. (2016). Lipid transfer proteins as components of the plant innate immune system: structure, functions, and applications. Acta Naturae (англоязычная версия), 8(2 (29)), 47-61.
Flowers, T. J. (2004). Improving crop salt tolerance. Journal of Experimental Botany, 55(396), 307-319.
Foyer, C. H., & Noctor, G. (2011). Ascorbate and glutathione: The heart of the redox hub. Plant Physiology, 155(1), 2-18.
Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M. M., Seki, M., Hiratsu, K., Ohme-Takagi, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2005). AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. The Plant Cell, 17(12), 3470-3488.
Gálvez, F. J., Baghour, M., Hao, G. P., Cagnac, O., Rodríguez-Rosales, M. P., & Venema, K. (2012). Expression of LeNHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species. Plant Physiology and Biochemistry, 51, 109-115.
Gao, Y., Ma, J., Zheng, J.-C., Chen, J., Chen, M., Zhou, Y.-B., Fu, J.-D., Xu, Z.-S., & Ma, Y.-Z. (2019). The elongation factor GmEF4 is involved in the response to drought and salt tolerance in soybean. International Journal of Molecular Sciences, 20(12), 3001.
García-Olmedo, F., Molina, A., Segura, A., & Moreno, M. (1995). The defensive role of nonspecific lipid-transfer proteins in plants. Trends in Microbiology, 3(2), 72-74.
Ghosh, S., Bheri, M., Bisht, D., & Pandey, G. K. (2022). Calcium signaling and transport machinery: Potential for development of stress tolerance in plants. Current Plant Biology, 29, 100235.
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930.
Gjindali, A., & Johnson, G. N. (2023). Photosynthetic acclimation to changing environments. Biochemical Society Transactions, 51(2), 473-486.
Gupta, B., & Huang, B. R. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014, Article 701596.
Hairat, S., Baranwal, V. K., & Khurana, P. (2018). Identification of Triticum aestivum nsLTPs and functional validation of two members in development and stress mitigation roles. Plant Physiology and Biochemistry, 130, 418-430.
Halfter, U., Ishitani, M., & Zhu, J. K. (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3735-3740.
Hasanuzzaman, M., Bhuyan, M., Nahar, K., Hossain, M. S., Al Mahmud, J., Hossen, M. S., Masud, A. A. C., Moumita, & Fujita, M. (2018). Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy-Basel, 8(3), Article 31.
Hauser, F., & Horie, T. (2010). A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell and Environment, 33(4), 552-565.
He, W. J., Yan, K., Zhang, Y., Bian, L. X., Mei, H. M., & Han, G. X. (2021). Contrasting photosynthesis, photoinhibition and oxidative damage in honeysuckle (Lonicera japonica Thunb.) under iso-osmotic salt and drought stresses. Environmental and Experimental Botany, 182, Article 104313.
Hendelman, A., Zebell, S., Rodriguez-Leal, D., Dukler, N., Robitaille, G., Wu, X., Kostyun, J., Tal, L., Wang, P., & Bartlett, M. E. (2021). Conserved pleiotropy of an ancient plant homeobox gene uncovered by cis-regulatory dissection. Cell, 184(7), 1724-1739. e1716.
Hille, F., Richter, H., Wong, S. P., Bratovič, M., Ressel, S., & Charpentier, E. (2018). The biology of CRISPR-Cas: backward and forward. Cell, 172(6), 1239-1259.
Hincha, D. K. (2002). Cryoprotectin: a plant lipid–transfer protein homologue that stabilizes membranes during freezing. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357(1423), 909-916.
Hoffmann-Sommergruber, K. (2002). Pathogenesis-related (PR)-proteins identified as allergens. Biochemical Society Transactions, 30(6), 930-935.
Hu, Y., Xia, S., Su, Y., Wang, H., Luo, W., Su, S., & Xiao, L. (2016). Brassinolide increases potato root growth in vitro in a dose‐dependent way and alleviates salinity stress. BioMed Research International, 2016(1), 8231873.
Huang, H., Ullah, F., Zhou, D.-X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science, 10, 800.
Huang, H. L., Ullah, F., Zhou, D. X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science, 10, Article 800.
Huo, Z., Tu, J., Xu, A., Li, Y., Wang, D., Liu, M., Zhou, R., Zhu, D., Lin, Y., & Gingold, J. A. (2019). Generation of a heterozygous p53 R249S mutant human embryonic stem cell line by TALEN-mediated genome editing. Stem Cell Research, 34, 101360.
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429-5433.
Jaarsma, R., de Vries, R. S., & de Boer, A. H. (2013). Effect of salt stress on growth, Na+ accumulation and proline metabolism in potato (Solanum tuberosum) cultivars. PLOS one, 8(3), e60183.
Janicka-Russak, M., & Klobus, G. (2007). Modification of plasma membrane and vacuolar H+-ATPases in response to NaCl and ABA. Journal of Plant Physiology, 164(3), 295-302.
Jansen, R., Embden, J. D. v., Gaastra, W., & Schouls, L. M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 43(6), 1565-1575.
Jiang, Y., & Deyholos, M. K. (2009). Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology, 69, 91-105.
Jiang, Y. Q., & Deyholos, M. K. (2009). Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology, 69(1-2), 91-105.
Jiang, Y. Q., Yang, B., & Deyholos, M. K. (2009). Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Molecular Genetics and Genomics, 282(5), 503-516.
Kader, J.-C. (1996). Lipid-transfer proteins in plants. Annual Review of Plant Biology, 47(1), 627-654.
Kader, M. A., & Lindberg, S. (2010). Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signaling & Behavior, 5(3), 233-238.
Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology, 17(3), 287-291.
Keller, T., Damude, H. G., Werner, D., Doerner, P., Dixon, R. A., & Lamb, C. (1998). A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell, 10(2), 255-266.
KHAN, Y. J. (2015). Intra cellular pH flux and cyclosis in plant cells under abiotic stress. Journal of Agrisearch, 2(2), 150-151.
Kleinstiver, B. P., Sousa, A. A., Walton, R. T., Tak, Y. E., Hsu, J. Y., Clement, K., Welch, M. M., Horng, J. E., Malagon-Lopez, J., & Scarfò, I. (2019). Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nature Biotechnology, 37(3), 276-282.
Kobayashi, Y., Motose, H., Iwamoto, K., & Fukuda, H. (2011). Expression and genome-wide analysis of the xylogen-type gene family. Plant and Cell Physiology, 52(6), 1095-1106.
Kobrinsky, E., Mirshahi, T., Zhang, H., Jin, T., & Logothetis, D. E. (2000). Receptor-mediated hydrolysis of plasma membrane messenger PIP2 leads to K+-current desensitization. Nature Cell Biology, 2(8), 507-514.
Koonin, E. V., Makarova, K. S., & Zhang, F. (2017). Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 37, 67-78.
Kumar, S., Jeevaraj, T., Yunus, M. H., Chakraborty, S., & Chakraborty, N. (2023). The plant cytoskeleton takes center stage in abiotic stress responses and resilience. Plant, Cell & Environment, 46(1), 5-22.
Labuhn, M., Adams, F. F., Ng, M., Knoess, S., Schambach, A., Charpentier, E. M., Schwarzer, A., Mateo, J. L., Klusmann, J.-H., & Heckl, D. (2018). Refined sgRNA efficacy prediction improves large-and small-scale CRISPR–Cas9 applications. Nucleic Acids Research, 46(3), 1375-1385.
Lei, L., Chen, L., Shi, X., Li, Y., Wang, J., Chen, D., Xie, F., & Li, Y. (2014). A nodule-specific lipid transfer protein AsE246 participates in transport of plant-synthesized lipids to symbiosome membrane and is essential for nodule organogenesis in Chinese milk vetch. Plant Physiology, 164(2), 1045-1058.
Li, T., Xiao, X., Liu, Q., Li, W., Li, L., Zhang, W., Munnik, T., Wang, X., & Zhang, Q. (2023). Dynamic responses of PA to environmental stimuli imaged by a genetically encoded mobilizable fluorescent sensor. Plant Communications, 4(3).
Li, X.-P., Tian, A.-G., Luo, G.-Z., Gong, Z.-Z., Zhang, J.-S., & Chen, S.-Y. (2005). Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theoretical and Applied Genetics, 110, 1355-1362.
Li, X. Z., Zhang, X. T., Bie, X. M., Zhang, J., Jiang, D. J., Tang, H., & Wang, F. (2024). Transcriptome analysis of axillary buds in low phosphorus stress and functional analysis of TaWRKY74s in wheat. BMC Plant Biology, 24(1), 1.
Liang, X., Zhang, L., Natarajan, S. K., & Becker, D. F. (2013). Proline mechanisms of stress survival. Antioxidants & Redox Signaling, 19(9), 998-1011.
Liang, Y., Huang, Y., Liu, C., Chen, K., & Li, M. (2023). Functions and interaction of plant lipid signalling under abiotic stresses. Plant Biology, 25(3), 361-378.
Lino, C. A., Harper, J. C., Carney, J. P., & Timlin, J. A. (2018). Delivering CRISPR: a review of the challenges and approaches. Drug Delivery, 25(1), 1234-1257.
Lippold, F., Sanchez, D. H., Musialak, M., Schlereth, A., Scheible, W. R., Hincha, D. K., & Udvardi, M. K. (2009). AtMyb41 Regulates transcriptional and metabolic responses to osmotic stress in Arabidopsis. Plant Physiology, 149(4), 1761-1772.
Liu, H., Xue, L., Li, C., Zhang, R., & Ling, Q. (2001). Calmodulin-binding protein BP-10, a probable new member of plant nonspecific lipid transfer protein superfamily. Biochemical and Biophysical Research Communications, 285(3), 633-638.
Liu, J. H., Fu, C. C., Li, G. J., Khan, M. N., & Wu, H. H. (2021). ROS homeostasis and plant salt tolerance: plant nanobiotechnology updates. Sustainability, 13(6), Article 3552.
Liu, J. P., Ishitani, M., Halfter, U., Kim, C. S., & Zhu, J. K. (2000). The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3730-3734.
Liu, L., Gallagher, J., Arevalo, E. D., Chen, R., Skopelitis, T., Wu, Q., Bartlett, M., & Jackson, D. (2021). Enhancing grain-yield-related traits by CRISPR–Cas9 promoter editing of maize CLE genes. Nature Plants, 7(3), 287-294.
Lou, W. P., Wu, L. H., Chen, H. Y., Ji, Z. W., & Sun, Y. F. (2012). Assessment of rice yield loss due to torrential rain: a case study of Yuhang County, Zhejiang Province, China. Natural Hazards, 60(2), 311-320.
Luo, L. (2022). Is strigolactone signaling a key player in regulating tiller formation in response to nitrogen?. Frontiers in Plant Science, 13, 1081740.
Ma, Y., Dai, X., Xu, Y., Luo, W., Zheng, X., Zeng, D., Pan, Y., Lin, X., Liu, H., & Zhang, D. (2015). COLD1 confers chilling tolerance in rice. Cell, 160(6), 1209-1221.
Mahajan, S., Pandey, G. K., & Tuteja, N. (2008). Calcium- and salt-stress signaling in plants: Shedding light on SOS pathway. Archives of Biochemistry and Biophysics, 471(2), 146-158.
Malik, A., Gul, A., Munir, F., Amir, R., Alipour, H., Babar, M. M., Bakhtiar, S. M., Paracha, R. Z., Khalid, Z., & Hayat, M. Q. (2021). Evaluating the cleavage efficacy of CRISPR-Cas9 sgRNAs targeting ineffective regions of Arabidopsis thaliana genome. PeerJ, 9, e11409.
Mandip, K., & Steer, C. J. (2019). A new era of gene editing for the treatment of human diseases. Swiss Medical Weekly, 149(0304), w20021-w20021.
Mehmood, A., Hussain, A., Irshad, M., Khan, N., Hamayun, M., Ismail, Afridi, S. G., & Lee, I.-J. (2018). IAA and flavonoids modulates the association between maize roots and phytostimulant endophytic Aspergillus fumigatus greenish. Journal of Plant Interactions, 13(1), 532-542.
Meng, C., Yan, Y., Liu, Z., Chen, L., Zhang, Y., Li, X., Wu, L., Zhang, G., Wang, X., & Ma, Z. (2018). Systematic analysis of cotton non-specific lipid transfer protein family revealed a special group that is involved in fiber elongation. Frontiers in Plant Science, 9, 1285.
Mittler, R. (2017). ROS are good. Trends in Plant Science, 22(1), 11-19.
Mittler, R., & Blumwald, E. (2010). Genetic engineering for modern agriculture: challenges and perspectives. Annual Review of Plant Biology, 61(1), 443-462.
Mojica, F. J., Díez-Villaseñor, C. s., García-Martínez, J., & Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60, 174-182.
Morales, M., & Munné-Bosch, S. (2019). Malondialdehyde: facts and artifacts. Plant Physiology, 180(3), 1246-1250.
Munns, R., Day, D. A., Fricke, W., Watt, M., Arsova, B., Barkla, B. J., Bose, J., Byrt, C. S., Chen, Z. H., Foster, K. J., Gilliham, M., Henderson, S. W., Jenkins, C. L. D., Kronzucker, H. J., Miklavcic, S. J., Plett, D., Roy, S. J., Shabala, S., Shelden, M. C., . . . Tyerman, S. D. (2020). Energy costs of salt tolerance in crop plants. New Phytologist, 225(3), 1072-1090.
Munns, R., James, R. A., Xu, B., Athman, A., Conn, S. J., Jordans, C., Byrt, C. S., Hare, R. A., Tyerman, S. D., Tester, M., Plett, D., & Gilliham, M. (2012). Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology, 30(4), 360-U173.
Murillo-Amador, B., Troyo-Diéguez, E., López-Cortés, A., Tinoco-Ojanguren, C. L., Jones, H. G., & Ayala-Chairez, F. (2000). Path analysis of cowpea early seedling growth under saline conditions. Phyton-International Journal of Experimental Botany, 67, 85-92.
Neelam Misra, N. M., & Gupta, A. (2006). Interactive effects of sodium and calcium on proline metabolism in salt tolerant green gram cultivar. Am. J. Plant Physiol, 1(1), 1-12.
Neves-Piestun, B. G., & Bernstein, N. (2001). Salinity-induced inhibition of leaf elongation in maize is not mediated by changes in cell wall acidification capacity. Plant Physiology, 125(3), 1419-1428.
Nieuwland, J., Feron, R., Huisman, B. A., Fasolino, A., Hilbers, C. W., Derksen, J., & Mariani, C. (2005). Lipid transfer proteins enhance cell wall extension in tobacco. The Plant Cell, 17(7), 2009-2019.
Nuruzzaman, M., Sharoni, A. M., & Kikuchi, S. (2013). Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Frontiers in Microbiology, 4, 248.
Olsen, A. N., Ernst, H. A., Lo Leggio, L., & Skriver, K. (2005). NAC transcription factors: structurally distinct, functionally diverse. Trends in Plant Science, 10(2), 79-87.
Ort, D. R., & Baker, N. R. (2002). A photoprotective role for O2 as an alternative electron sink in photosynthesis? Current Opinion in Plant Biology, 5(3), 193-198.
Peng, H., Cheng, H. Y., Chen, C., Yu, X. W., Yang, J. N., Gao, W. R., Shi, Q. H., Zhang, H., Li, J. G., & Ma, H. (2009). A NAC transcription factor gene of Chickpea (Cicer arietinum), CarNAC3, is involved in drought stress response and various developmental processes. Journal of Plant Physiology, 166(17), 1934-1945.
Pii, Y., Astegno, A., Peroni, E., Zaccardelli, M., Pandolfini, T., & Crimi, M. (2009). The Medicago truncatula N5 gene encoding a root-specific lipid transfer protein is required for the symbiotic interaction with Sinorhizobium meliloti. Molecular Plant-microbe Interactions, 22(12), 1577-1587.
Pons, J. L., de Lamotte, F., Gautier, M. F., & Delsuc, M. A. (2003). Refined solution structure of a liganded type 2 wheat nonspecific lipid transfer protein. Journal of Biological Chemistry, 278(16), 14249-14256.
Prihoda, J., Tanaka, A., de Paula, W. B., Allen, J. F., Tirichine, L., & Bowler, C. (2012). Chloroplast-mitochondria cross-talk in diatoms. Journal of Experimental Botany, 63(4), 1543-1557.
Qiu, Q. S., Guo, Y., Dietrich, M. A., Schumaker, K. S., & Zhu, J. K. (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 8436-8441.
Qiu, Q. S., Guo, Y., Quintero, F. J., Pardo, J. M., Schumaker, K. S., & Zhu, J. K. (2004). Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. Journal of Biological Chemistry, 279(1), 207-215.
Quintero, F. J., Ohta, M., Shi, H. Z., Zhu, J. K., & Pardo, J. M. (2002). Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 99(13), 9061-9066.
Rahman, M. M., Shahrivar, A. A., Hagare, D., & Maheshwari, B. (2022). Impact of recycled water irrigation on soil salinity and Its remediation. Soil Systems, 6(1), Article 13.
Rakhmankulova, Z. F., Shuyskaya, E. V., Shcherbakov, A. V., Fedyaev, V. V., Biktimerova, G. Y., Khafisova, R. R., & Usmanov, I. Y. (2015). Content of proline and flavonoids in the shoots of halophytes inhabiting the South Urals. Russian Journal of Plant Physiology, 62(1), 71-79.
Ramamoorthy, R., Jiang, S.-Y., Kumar, N., Venkatesh, P. N., & Ramachandran, S. (2008). A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant and Cell Physiology, 49(6), 865-879.
Ren, X., Yang, Z., Xu, J., Sun, J., Mao, D., Hu, Y., Yang, S.-J., Qiao, H.-H., Wang, X., & Hu, Q. (2014). Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Reports, 9(3), 1151-1162.
Ren, Z., Zheng, Z., Chinnusamy, V., Zhu, J., Cui, X., Iida, K., & Zhu, J.-K. (2010). RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis. Proceedings of the National Academy of Sciences, 107(12), 5669-5674.
Rengasamy, P. (2006). World salinization with emphasis on Australia. Journal of Experimental Botany, 57(5), 1017-1023.
Roach, T., & Krieger-Liszkay, A. (2014). Regulation of photosynthetic electron transport and photoinhibition. Current Protein & Peptide Science, 15(4), 351-362.
Rodríguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E., & Lippman, Z. B. (2017). Engineering quantitative trait variation for crop improvement by genome editing. Cell, 171(2), 470-480. e478.
Rouet, P., Smih, F., & Jasin, M. (1994). Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Molecular and Cellular Biology, 14(12), 8096-8106.
Rus, A., Lee, B. H., Muñoz-Mayor, A., Sharkhuu, A., Miura, K., Zhu, J. K., Bressan, R. A., & Hasegawa, P. M. (2004). AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiology, 136(1), 2500-2511.
Safi, H., Saibi, W., Alaoui, M. M., Hmyene, A., Masmoudi, K., Hanin, M., & Brini, F. (2015). A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana. Plant Physiology and Biochemistry, 89, 64-75.
Sairam, R. K., Rao, K. V., & Srivastava, G. C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163(5), 1037-1046, Article Pii s0168-9452(02)00278-9.
Sairam, R. K., & Tyagi, A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science, 86(3), 407-421.
Salcedo, G., Sanchez‐Monge, R., Diaz‐Perales, A., Garcia‐Casado, G., & Barber, D. (2004). Plant non‐specific lipid transfer proteins as food and pollen allergens. Clinical & Experimental Allergy, 34(9), 1336-1341.
Serrano, R., Mulet, J. M., Rios, G., Marquez, J. A., de Larrinoa, I. F., Leube, M. P., Mendizabal, I., Pascual-Ahuir, A., Proft, M., Ros, R., & Montesinos, C. (1999). A glimpse of the mechanisms of ion homeostasis during salt stress. Journal of Experimental Botany, 50, 1023-1036.
Shabala, S., Shabala, L., Gradmann, D., Chen, Z. H., Newman, I., & Mancuso, S. (2006). Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications. Journal of Experimental Botany, 57(1), 171-184.
Shahid, M. A., Balal, R. M., Khan, N., Simón-Grao, S., Alfosea-Simón, M., Cámara-Zapata, J. M., Mattson, N. S., & Garcia-Sanchez, F. (2019). Rootstocks influence the salt tolerance of Kinnow mandarin trees by altering the antioxidant defense system, osmolyte concentration, and toxic ion accumulation. Scientia Horticulturae, 250, 1-11.
Shahid, M. A., Sarkhosh, A., Khan, N., Balal, R. M., Ali, S., Rossi, L., Gómez, C., Mattson, N., Nasim, W., & Garcia-Sanchez, F. (2020). Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy-Basel, 10(7), Article 938.
Shahid, S. A., Zaman, M., & Heng, L. (2018). Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques (p. 164). Springer Nature.
Shakespear, S., Sivaji, M., Kumar, V., Pillai, M. A., Wani, S. H., Penna, S., & Yasin, J. K. (2024). Navigating through harsh conditions: coordinated networks of plant adaptation to abiotic stress. Journal of Plant Growth Regulation, 43(6), 1787-1800.
Sharma, I., Ching, E., Saini, S., Bhardwaj, R., & Pati, P. K. (2013). Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiology and Biochemistry, 69, 17-26.
Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y., & Yoshimura, K. (2002). Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany, 53(372), 1305-1319.
Song, X., Meng, X., Guo, H., Cheng, Q., Jing, Y., Chen, M., Liu, G., Wang, B., Wang, Y., & Li, J. (2022). Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nature Biotechnology, 40(9), 1403-1411.
Tabatabaei, S., & Ehsanzadeh, P. (2016). Photosynthetic pigments, ionic and antioxidative behaviour of hulled tetraploid wheat in response to NaCl. Photosynthetica, 54(3), 340-350.
Takahashi, S., & Murata, N. (2008). How do environmental stresses accelerate photoinhibition? Trends in Plant Science, 13(4), 178-182.
Takasaki, H., Maruyama, K., Kidokoro, S., Ito, Y., Fujita, Y., Shinozaki, K., Yamaguchi-Shinozaki, K., & Nakashima, K. (2010). The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Molecular Genetics and Genomics, 284(3), 173-183.
Talbi, S., Romero-Puertas, M. C., Hernández, A., Terrón, L., Ferchichi, A., & Sandalio, L. M. (2015). Drought tolerance in a Saharian plant Oudneya africana: Role of antioxidant defences. Environmental and Experimental Botany, 111, 114-126.
Tomassen, M. M., Barrett, D. M., van der Valk, H. C., & Woltering, E. J. (2007). Isolation and characterization of a tomato non-specific lipid transfer protein involved in polygalacturonase-mediated pectin degradation. Journal of Experimental Botany, 58(5), 1151-1160.
Tran, L. S. P., Urao, T., Qin, F., Maruyama, K., Kakimoto, T., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20623-20628.
Tuna, A. L., Kaya, C., Ashraf, M., Altunlu, H., Yokas, I., & Yagmur, B. (2007). The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environmental and Experimental Botany, 59(2), 173-178.
Uozumi, N., & Schroeder, J. I. (2010). Ion channels and plant stress: past, present, and future. In Ion Channels and Plant Stress Responses (pp. 1-22). Berlin, Heidelberg: Springer Berlin Heidelberg.
Van Breusegem, F., Vranová, E., Dat, J. F., & Inzé, D. (2001). The role of active oxygen species in plant signal transduction. Plant Science, 161(3), 405-414.
van Zelm, E., Zhang, Y. X., & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71(1), 403-433.
Vasebi, Y., & Khakvar, R. (2014). CRISPR-Cas: the effective immune systems in the prokaryotes. Molecular and Clinical Microbiology, 4(1), 334-344.
Vergnolle, C., Arondel, V., Jolliot, A., & Kader, J.-C. (1992). [61] Phospholipid transfer proteins from higher plants. In Methods in Enzymology (Vol. 209, pp. 522-530). Academic Press.
Villalta, I., Reina-Sánchez, A., Bolarín, M. C., Cuartero, J., Belver, A., Venema, K., Carbonell, E. A., & Asins, M. J. (2008). Genetic analysis of Na+ and K+ concentrations in leaf and stem as physiological components of salt tolerance in Tomato. Theoretical and Applied Genetics, 116(6), 869-880.
Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R. K., Kumar, V., Verma, R., Upadhyay, R., & Pandey, M. (2017). Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Frontiers in Plant Science, 8, 161.
Wang, N.-J., Lee, C.-C., Cheng, C.-S., Lo, W.-C., Yang, Y.-F., Chen, M.-N., & Lyu, P.-C. (2012). Construction and analysis of a plant non-specific lipid transfer protein database (nsLTPDB). BMC Genomics, 13(Suppl 1), S9.,
Wang, Y., Cella, M., Mallinson, K., Ulrich, J. D., Young, K. L., Robinette, M. L., Gilfillan, S., Krishnan, G. M., Sudhakar, S., & Zinselmeyer, B. H. (2015). TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell, 160(6), 1061-1071.
Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., VanMontagu, M., Inze, D., & VanCamp, W. (1997). Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO Journal, 16(16), 4806-4816.
Wright, A. V., Nuñez, J. K., & Doudna, J. A. (2016). Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell, 164(1), 29-44.
Xia, N., Zhang, G., Liu, X. Y., Deng, L., Cai, G. L., Zhang, Y., Wang, X. J., Zhao, J., Huang, L. L., & Kang, Z. S. (2010). Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Molecular Biology Reports, 37(8), 3703-3712.
Xiao, Q., Huang, X., Zhang, Y., Xu, W., Yang, Y., Zhang, Q., Hu, Z., Xing, F., Sun, Q., & Li, G. (2022). The landscape of promoter-centred RNA–DNA interactions in rice. Nature Plants, 8(2), 157-170.
Xiong, L., & Zhu, J. K. (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell & Environment, 25(2), 131-139.
Yakovchuk, P., Protozanova, E., & Frank-Kamenetskii, M. D. (2006). Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Research, 34(2), 564-574.
Yan, H. (2000). Effects of exogenous proline on the physiology of soyabean plantlets regenerated from embryos in vitro and on the ultrastructure of their mitochondria under NaCl stress. Soybean Sci., 19, 314-319.
Yang, O., Popova, O. V., Süthoff, U., Lüking, I., Dietz, K.-J., & Golldack, D. (2009). The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene, 436(1-2), 45-55.
Yang, Y. Q., & Guo, Y. (2018). Unraveling salt stress signaling in plants. Journal of Integrative Plant Biology, 60(9), 796-804.
Yao, H. Y., & Xue, H. W. (2018). Phosphatidic acid plays key roles regulating plant development and stress responses. Journal of Integrative Plant Biology, 60(9), 851-863.
Yasin, J., Bhat, K., Nizar, M., Rajkumar, S., Verma, M., Radhamani, J., Verma, N., & Pandey, S. (2014). Alternate antioxidant defence system in moisture stress responsive accessions of horse gram. Legume Res, 37, 145-154.
Yasin, J. K., Mishra, B. K., Pillai, M. A., Verma, N., Wani, S. H., Elansary, H. O., El-Ansary, D. O., Pandey, P., & Chinnusamy, V. (2020). Genome wide in-silico miRNA and target network prediction from stress responsive Horsegram (Macrotyloma uniflorum) accessions. Scientific Reports, 10(1), 17203.
Ye, N., Zhu, G., Liu, Y., Zhang, A., Li, Y., Liu, R., Shi, L., Jia, L., & Zhang, J. (2012). Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. Journal of Experimental Botany, 63(5), 1809-1822.
Yokotani, N., Ichikawa, T., Kondou, Y., Matsui, M., Hirochika, H., Iwabuchi, M., & Oda, K. (2009). Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta, 229(5), 1065-1075.
Zhang, F., Wen, Y., & Guo, X. (2014). CRISPR/Cas9 for genome editing: progress, implications and challenges. Human Molecular Genetics, 23(R1), R40-R46.
Zhang, G. Y., Chen, M., Li, L. C., Xu, Z. S., Chen, X. P., Guo, J. M., & Ma, Y. Z. (2009). Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. Journal of Experimental Botany, 60(13), 3781-3796.
Zhang, Y. T., Hou, K., Qian, H., Gao, Y. Y., Fang, Y., Xiao, S., Tang, S. Q., Zhang, Q. Y., Qu, W. A., & Ren, W. H. (2022). Characterization of soil salinization and its driving factors in a typical irrigation area of Northwest China. Science of the Total Environment, 837, Article 155808.
Zheng, X., Tan, D. X., Allan, A. C., Zuo, B., Zhao, Y., Reiter, R. J., Wang, L., Wang, Z., Guo, Y., & Zhou, J. (2017). Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress. Scientific Reports, 7(1), 41236.
Zhou, J., Liu, G., Zhao, Y., Zhang, R., Tang, X., Li, L., Jia, X., Guo, Y., Wu, Y., & Han, Y. (2023). An efficient CRISPR–Cas12a promoter editing system for crop improvement. Nature Plants, 9(4), 588-604.
Zhu, H., Zhou, Y., Zhai, H., He, S., Zhao, N., & Liu, Q. (2020). A novel sweetpotato WRKY transcription factor, IbWRKY2, positively regulates drought and salt tolerance in transgenic Arabidopsis. Biomolecules, 10(4), 506.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99641-
dc.description.abstract水稻中非專一性脂質運輸蛋白 (non-specific Lipid Transfer Protein, nsLTP) 是一類含量豐富的小分子蛋白質,具有結合與運輸各類疏水性分子功能的鹼性蛋白,能跟脂肪酸、磷脂質、乙醯輔酶A/類固醇以及芳香類化合物等分子可逆結合,根據以往的研究,OsLTP2-RNAi植株 (基因表現量降低60%以上) 雖然可以表現出比WT (Wild type) 更高的耐鹽性,但會造成株高降低以及稔實率與千粒重大減,為解決此問題,本研究利用CRISPR/Cas9對OsLTP2啟動子進行多重基因編輯,造成多位點序列缺失與插入,使不同基因編輯系有不同程度的OsLTP2表現量下降或上升,再從中篩選出可以增加耐鹽性、但株高及產量不受影響的植株。在 T0 世代中,啟動子編輯植株呈現多樣的編輯型態,OsLTP2 的基因表現量亦呈現不同程度的上升或下降,從中分別選取三個表現量下降的編輯植株 L2、L3 與 L5 (基因表現量下降百分率分別為-31.9%、-18.1%和-15.6%) 以及表現量上升的植株 U1、U2 與 U3 (基因表現量上升百分率分別為252.1%、119.3%和94.6%) 進行後續鹽分處理試驗,半量 MS 含鹽培養基下的幼苗耐鹽性測試結果顯示,L3 與 L5 具備較佳的生長表型表現,而在水耕試驗中,L2、L3、L5 與 U2 於鹽分逆境下展現出相對優異的耐鹽性,且乾重下降百分率顯著低於 WT,進一步進行生理指標分析,發現在鹽分逆境下 L3 與 L5具有較好的光合作用效率 (Fv/Fm),葉片 DAB 染色亦顯示其過氧化氫含量較 WT 低;在正常生長條件下,L3 的株高與 WT 相近,而 L5 的株高明顯低於 WT,為探討啟動子編輯對農藝性狀之影響,選擇基因表現量上升 (U2) 與下降 (L5) 之代表性植株進行分析,結果顯示兩者在成熟期皆顯著矮化,在分蘗數方面,U2 顯著低於 WT,L5 則顯著高於 WT;產量方面,L5 與 WT 間無顯著差異,顯示其具備良好的耐鹽及產量維持能力,本研究成功透過 OsLTP2 啟動子基因編輯建立兼具耐鹽性且不影響生長或產量的基因編輯植株,提供未來耐鹽性育種研究與應用之參考。zh_TW
dc.description.abstractNon-specific lipid transfer proteins (nsLTPs) in rice represent a class of abundant, small, basic proteins that function in the binding and transport of various hydrophobic molecules. According to previous studies, OsLTP2-RNAi plants, in which OsLTP2 expression is reduced by more than 60%, exhibit enhanced salt tolerance compared to wild-type (WT) plants; however, they also display significantly reduced plant height, fertility rate, and 1000-grain weight, compromising their agronomic value. To address this issue, this study utilized the CRISPR/Cas9 system to perform multiplex genome editing of the OsLTP2 promoter region, resulting in various insertions and deletions that led to differing levels of OsLTP2 expression, either upregulated or downregulated, among the edited lines. The goal was to identify gene-edited lines with improved salt tolerance but without negative impacts on plant height or yield. In the T0 generation, the promoter-edited plants displayed diverse editing patterns, resulting in a range of OsLTP2 expression levels. Six representative lines were selected for further salt stress analysis: three with reduced expression levels—L2, L3, and L5 (expression reduction rates of −31.9%, −18.1%, and −15.6%, respectively), and three with increased expression levels—U1, U2, and U3 (expression increase rates of 252.1%, 119.3%, and 94.6%, respectively). Under salt stress using half-strength MS medium, L3 and L5 exhibited superior seedling growth phenotypes. In hydroponic experiments, L2, L3, L5, and U2 demonstrated improved salt tolerance compared to WT, as indicated by significantly smaller reductions in dry weight. Further physiological assessments revealed that L3 and L5 had higher maximum photochemical efficiency (Fv/Fm) and lower hydrogen peroxide accumulation based on DAB staining under salt stress. Under normal growth conditions, L3 had comparable plant height to WT, while L5 was significantly shorter. To evaluate agronomic traits, U2 (upregulated expression) and L5 (downregulated expression) were selected. Both lines showed significantly shorter plant height at maturity. In terms of tiller number, U2 had fewer tillers than WT, whereas L5 had significantly more. Yield analysis showed no significant difference between L5 and WT, suggesting that L5 maintains good salt tolerance without compromising yield performance. In conclusion, this study successfully applied promoter editing of OsLTP2 to modulate its gene expression levels, and identified lines exhibiting enhanced salt tolerance without compromising growth or yield.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:14:14Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:14:14Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝……………………………………………………………………………. i
中文摘要………………………………………………………………………. ii
Abstract………………………………...……………………………………………. iii
縮寫字對照表…………………………...…………………………………….. iv
目次…………………………...……………………………………………….. vi
圖次…………………………...……………………………………………….. x
表次…………………………...………………………………………………. xi
附錄目次…………………………...…………………………………………. xii
第一章、前人文獻與研究動機…………………………………………………. 1
一、全球鹽害………………………………………..……………………... 1
二、鹽土對植物之影響…………………………………………………… 1
三、鹽分對水稻之影響…………………………………………………… 2
1.3.1 滲透壓逆境………………………………………………………… 2
1.3.2 離子逆境…………………………………………………………… 2
1.3.3 氧化逆境…………………………………………………………… 3
四、植物面對非生物逆境的調節與適應機制…………………………… 4
1.4.1 非生物逆境誘導的訊息傳遞路徑機制………………………… 5
1.4.2 植物荷爾蒙………………………………………..……………... 6
1.4.3 抗氧化酵素………………………………………..……………... 7
1.4.4 非酵素性抗氧化系統………………………………………..…... 8
1.4.5 滲透調節劑………………………………..……………………... 8
1.4.6 轉運蛋白………………………………..……………………..… 9
五、OsLTP2基因功能………………………………..……………………. 10
六、OsLTP2與鹽分耐受性的相關性……………………………………… 13
七、基因編輯……………………………………………………………… 14
八、CRISPR/Cas9 系統編輯啟動子改變基因表現量…………………… 16
第二章、研究目的……………………………………………………………… 17
第三章、材料與方法…………………………………………………………… 18
一、試驗材料暨生長條件…………………..……………………………... 18
3.1.1 植物材料………………………………………………………… 18
3.1.2 水耕栽培與試驗生長條件……………………………………… 18
二、OsLTP2-RNAi與OsLTP2-OE植株材料來源………………………… 18
三、利用CRISPR/Cas9 基因編輯技術編輯水稻LTP2基因…………… 19
3.3.1 基於 CRISPR/Cas9 系統之 gRNA 位置設計……………….. 19
3.3.2 Polycistronic-tRNA-gRNA (PTG) 轉殖載體結構設計………… 19
3.3.3 PTG序列之FokⅠ及pRGEB32載體BsaⅠ限制酶截切反應 19
3.3.4 純化限制酶切產物……………………………………………… 20
3.3.5 T4 DNA連接酶黏合反應……………………………………… 21
四、大腸桿菌質體 (Escherichia coli, E.coli) 擴增與純化……………….. 21
3.4.1 熱休克轉型大腸桿菌勝任細胞與質體……………………… 21
3.4.2 小量培養大腸桿菌…………………………………………… 21
3.4.3 純化大腸桿菌質體…………………………………………… 22
五、水稻農桿菌轉殖 (Agrobacterium-mediated transformation) 22
3.5.1 水稻癒傷組織誘導……………………………………………… 22
3.5.2 電穿孔轉型農桿菌……………………………………………… 23
3.5.3 小量培養農桿菌轉型後菌液…………………………………… 23
3.5.4 農桿菌轉型後大量培養………………………………………… 24
3.5.5 水稻癒傷組織農桿菌轉殖……………………………………… 24
3.5.6 清洗水稻癒傷組織材料………………………………………… 24
3.5.7 水稻轉殖材料之篩選與再生…………………………………… 25
六、OsLTP2啟動子編輯情況分析………………………………………… 25
3.6.1 萃取植體DNA………………………………………………… 25
3.6.2 聚合酶連鎖反應 (PCR) 及目標片段瓊脂凝膠電泳分析 25
3.6.3 T&A cloning……………………………………………………… 26
3.6.4 X-gal篩選菌落以及Sanger定序……………………………… 27
七、植物基因表現量分析………………………………………………….. 27
3.7.1 OsLTP2 啟動子編輯植物選擇…………………………………… 27
3.7.2 收集水稻樣品…………………………………………………… 27
3.7.3 植體RNA萃取………………………………………………… 27
3.7.4 RNA樣品中殘留DNA去除……………………………………… 28
3.7.5 合成cDNA……………………………………………………… 28
3.7.6 即時定量聚合酶連鎖反應……………………………………… 28
八、水稻鹽分逆境試驗……………………………………………………… 29
3.8.1 OsLTP2啟動子編輯水稻幼苗半MS培養基鹽分逆境試驗……… 29
3.8.2 OsLTP2啟動子編輯水稻幼苗水耕鹽分逆境試驗……………… 30
3.8.3 OsLTP2啟動子編輯水稻種子發芽鹽分逆境試驗……………… 30
九、水稻幼苗生理分析…………………………………………………… 30
3.9.1 水稻葉片DAB染色…………………………………………… 30
3.9.2 樣品鈉與鉀含量分析…………………………………………… 31
3.9.3 光合作用效率測定…………………………………………… 31
十、水稻田間農藝試驗………………………….…………………………… 31
十一、統計分析……………………………………………………………… 31
第四章、研究成果………………………………………………………………. 32
一、OsLTP2-RNAi與OsLTP2-OE植株耐鹽性測試………………………... 32
二、OsLTP2-RNAi與OsLTP2-OE植株鹽分逆境下生理指標測試……… 32
三、OsLTP2啟動子經過CRISPR/Cas9各植株的基因表現量………… 33
四、OsLTP2啟動子經過CRISPR/Cas9的編輯情況…………………… 34
五、OsLTP2啟動子編輯植株鹽分逆境處理結果…………………………… 35
六、OsLTP2啟動子編輯植株鹽分逆境之生理測試………………………… 36
七、OsLTP2啟動子編輯植株生長狀況與農藝性狀………………………… 36
第五章、討論………………………………………………………………………. 38
一、OsLTP2 啟動子編輯效率影響因素………..…………………………….. 38
二、OsLTP2啟動子編輯植株的啟動子編輯情況與基因表現量和農藝性狀的關聯39
三、啟動子掉落片段與耐鹽性以及農藝性狀之探討……………………… 40
第六章、結論……………………………………………………………………. 41
參考文獻……………………………………………………………………….…… 42
附錄……………………………………………………………………………... 79
-
dc.language.isozh_TW-
dc.subject水稻zh_TW
dc.subjectCRISPR/Cas9系統zh_TW
dc.subject脂質運輸蛋白zh_TW
dc.subject鹽分逆境zh_TW
dc.subject產量zh_TW
dc.subjectLipid Transfer Proteinen
dc.subjectRiceen
dc.subjectCRISPR/Cas9 systemen
dc.subjectYielden
dc.subjectSalt stressen
dc.title探討LTP2基因對水稻耐鹽性狀之影響zh_TW
dc.titleEffect of LTP2 in rice salt toleranceen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡育彰;許奕婷zh_TW
dc.contributor.oralexamcommitteeYu-Chang Tsai;Yi-Ting Hsuen
dc.subject.keyword水稻,CRISPR/Cas9系統,脂質運輸蛋白,鹽分逆境,產量,zh_TW
dc.subject.keywordRice,CRISPR/Cas9 system,Lipid Transfer Protein,Salt stress,Yield,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202504025-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農業化學系-
dc.date.embargo-lift2030-08-05-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
3.4 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved