請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99638完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李翔傑 | zh_TW |
| dc.contributor.advisor | Hsiang-Chieh Lee | en |
| dc.contributor.author | 宋姵蓁 | zh_TW |
| dc.contributor.author | Pei-Chen Sung | en |
| dc.date.accessioned | 2025-09-17T16:13:42Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-08 | - |
| dc.identifier.citation | 參考文獻
1. Oral Surgeon Tampa. Cone beam CT scan – Why do I need one? [Internet]; Available from: https://www.oralsurgeontampa.com/blog/cone-beam-ct-scan-why-do-i-need-one/.. 2. MORITA. 3D Accuitomo 170 [Internet]; Available from: https://www.medicalexpo.com/prod/morita/product-73340-478853.html. 3. Grover, V.P., et al. Magnetic resonance imaging: principles and techniques: lessons for clinicians. J Clin Exp Hepatol. 2015;5(3):246–255. 4. Reda, R., et al. An Update of the Possible Applications of Magnetic Resonance Imaging (MRI) in Dentistry: A Literature Review. J Imaging. 2021 Apr 21;7(5):75. 5. Al-Haj Husain, A., et al. Dental MRI of Oral Soft-Tissue Tumors—Optimized Use of Black Bone MRI Sequences and a 15-Channel Mandibular Coil J Imaging. 2022 May 22;8(5):146. 6. University Hospital Ulm. Dental MRI [Internet]; Available from: https://www.uniklinik-ulm.de/innere-medizin-ii/experimentelle-forschung/experimental-cardiovascular-imaging-excavi/dental-mri.html. 7. Medisafe Supplies. SOPROLIFE [Internet]; Available from: https://medisafesupplies.com/imaging/soprolife/. 8. KaVo. DIAGNOcam Vision Full HD [Internet]; Available from: https://www.kavo.com/en/products/practice-equipment/patient-communication/diagnocamtm-vision-full-hd. 9. Dentsply Sirona. Primescan Intraoral Scanner [Internet]; Available from: https://lp.dentsplysirona.com/zh-tw/primescan-intraoral-scanner.html.. 10. Shimada, Y., et al. Evaluation of dental caries, tooth crack, and age-related changes in tooth structure using optical coherence tomography. Jpn Dent Sci Rev. 2020 Nov;56(1):109-118. 11. Shimada, Y., et al. 3D evaluation of composite resin restoration at practical training using swept-source optical coherence tomography (SS-OCT) Dent Mater J. 2012;31(3):409-17. 12. Ritter, A.V., Boushell, L.W., Walter, R. Sturdevant's Art and Science of Operative Dentistry. 7th ed. Mosby; 2018. 13. iStock. Anatomy of Teeth [Image]; Available from: https://www.istockphoto.com/vector/anatomy-of-teeth-gm636379496-112871037. 14. Fried, D., et al. In vivo Near-IR Imaging of Occlusal Lesions at 1310-nm. SPIE BiOS, 2011. 15. Darling, C.L., et al. Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm. J Biomed Opt. 2006 May-Jun;11(3):34023. 16. Damodaran, V., et al. Optical coherence tomography based imaging of dental demineralisation and cavity restoration in 840 nm and 1310 nm wavelength regions. Opt Lasers Eng. 2016;83:59–65. 17. Jones, R.S., et al. Near-infrared transillumination at 1310-nm for the imaging of early dental decay. Optics Express, 2003;11(18):2259–2265. 18. Shimada, Y., et al. Application of Optical Coherence Tomography (OCT) for Diagnosis of Caries, Cracks, and Defects of Restorations. Curr Oral Health Rep. 2015;2(2):73-80. 19. Meng, Z., et al. Measurement of the refractive index of human teeth by optical coherence tomography. J Biomed Opt, 2009;14(3):034010. 20. Golde, J., et al. Detection of carious lesions utilizing depolarization imaging by polarization sensitive optical coherence tomography. Journal of Biomedical Optics, 2018;23(7):071203. 21. Hund, S.M.M., et al. Polarization-Sensitive Optical Coherence Tomography for Monitoring De- and Remineralization of Bovine Enamel In Vitro. Diagnostics 2024;14(4):367. 22. Schneider, H., et al., "An Intraoral OCT Probe to Enhanced Detection of Approximal Carious Lesions and Assessment of Restorations. " Journal of Clinical Medicine, 2020;9(10):325. 23. Huang, D., et al., Optical coherence tomography. Science, 1991;254:1178–1181. 24. Zeppieri, M., et al. Optical Coherence Tomography (OCT): A Brief Look at the Uses and Technological Evolution of Ophthalmology. Medicina (Kaunas). 2023 Dec 3;59(12):2114. 25. Schneider, H., et al. Dental Applications of Optical Coherence Tomography (OCT) in Cariology. Appl. Sci. 2017;7(5):472. 26. Zafar, M., et al. Skin Imaging Using Optical Coherence Tomography and Photoacoustic Imaging: A Mini-Review. Optics 2024;5(2):248–266. 27. Tsai, T.-H., et al. Optical coherence tomography in gastroenterology: a review and future outlook. Journal of Biomedical Optics, 2017;22(12):121716. 28. Rubinstein, M., et al. et al. Optical coherence tomography applications in otolaryngology. Acta Otorrinolaringol Engl Ed. 2009;60(5):357–363. 29. Jin, J., et al. Transcranial focused ultrasound precise neuromodulation: a review of focal size regulation, treatment efficiency and mechanisms. Front Neurosci. 2024;18:1463038. 30. Kryszan, K., et al. Artificial-Intelligence-Enhanced Analysis of In Vivo Confocal Microscopy in Corneal Diseases: A Review. Diagnostics (Basel). 2024;14(7):694. 31. Schulze, R., et al. Accuracy of cone-beam computed tomography in imaging the components of the periodontal phenotype. Periodontol 2000. 2024. 32. Obel. Introduction to Optical Coherence Tomography [Internet]; Available from: https://obel.ee.uwa.edu.au/research/fundamentals/introduction-oct/. 33. Izatt, J.A., Choma, M.A., Theory of optical coherence tomography, in Optical coherence tomography. 2008, Springer. p. 47-72. 34. Chen, Y., et al. Speckle-Reduced Optical Coherence Tomography Using a Tunable Quasi-Supercontinuum Source. Photonics 2023;10(12):1338. 35. Banik, S., et al. Speckle noise mitigation via incoherent averaging in swept-source optical coherence tomography. J Opt Soc Am B. 2025;42(5):1099–1104. 36. Chintada, B.R., et al. Sample tilting for speckle suppression through angular compounding. Opt Lett. 2024;49(17):4979–4982. 37. Cheng, Y., et al. Robust three-dimensional registration on optical coherence tomography angiography for speckle reduction and visualization. Quant Imaging Med Surg. 2021;11(3):879–894. 38. Cheng, Y., et al. Reducing noise in polarization-sensitive optical coherence tomography for high-quality local phase retardation imaging. Quant Imaging Med Surg. 2021;11(3):879–894. 39. Chintada, B.R., et al. Probabilistic volumetric speckle suppression in OCT using deep learning. Biomed Opt Express. 2024;15(8):4453–4469. 40. Li, F., et al. Speckle Noise Removal in OCT Images via Wavelet Transform and DnCNN. Appl. Sci. 2025;15(12):6557. 41. Zhou, C., et al. Space-division multiplexing optical coherence tomography. Opt Express. 2013;21(16):19219–19227. 42. Liu, G., et al. Extended axial imaging range, widefield swept source optical coherence tomography angiography. J Biophotonics. 2017;10(11):1464–1472. 43. Ou, W., et al. Dynamic Visual SLAM with Semantic Information for Seeing Impaired People. DOI:10.13140/RG.2.2.20134.40002 44. Zhang, Z. Flexible camera calibration by viewing a plane from unknown orientations. IEEE. 2002. DOI:10.1109/ICCV.1999.791289 45 Huang, K.-L. Integrated development of refractive distortion correction algorithm and long-range optical coherence tomography in ophthalmic applications. Master’s thesis. National Taiwan University; 2025. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99638 | - |
| dc.description.abstract | 隨著科技的快速發展,已有多種口內成像技術應用在牙科臨床上,能有效地輔助牙醫師進行口腔疾病診斷。目前常用的電腦斷層影像(Computed tomography, CT),具游離輻射,對人體有潛在危險,而光學同調斷層掃描術(Optical Coherence Tomography, OCT)則無此困擾,其非侵入性、高解析度及快速成像的特性,被認為是一種很有發展前途的口內成像技術。它是一種基於低同調干涉儀(Low coherence interferometry, LCI)的技術,透過量測參考端與樣品端的干涉訊號來獲取生物組織的斷層影像。然而,由於牙體硬組織的光學特性,影像中常出現垂直偽影(Vertical line artifact)。這種偽影限制了OCT在實際臨床應用中對病灶特徵的解讀。
基於以上所述,我們希望可以由不同視角對樣本進行掃描,使入射光避開可能影響成像之結構,並藉由折射率校正暨影像拼接演算法,將影像先做校正,再將其進行融合,以補足單一視角下所缺失的影像資訊,進一步提升影像的判讀性。因此,本論文開發了一種基於深度多工技術(Depth-encoded multiplexing)與光學時脈頻率倍增模組(Optical frequency clock doubling circuit module)的新型掃頻源光學同調斷層掃描(Swept-source OCT, SS-OCT)成像系統。該系統無須移動樣本,即可在單次掃描中擷取牙齒樣本在三種不同視角下的OCT影像。 此外,本實驗室團隊開發了一套畸變與折射率校正暨基於迭代最近點演算法(Iterative closest point, ICP)的多視角影像拼接演算法,用以融合多視角的OCT影像。該演算法能有效修正因光學系統設計導致的枕狀畸變,以及因忽略折射率效應而造成的幾何扭曲,再利用ICP演算法,將多視向牙齒OCT影像進行對位並融合,來減少偽影且提高解析度。 未來,我們希望能以此論文為基礎,進一步將系統開發成手持式之微型多視向口內掃描探頭,提供即時的多視向拼接影像,提升其在臨床上的實用性,協助牙醫師能更有效地進行口內疾病診斷。 | zh_TW |
| dc.description.abstract | With the rapid development of technology, various intraoral imaging techniques have been applied in dental clinics to effectively assist dentists in diagnosing oral diseases. Currently, the most commonly used method is Computed Tomography (CT), but its use of ionizing radiation poses potential health risks. In contrast, Optical Coherence Tomography (OCT) does not pose such concerns. OCT is considered a highly promising intraoral imaging modality due to its non-invasive nature, high resolution, and fast imaging capabilities. It is based on a low-coherence interferometer, which obtains tomographic images of biological tissues by measuring the interference signals between the reference arm and the sample arm. However, due to the optical properties of dental hard tissues, vertical line artifacts often appear in OCT images. These artifacts limit the interpretation of lesion characteristics in actual clinical applications.
Based on the above, we aim to scan the sample from different angles, allowing the incident light to avoid structures that may affect imaging. Through refractive index correction and image stitching algorithms, we correct and then fuse the images to compensate for the missing information in single-view imaging, thereby enhancing interpretability. Therefore, this study developed a novel swept-source optical coherence tomography (SS-OCT) imaging system based on depth-encoded multiplexing and optical frequency clock doubling. The system can acquire OCT images of a tooth from three different viewing angles in a single scan without moving the sample. In addition, our laboratory team has developed a multi-view image registration algorithm based on distortion and refractive index correction, combined with the Iterative Closest Point (ICP) algorithm. This algorithm can effectively correct the pincushion distortion caused by the optical system design and the geometric distortion caused by the refractive index. After correction, the surface morphology of the tooth is extracted by calculating the maximum image gradient to generate point clouds. The ICP algorithm is then used to compute displacements between these point clouds to align and fuse the multi-view OCT images, reducing artifacts and enhancing resolution. In the future, we hope to further develop the system into a handheld, miniature, multi-view intraoral scanning probe based on this study, providing real-time multi-view stitched images. This would further enhance its clinical practicality and assist dentists in making more effective diagnoses of oral diseases. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:13:42Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:13:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
論文口試委員 i 誌謝 ii 中文摘要 iv ABSTRACT vi 目次 viii 圖次 xi 表次 xvi Chapter 1 緒論 1 1.1 口腔內成像技術介紹 1 1.1.1 放射線攝影術(Radiography)。 1 1.1.2 磁振造影(Magnetic resonance imaging, MRI) 2 1.1.3 定量光激發螢光術(Quantitative light-induced fluorescence, QLF) 3 1.1.4 光纖透照術(Fiber-optic transillumination, FOTI) 5 1.1.5 口腔內掃描機(Intraoral scanner, IOS) 6 1.1.6 光學同調斷層掃描術(Optical coherence tomography, OCT) 7 1.2 牙齒組織結構與光學特性 8 1.2.1 牙齒的組織結構 8 1.2.2 牙齒的光學性質 10 1.3 研究動機 12 1.4 論文範疇 14 Chapter 2 光學同調斷層掃描術(Optical coherence tomography) 15 2.1 光學同調斷層掃描術簡介 15 2.2 低同調干涉儀 16 2.3 光學同調斷層掃描術之演進 20 2.3.1 時域式光學同調斷層掃描術(TD-OCT) 21 2.3.2 頻域式光學同調斷層掃描術(SD-OCT) 22 2.3.3 掃頻式光學同調斷層掃描術(SS-OCT) 23 2.4 光學同調斷層掃描系統的特性 23 2.4.1 靈敏度與靈敏度滾降(Sensitivity and sensitivity roll-off) 23 2.4.2 軸向解析度(Axial resolution) 24 2.4.3 橫向解析度(Lateral resolution) 24 2.4.4 成像範圍(Field of view, FOV) 25 2.4.5 景深(Depth of field, DOF) 25 2.5 光學同調斷層掃描影像中的散斑雜訊(Speckle noise) 26 Chapter 3 光學同調斷層掃描術系統 29 3.1 光學同調斷層掃描術系統架構 29 3.2 多角度GRIN光纖準直器支架設計 30 3.3 光學系統設計 31 3.4 光學同調斷層掃描術系統特性 32 3.5 深度多工技術(Depth-encoded multiplexing) 35 3.6 光學時脈頻率倍增模組(Optical clock frequency doubling circuit module) 36 3.7 牙齒樣本收集 37 Chapter 4 單次多視角牙齒OCT影像自動畸變與折射率校正暨拼接演算法 38 4.1 單次多視角OCT影像分割 39 4.2 光學畸變校正(Optical distortion correction) 40 4.3 折射率校正(Refraction index correction) 41 4.4 迭代最近點演算法(Iterative closest point, ICP) 42 4.5 單次多視角牙齒OCT影像拼接演算法流程 44 4.5.1 特徵點擷取 46 4.5.2 計算轉換矩陣 46 4.5.3 三維影像對位 47 4.5.4 影像融合 47 Chapter 5 結果與討論 49 5.1 光學時脈頻率倍增模組 49 5.2 深度多工技術 50 5.3 光學畸變校正結果 51 5.2.1 網格 51 5.2.2 USAF 1951分辨力測試圖(Resolution target) 52 5.4 折射率校正結果 53 5.5 影像拼接結果 54 Chapter 6 結論與未來展望 57 6.1 結論 57 6.2 未來展望 57 參考文獻 59 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 光學同調斷層掃描術 | zh_TW |
| dc.subject | 口腔內成像 | zh_TW |
| dc.subject | 牙齒 | zh_TW |
| dc.subject | 折射率校正 | zh_TW |
| dc.subject | 迭代最近點演算法 | zh_TW |
| dc.subject | 點雲配準 | zh_TW |
| dc.subject | 影像融合 | zh_TW |
| dc.subject | iterative closest point algorithm (ICP) | en |
| dc.subject | image fusion | en |
| dc.subject | point cloud registration | en |
| dc.subject | optical coherence tomography (OCT) | en |
| dc.subject | intraoral imaging | en |
| dc.subject | teeth | en |
| dc.subject | refractive index correction | en |
| dc.title | 基於深度多工單次多視向光學同調斷層掃描系統的開發 | zh_TW |
| dc.title | Development of a Depth-Encoded Multiplexing-Based Single-Shot Multi-View Optical Coherence Tomography (OCT) System | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡睿哲;王義閔;李正匡;王姻麟 | zh_TW |
| dc.contributor.oralexamcommittee | Jui-Che Tsai;Yi-Min Wang;Cheng-Kuang Lee;Yin-Lin Wang | en |
| dc.subject.keyword | 光學同調斷層掃描術,口腔內成像,牙齒,折射率校正,迭代最近點演算法,點雲配準,影像融合, | zh_TW |
| dc.subject.keyword | optical coherence tomography (OCT),intraoral imaging,teeth,refractive index correction,iterative closest point algorithm (ICP),point cloud registration,image fusion, | en |
| dc.relation.page | 62 | - |
| dc.identifier.doi | 10.6342/NTU202503822 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2030-08-04 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 4.45 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
