Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99640
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建甫zh_TW
dc.contributor.advisorChien-Fu Chenen
dc.contributor.author王琳淯zh_TW
dc.contributor.authorLin-Yu Wangen
dc.date.accessioned2025-09-17T16:14:04Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-11-
dc.identifier.citationE. S. Ali et al., "Recent advances and limitations of mTOR inhibitors in the treatment of cancer," Cancer Cell Int., Review vol. 22, no. 1, p. 16, Sep 2022, Art no. 284, doi: 10.1186/s12935-022-02706-8.
W. H. Organization, "Global cancer burden growing, amidst mounting need for services," 2024.
R. A. Ward, S. Fawell, N. Floc'h, V. Flemington, D. McKerrecher, and P. D. Smith, "Challenges and Opportunities in Cancer Drug Resistance," Chem. Rev., Review vol. 121, no. 6, pp. 3297-3351, Mar 2021, doi: 10.1021/acs.chemrev.0c00383.
K. Ganesh and J. Massagué, "Targeting metastatic cancer," NATURE MEDICINE, vol. 27, no. 1, pp. 34-44, JAN 2021, doi: 10.1038/s41591-020-01195-4.
T. Haider, V. Pandey, N. Banjare, P. N. Gupta, and V. Soni, "Drug resistance in cancer: mechanisms and tackling strategies," Pharmacol. Rep., Review vol. 72, no. 5, pp. 1125-1151, Oct 2020, doi: 10.1007/s43440-020-00138-7.
S. Sinha and D. Vohora, "Chapter 2 - Drug Discovery and Development: An Overview," in Pharmaceutical Medicine and Translational Clinical Research, D. Vohora and G. Singh Eds. Boston: Academic Press, 2018, pp. 19-32.
E. V. Sazonova, M. S. Chesnokov, B. Zhivotovsky, and G. S. Kopeina, "Drug toxicity assessment: cell proliferation versus cell death," Cell Death Discov., Article vol. 8, no. 1, p. 11, Oct 2022, Art no. 417, doi: 10.1038/s41420-022-01207-x.
W. Z. Zeng, L. K. Guo, S. Xu, J. Chen, and J. W. Zhou, "High-Throughput Screening Technology in Industrial Biotechnology," Trends Biotechnol., Review vol. 38, no. 8, pp. 888-906, Aug 2020, doi: 10.1016/j.tibtech.2020.01.001.
P. Dettinger et al., "Open-source personal pipetting robots with live-cell incubation and microscopy compatibility," Nat. Commun., Article vol. 13, no. 1, p. 12, May 2022, Art no. 2999, doi: 10.1038/s41467-022-30643-7.
P. Chen, S. J. Li, Y. R. Guo, X. M. Zeng, and B. F. Liu, "A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis," Anal. Chim. Acta, Review vol. 1125, pp. 94-113, Aug 2020, doi: 10.1016/j.aca.2020.05.065.
N. Bargahi, S. Ghasemali, S. Jahandar-Lashaki, and A. Nazari, "Recent advances for cancer detection and treatment by microfluidic technology, review and update," Biol. Proced. Online, Review vol. 24, no. 1, p. 20, Apr 2022, Art no. 5, doi: 10.1186/s12575-022-00166-y.
J. M. Cabaleiro, "Flowrate independent 3D printed microfluidic concentration gradient generator," Chem. Eng. J., vol. 382, FEB 15 2020, Art no. 122742, doi: 10.1016/j.cej.2019.122742.
B. Schuster et al., "Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids," Nat. Commun., Article vol. 11, no. 1, p. 12, Oct 2020, Art no. 5271, doi: 10.1038/s41467-020-19058-4.
Q. Y. Luan, C. Macaraniag, J. Zhou, and I. Papautsky, "Microfluidic systems for hydrodynamic trapping of cells and clusters," Biomicrofluidics, Review vol. 14, no. 3, p. 19, May 2020, Art no. 031502, doi: 10.1063/5.0002866.
H. T. Cha et al., "Multiphysics microfluidics for cell manipulation and separation: a review," Lab on a Chip, Review vol. 22, no. 3, pp. 423-444, Feb 2022, doi: 10.1039/d1lc00869b.
R. Nasiri et al., "Microfluidic-Based Approaches in Targeted Cell/Particle Separation Based on Physical Properties: Fundamentals and Applications," Small, vol. 16, no. 29, JUL 2020, Art no. 2000171, doi: 10.1002/smll.202000171.
S. Menad, L. Franqueville, N. Haddour, F. Buret, and M. Frenea-Robin, "nDEP-driven cell patterning and bottom-up construction of cell aggregates using a new bioelectronic chip," Acta Biomaterialia, Article vol. 17, pp. 107-114, Apr 2015, doi: 10.1016/j.actbio.2015.01.011.
J. C. Zhu, Y. C. Wang, P. Chen, H. Y. Su, W. Du, and B. F. Liu, "Highly efficient microfluidic device for cell trapping and pairing towards cell-cell communication analysis," Sens. Actuator B-Chem., Article vol. 283, pp. 685-692, Mar 2019, doi: 10.1016/j.snb.2018.12.078.
X. J. Hu et al., "On-chip hydrogel arrays individually encapsulating acoustic formed multicellular aggregates for high throughput drug testing," Lab on a Chip, Article vol. 20, no. 12, pp. 2228-2236, Jun 2020, doi: 10.1039/d0lc00255k.
C. Y. Chen et al., "Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics," Lab on a Chip, Article vol. 18, no. 23, pp. 3645-3654, Dec 2018, doi: 10.1039/c8lc00589c.
N. T. Huang, Y. J. Hwong, and R. L. Lai, "A microfluidic microwell device for immunomagnetic single-cell trapping," Microfluid. Nanofluid., Article vol. 22, no. 2, p. 8, Feb 2018, Art no. 16, doi: 10.1007/s10404-018-2040-x.
S. Yaman, M. Anil-Inevi, E. Ozcivici, and H. C. Tekin, "Magnetic Force-Based Micro fluidic Techniques for Cellular and Tissue Bioengineering," Front. Bioeng. Biotechnol., Review vol. 6, p. 29, Dec 2018, Art no. 192, doi: 10.3389/fbioe.2018.00192.
H. Afsaneh and R. Mohammadi, "Microfluidic platforms for the manipulation of cells and particles," TALANTA OPEN, vol. 5, AUG 2022, Art no. 100092, doi: 10.1016/j.talo.2022.100092.
N. Compera, S. Atwell, J. Wirth, B. Wolfrum, and M. Meier, "Upscaling of pneumatic membrane valves for the integration of 3D cell cultures on chip," Lab on a Chip, Article vol. 21, no. 15, pp. 2986-2996, Aug 2021, doi: 10.1039/d1lc00194a.
Y. X. Song, Y. J. Zhou, K. Zhang, Z. X. Fan, F. Zhang, and M. J. Wei, "Microfluidic programmable strategies for channels and flow," Lab on a Chip, Review vol. 24, no. 19, pp. 4483-4513, Sep 2024, doi: 10.1039/d4lc00423j.
B. A. Wang et al., "An integrated microfluidics platform with high-throughput single-cell cloning array and concentration gradient generator for efficient cancer drug effect screening," Military Med. Res., Article vol. 9, no. 1, p. 17, Sep 2022, Art no. 51, doi: 10.1186/s40779-022-00409-9.
X. Xu et al., "Microfluidic Single-Cell Omics Analysis," Small, Review vol. 16, no. 9, p. 17, Mar 2020, Art no. 1903905, doi: 10.1002/smll.201903905.
A. Chatterjee, A. Bandyopadhyay, T. K. Maiti, and T. K. Bhattacharyya, "Size-selective microfluidics delineate the effects of combinatorial immunotherapy on T-cell response dynamics at the single-cell level," Microsyst. Nanoeng., Article vol. 10, no. 1, p. 17, Nov 2024, Art no. 178, doi: 10.1038/s41378-024-00769-3.
N. Sinha et al., "Microfluidic chip for precise trapping of single cells and temporal analysis of signaling dynamics," Commun. Eng., Article vol. 1, no. 1, p. 12, Jul 2022, Art no. 18, doi: 10.1038/s44172-022-00019-2.
Q. Z. Yang et al., "Design of organ-on-a-chip to improve cell capture efficiency," Int. J. Mech. Sci., Article vol. 209, p. 10, Nov 2021, Art no. 106705, doi: 10.1016/j.ijmecsci.2021.106705.
J. Zhang, J. Xue, N. F. Luo, F. Chen, B. D. Chen, and Y. X. Zhao, "Microwell array chip-based single-cell analysis," Lab on a Chip, Review vol. 23, no. 5, pp. 1066-1079, Mar 2023, doi: 10.1039/d2lc00667g.
S. R. Bazaz, A. Mashhadian, A. Ehsani, S. C. Saha, T. Krüger, and M. E. Warkiani, "Computational inertial microfluidics: a review," Lab on a Chip, Review vol. 20, no. 6, pp. 1023-1048, Mar 2020, doi: 10.1039/c9lc01022j.
J. X. J. Zhang and K. Hoshino, "Chapter 3 - Microfluidics and Micro Total Analytical Systems," in Molecular Sensors and Nanodevices, J. X. J. Zhang and K. Hoshino Eds. Oxford: William Andrew Publishing, 2014, pp. 103-168.
I. C. Christov, "Soft hydraulics: from Newtonian to complex fluid flows through compliant conduits," J. Phys.-Condes. Matter, Review vol. 34, no. 6, p. 27, Feb 2022, Art no. 063001, doi: 10.1088/1361-648X/ac327d.
C. B. Maxwell, J. K. Sandhu, T. H. Cao, G. P. McCann, L. L. Ng, and D. J. L. Jones, "The Edge Effect in High-Throughput Proteomics: A Cautionary Tale," J. Am. Soc. Mass Spectrom., Article vol. 34, no. 6, pp. 1065-1072, May 2023, doi: 10.1021/jasms.3c00035.
A. Agha et al., "A Review of Cyclic Olefin Copolymer Applications in Microfluidics and Microdevices," Macromol. Mater. Eng., Review vol. 307, no. 8, p. 34, Aug 2022, Art no. 2200053, doi: 10.1002/mame.202200053.
M. Aslam, R. A. R. Bantan, and N. Khan, "Design of tests for mean and variance under complexity-an application to rock measurement data," Measurement, Article vol. 177, p. 6, Jun 2021, Art no. 109312, doi: 10.1016/j.measurement.2021.109312.
M. C. Phelan and G. Lawler, "Cell Counting," Current Protocols in Cytometry, vol. 00, no. 1, pp. A.3A.1-A.3A.4, 1997/04/01 1997, doi: https://doi.org/10.1002/0471142956.cya03as00.
S. Kamiloglu, G. Sari, T. Ozdal, and E. Capanoglu, "Guidelines for cell viability assays," Food Frontiers, Article vol. 1, no. 3, pp. 332-349, Sep 2020, doi: 10.1002/fft2.44.
P.-H. Chen, "Microfluidic Device for High-Throughput Cancer Drug Screenings," 2024.
B. Iovine, M. L. Iannella, F. Nocella, M. R. Pricolo, and M. A. Bevilacqua, "Carnosine inhibits KRAS-mediated HCT116 proliferation by affecting ATP and ROS production," Cancer Lett., Article vol. 315, no. 2, pp. 122-128, Feb 2012, doi: 10.1016/j.canlet.2011.07.021.
S. Halldorsson, E. Lucumi, R. Gómez-Sjöberg, and R. M. T. Fleming, "Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices," Biosens. Bioelectron., Article vol. 63, pp. 218-231, Jan 2015, doi: 10.1016/j.bios.2014.07.029.
S. Varma and J. Voldman, "A cell-based sensor of fluid shear stress for microfluidics," Lab on a Chip, Article vol. 15, no. 6, pp. 1563-1573, 2015, doi: 10.1039/c4lc01369g.
Q. Huang et al., "Fluid shear stress and tumor metastasis," Am. J. Cancer Res., Review vol. 8, no. 5, pp. 763-777, 2018. [Online]. Available: <Go to ISI>://WOS:000433361200001.
N. Xiang, X. J. Zhang, Q. Dai, J. Cheng, K. Chen, and Z. H. Ni, "Fundamentals of elasto-inertial particle focusing in curved microfluidic channels," LAB ON A CHIP, vol. 16, no. 14, pp. 2626-2635, 2016, doi: 10.1039/c6lc00376a.
T. L. Zhang et al., "Focusing of sub-micrometer particles in microfluidic devices," Lab on a Chip, Review vol. 20, no. 1, pp. 35-53, Jan 2020, doi: 10.1039/c9lc00785g.
P. Paiè, F. Bragheri, D. Di Carlo, and R. Osellame, "Particle focusing by 3D inertial microfluidics," Microsyst. Nanoeng., vol. 3, JUL 31 2017, Art no. 17027, doi: 10.1038/micronano.2017.27.
Y. Lin, "Numerical characterization of simple three-dimensional chaotic micromixers," Chem. Eng. J., Article vol. 277, pp. 303-311, Oct 2015, doi: 10.1016/j.cej.2015.04.123.
J. Zhang et al., "Inertial Microfluidic Purification of Floating Cancer Cells for Drug Screening and Three-Dimensional Tumor Models," Analytical Chemistry, Article vol. 92, no. 17, pp. 11558-11564, Sep 2020, doi: 10.1021/acs.analchem.0c00273.
C. Poon, "Measuring the density and viscosity of culture media for optimized computational fluid dynamics analysis of in vitro devices," J. Mech. Behav. Biomed. Mater., Article vol. 126, p. 9, Feb 2022, Art no. 105024, doi: 10.1016/j.jmbbm.2021.105024.
M. L. Sheely, "Glycerol viscosity tables," Industrial and Engineering Chemistry, Article vol. 24, pp. 1060-1064, 1932, doi: 10.1021/ie50273a022.
E. Nader et al., "Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise," Front. Physiol., Review vol. 10, p. 14, Oct 2019, Art no. 1329, doi: 10.3389/fphys.2019.01329.
S. Govindaraj, M. J. Daniel, S. S. Vasudevan, and J. V. Kumaran, "Changes in Salivary Flow Rate, pH, and Viscosity among Working Men and Women," Dentistry and Medical Research, vol. 7, no. 2, 2019. [Online]. Available: https://journals.lww.com/dmrs/fulltext/2019/07020/changes_in_salivary_flow_rate,_ph,_and_viscosity.6.aspx.
E. M. McGowan et al., "Evaluation of Cell Cycle Arrest in Estrogen Responsive MCF-7 Breast Cancer Cells: Pitfalls of the MTS Assay," PLoS One, Article vol. 6, no. 6, p. 8, Jun 2011, Art no. e20623, doi: 10.1371/journal.pone.0020623.
C. Y. Chuang, T. L. Chen, Y. G. Cherng, Y. T. Tai, T. G. Chen, and R. M. Chen, "Lipopolysaccharide induces apoptotic insults to human alveolar epithelial A549 cells through reactive oxygen species-mediated activation of an intrinsic mitochondrion-dependent pathway," Arch. Toxicol., Article vol. 85, no. 3, pp. 209-218, Mar 2011, doi: 10.1007/s00204-010-0585-x.
Q. H. Li, K. Rycaj, X. Chen, and D. G. Tang, "Cancer stem cells and cell size: A causal link?," SEMINARS IN CANCER BIOLOGY, vol. 35, pp. 191-199, DEC 2015, doi: 10.1016/j.semcancer.2015.07.002.
V. Gensbittel, M. Kräter, S. Harlepp, I. Busnelli, J. Guck, and J. G. Goetz, "Mechanical Adaptability of Tumor Cells in Metastasis," DEVELOPMENTAL CELL, vol. 56, no. 2, pp. 164-179, JAN 25 2021, doi: 10.1016/j.devcel.2020.10.011.
D. B. Longley, D. P. Harkin, and P. G. Johnston, "5-Fluorouracil: Mechanisms of action and clinical strategies," Nature Reviews Cancer, Review vol. 3, no. 5, pp. 330-338, May 2003, doi: 10.1038/nrc1074.
V. Varghese et al., "FOXM1 modulates 5-FU resistance in colorectal cancer through regulating TYMS expression," SCIENTIFIC REPORTS, vol. 9, FEB 6 2019, Art no. 1505, doi: 10.1038/s41598-018-38017-0.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99640-
dc.description.abstract在傳統藥物篩選流程中,人工分注細胞的過程不僅耗時,同時也限制實驗通量的提升。為此,本研究開發了一應用於高通量藥物篩選的微流體細胞分注裝置,可實現快速且自動化地將細胞分注至實驗孔盤中。本裝置設計基於微流道中流體所呈現的層流特性,以 Hagen-Poiseuille 方程式進行幾何設計以達下游流道等效流阻,使細胞懸浮液於注射幫浦所產生之壓力驅動下,透過流道結構引導至各出口。裝置同時引入被動式擾動器,提升出口細胞的均一性。在裝置性能的驗證中,研究使用 10 μm 之聚苯乙烯微粒作為細胞的模擬模型,初步確認裝置均勻分流性能。後續使用人類結腸腫瘤癌細胞株 (HCT-116) 進行細胞的分流測試,並透過 AlamarBlue 試劑進行細胞活性的測試。最後以化療藥物 5-FU (5-Fluorouracil) 對 HCT-116 進行細胞毒性的測試,以驗證本裝置於高通量藥物篩選流程中的應用可行性。實驗結果顯示,此微流體裝置可於 2 分鐘內完成 96 孔盤的分注,且輸出之總粒子數量與目標值誤差控制於 7.933% 以內。後續細胞分流實驗亦顯示輸出至孔盤之細胞數量具有高再現性,且細胞經裝置分注後可正常貼附,未見變形與污染現象,顯示裝置具備良好的操作安全性與生物相容性。最終,細胞毒性測試展示經裝置分注之細胞可保有對藥物刺激的反應能力,證實裝置適用於高通量藥物篩選場景。本研究開發之微流體裝置可在短時間內完成細胞分注,預期其可在藥物篩選領域為中小型研究單位與臨床場域提供一低成本、高效率的自動化平臺。zh_TW
dc.description.abstractManual cell dispensing in conventional drug screening workflows is not only labor-intensive, but also limits overall experimental throughput. To address this bottleneck, this study develops a microfluidic cell dispensing device for high-throughput drug screening, enabling rapid and automated cell dispensing into well plates. To ensure uniform flow distribution across outlets, the device leverages fluid's laminar flow characteristics within microchannels, where downstream channel geometries are designed according to the Hagen-Poiseuille equation to achieve equivalent hydraulic resistance. Driven by a single syringe pump, cell suspension is guided through the channel network to multiple outlets. Furthermore, integrated passive perturbation structures enhance the uniformity of the dispensed cells at the outlets. The device's performance is initially validated using 10 µm polystyrene beads as a cell mimic, confirming its capability for uniform distribution. Subsequently, human colon carcinoma cell line (HCT-116) is used to evaluate cell aliquoting performance, with cell viability assessed via the AlamarBlue assay. Ultimately, chemotherapeutic drug 5-Fluorouracil (5-FU) is used to perform a cytotoxicity test on the dispensed HCT-116 cells, validating the device's applicability in a high-throughput drug screening workflow. Results demonstrate that the microfluidic device can complete dispensing a 96 well plate within 2 minutes, with the deviation of the total particle count at each outlet controlled within 7.933% of the target value. The device exhibits good biocompatibility, operational consistency, and high reproducibility in dispensing viable cells, as cells adhere properly with no observable deformation or contamination. Lastly, cytotoxicity test shows cells dispensed by the device retained their ability to respond to drug stimuli. This work presents an efficient solution for cell dispensing in high-throughput drug screening, expects to offer a cost-effective platform for biomedical research and clinical settings in drug screening.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:14:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:14:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目次 v
圖次 viii
第一章、前言與文獻回顧 1
1.1 癌症治療的現況與挑戰 1
1.2 藥物探索 1
1.3 高通量藥物篩選與其挑戰 2
1.4 微流體之細胞操控技術 2
1.5 外部物理場域 3
1.5.1 介電泳力控制 3
1.5.2 聲學控制 4
1.5.3 磁學控制 5
1.6 流體動力學 6
1.6.1 閥門控制 6
1.6.2 結構限制方法 7
1.6.3 垂直重力方法 8
1.7 本研究開發之裝置 9
第二章、實驗設計與實驗流程 11
2.1 實驗試劑與耗材 11
2.2 實驗儀器 12
2.3 微流體裝置製作 13
2.3.1 微流體裝置分流流道設計 13
2.3.2 微流體裝置製作 14
2.4 實驗溶液配置 15
2.4.1 粒子懸浮液配置 15
2.4.2 不同黏度溶液配置 16
2.4.3 結腸腫瘤細胞培養與細胞懸浮液配置 16
2.4.4 5-FU 藥物溶液配置 16
2.5 實驗步驟 16
2.5.1 分流流道數值模擬分析 16
2.5.2 被動式擾動器引入 17
2.5.3 不同注入流率之出口體積量與粒子數量均一性測試 17
2.5.4 不同黏度溶液分流測試 18
2.5.5 不同濃度之粒子懸浮液分流測試 18
2.5.6 微流體裝置出口擴充性性能驗證 18
2.5.7 結腸腫瘤細胞於裝置分流測試 18
2.5.8 結腸腫瘤細胞毒性測試 19
第三章、實驗結果與討論 20
3.1 微流體裝置流道設計 22
3.1.1 分流流道數值模擬分析 22
3.1.2 被動式擾動器引入 23
3.2 聚苯乙烯微粒於微流體裝置功能驗證 25
3.2.1 不同注入流率之出口體積量與粒子數量均一性測試 25
3.2.2 不同黏度與粒子濃度溶液測試 27
3.3 微流體裝置出口擴充性性能驗證 28
3.4 結腸腫瘤細胞分流與毒性測試 30
3.4.1 結腸腫瘤細胞於裝置分注測試 30
3.4.2 結腸腫瘤細胞毒性測試 31
第四章、結論與未來展望 33
參考文獻 34
-
dc.language.isozh_TW-
dc.subject微流體裝置zh_TW
dc.subject高通量zh_TW
dc.subject藥物篩選zh_TW
dc.subject細胞分注zh_TW
dc.subject被動式擾動器zh_TW
dc.subjectcell dispensingen
dc.subjectmicrofluidic deviceen
dc.subjecthigh-throughputen
dc.subjectpassive perturbatoren
dc.subjectdrug screeningen
dc.title微流體細胞分注裝置應用於高通量藥物篩選之研發zh_TW
dc.titleDevelopment of Microfluidic Cell Dispensing Device for High-throughput Drug Screening Applicationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee周逸儒;余政儒;林佳慧zh_TW
dc.contributor.oralexamcommitteeYi-Ju Chou;Cheng-Ju Yu;Jia-Hui Linen
dc.subject.keyword微流體裝置,高通量,藥物篩選,細胞分注,被動式擾動器,zh_TW
dc.subject.keywordmicrofluidic device,high-throughput,drug screening,cell dispensing,passive perturbator,en
dc.relation.page39-
dc.identifier.doi10.6342/NTU202503783-
dc.rights.note未授權-
dc.date.accepted2025-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
2.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved