Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99636
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡育彰zh_TW
dc.contributor.advisorYu-Chang Tsaien
dc.contributor.author鄭任偉zh_TW
dc.contributor.authorJen-Wei Chengen
dc.date.accessioned2025-09-17T16:13:20Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-08-
dc.identifier.citation王維晨。2018。水稻細胞分裂素訊息反應調節蛋白 OsRR9、10 與鹽害逆境耐受性之關係。國立臺灣大學生物資源暨農學院農藝學系碩士論文。
游勛閎。2022。水稻細胞分裂素訊息擬磷酸轉運蛋白在根系發育之功能探討。國立臺灣大學生物資源暨農學院農藝學系碩士論文。
Abas, L., Kolb, M., Stadlmann, J., Janacek, D. P., Lukic, K., Schwechheimer, C., Sazanov, L. A., Mach, L., Friml, J., & Hammes, U. Z. (2021). Naphthylphthalamic acid associates with and inhibits PIN auxin transporters. Proceedings of the National Academy of Sciences, 118(1), e2020857118. https://doi.org/doi:10.1073/pnas.2020857118
Adamowski, M., & Friml, J. (2015). PIN-dependent auxin transport: action, regulation, and evolution. The Plant Cell, 27(1), 20-32. https://doi.org/10.1105/tpc.114.134874
Aloni, R., Aloni, E., Langhans, M., & Ullrich, C. I. (2006). Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Annals of Botany, 97(5), 883-893. https://doi.org/10.1093/aob/mcl027
Aloni, R., Langhans, M., Aloni, E., & Ullrich, C. I. (2004). Role of cytokinin in the regulation of root gravitropism. Planta, 220(1), 177-182. https://doi.org/10.1007/s00425-004-1381-8
Band, L. R., Wells, D. M., Larrieu, A., Sun, J., Middleton, A. M., French, A. P., Brunoud, G., Sato, E. M., Wilson, M. H., Péret, B., Oliva, M., Swarup, R., Sairanen, I., Parry, G., Ljung, K., Beeckman, T., Garibaldi, J. M., Estelle, M., Owen, M. R., & Bennett, M. J. (2012). Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proceedings of the National Academy of Sciences, 109(12), 4668-4673. https://doi.org/doi:10.1073/pnas.1201498109
Baster, P., Robert, S., Kleine‐Vehn, J., Vanneste, S., Kania, U., Grunewald, W., De Rybel, B., Beeckman, T., & Friml, J. (2013). SCF(TIR1/AFB)-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. The EMBO Journal, 32(2), 260-274. https://doi.org/https://doi.org/10.1038/emboj.2012.310
Bishopp, A., Help, H., El-Showk, S., Weijers, D., Scheres, B., Friml, J., Benková, E., Mähönen, Ari P., & Helariutta, Y. (2011). A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Current Biology, 21(11), 917-926. https://doi.org/https://doi.org/10.1016/j.cub.2011.04.017
Catolos, M., Sandhu, N., Dixit, S., Shamsudin, N. A. A., Naredo, M. E. B., McNally, K. L., Henry, A., Diaz, M. G., & Kumar, A. (2017). Genetic loci governing grain yield and root development under variable rice cultivation conditions. Frontiers in plant science, Volume 8 - 2017. https://doi.org/10.3389/fpls.2017.01763
Chapman, K., Taleski, M., Frank, M., & Djordjevic, M. A. (2023). C-TERMINALLY ENCODED PEPTIDE (CEP) and cytokinin hormone signaling intersect to promote shallow lateral root angles. Journal of Experimental Botany, 75(2), 631-641. https://doi.org/10.1093/jxb/erad353
Chen, Q., Dai, X., De-Paoli, H., Cheng, Y., Takebayashi, Y., Kasahara, H., Kamiya, Y., & Zhao, Y. (2014). Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis Roots. Plant and Cell Physiology, 55(6), 1072-1079. https://doi.org/10.1093/pcp/pcu039
Coudert, Y., Périn, C., Courtois, B., Khong, N. G., & Gantet, P. (2010). Genetic control of root development in rice, the model cereal. Trends in Plant Science, 15(4), 219-226. https://doi.org/10.1016/j.tplants.2010.01.008
Dodd, A. N., Kudla, J., & Sanders, D. (2010). The language of calcium signaling. Annual Review of Plant Biology, 61(Volume 61, 2010), 593-620. https://doi.org/https://doi.org/10.1146/annurev-arplant-070109-104628
Du, L., Jiao, F., Chu, J., Jin, G., Chen, M., & Wu, P. (2007). The two-component signal system in rice (Oryza sativa L.): A genome-wide study of cytokinin signal perception and transduction. Genomics, 89(6), 697-707. https://doi.org/https://doi.org/10.1016/j.ygeno.2007.02.001
Farooq, M., Jan, R., & Kim, K.-M. (2020). Gravistimulation effects on Oryza sativa amino acid profile, growth pattern and expression of OsPIN genes. Scientific Reports, 10(1), 17303. https://doi.org/10.1038/s41598-020-74531-w
Fendrych, M., Akhmanova, M., Merrin, J., Glanc, M., Hagihara, S., Takahashi, K., Uchida, N., Torii, K. U., & Friml, J. (2018). Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nature Plants, 4(7), 453-459. https://doi.org/10.1038/s41477-018-0190-1
Feng, Y., Bayaer, E., & Qi, Y. (2022). Advances in the biological functions of auxin transporters in rice. Agriculture, 12(7), 989. https://www.mdpi.com/2077-0472/12/7/989
Fluhr, R. (2009). Reactive oxygen-generating NADPH oxidases in plants. In: Rio, L., Puppo, A. (eds.), Reactive Oxygen Species in Plant Signaling (pp. 1-23). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00390-5_1
Foreman, J., Demidchik, V., Bothwell, J. H. F., Mylona, P., Miedema, H., Torres, M. A., Linstead, P., Costa, S., Brownlee, C., Jones, J. D. G., Davies, J. M., & Dolan, L. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 422(6930), 442-446. https://doi.org/10.1038/nature01485
Frick, E. M., & Strader, L. C. (2017). Roles for IBA-derived auxin in plant development. Journal of Experimental Botany, 69(2), 169-177. https://doi.org/10.1093/jxb/erx298
Friml, J. (2003). Auxin transport — shaping the plant. Current Opinion in Plant Biology, 6(1), 7-12. https://doi.org/https://doi.org/10.1016/S1369526602000031
Ge, L., & Chen, R. (2019). Negative gravitropic response of roots directs auxin flow to control root gravitropism. Plant, Cell & Environment, 42(8), 2372-2383. https://doi.org/https://doi.org/10.1111/pce.13559
Gupta, S., & Rashotte, A. M. (2012). Down-stream components of cytokinin signaling and the role of cytokinin throughout the plant. Plant Cell Reports, 31(5), 801-812. https://doi.org/10.1007/s00299-012-1233-0
Hao, B., Zhang, R., Zhang, C., Wen, N., Xia, Y., Zhao, Y., Li, Q., Qiao, L., & Li, W. (2024). Characterization of OsPIN2 mutants reveal novel roles for reactive oxygen species in modulating not only root gravitropism but also hypoxia tolerance in rice seedlings. Plants, 13(4), 476. https://www.mdpi.com/2223-7747/13/4/476
Hirose, N., Makita, N., Kojima, M., Kamada-Nobusada, T., & Sakakibara, H. (2007). Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism. Plant and Cell Physiology, 48(3), 523-539. https://doi.org/10.1093/pcp/pcm022
Inahashi, H., Shelley, I. J., Yamauchi, T., Nishiuchi, S., Takahashi-Nosaka, M., Matsunami, M., Ogawa, A., Noda, Y., & Inukai, Y. (2018). OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice. Physiologia Plantarum, 164(2), 216-225. https://doi.org/https://doi.org/10.1111/ppl.12707
Jabs, T., Dietrich, R. A., & Dangl, J. L. (1996). Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science, 273(5283), 1853-1856. https://doi.org/doi:10.1126/science.273.5283.1853
Joo, J. H., Bae, Y. S., & Lee, J. S. (2001). Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiology, 126(3), 1055-1060. https://doi.org/10.1104/pp.126.3.1055
Kieber, J. J., & Schaller, G. E. (2018). Cytokinin signaling in plant development. Development, 145(4). https://doi.org/10.1242/dev.149344
Kirschner, G. K., Hochholdinger, F., Salvi, S., Bennett, M. J., Huang, G., & Bhosale, R. A. (2024). Genetic regulation of the root angle in cereals. Trends in Plant Science, 29(7), 814-822. https://doi.org/10.1016/j.tplants.2024.01.008
Kitomi, Y., Hanzawa, E., Kuya, N., Inoue, H., Hara, N., Kawai, S., Kanno, N., Endo, M., Sugimoto, K., Yamazaki, T., Sakamoto, S., Sentoku, N., Wu, J., Kanno, H., Mitsuda, N., Toriyama, K., Sato, T., & Uga, Y. (2020). Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields. Proceedings of the National Academy of Sciences, 117(35), 21242-21250. https://doi.org/doi:10.1073/pnas.2005911117
Kleine-Vehn, J., Ding, Z., Jones, A. R., Tasaka, M., Morita, M. T., & Friml, J. (2010). Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proceedings of the National Academy of Sciences, 107(51), 22344-22349. https://doi.org/doi:10.1073/pnas.1013145107
Konstantinova, N., Korbei, B., & Luschnig, C. (2021). Auxin and root gravitropism: addressing basic cellular processes by exploiting a defined growth response. Int J Mol Sci, 22(5). https://doi.org/10.3390/ijms22052749
Krieger, G., Shkolnik, D., Miller, G., & Fromm, H. (2016). Reactive oxygen species tune root tropic responses. Plant Physiology, 172(2), 1209-1220. https://doi.org/10.1104/pp.16.00660
Kumar, A., Verma, K., Kashyap, R., Joshi, V. J., Sircar, D., & Yadav, S. R. (2024). Auxin-responsive ROS homeostasis genes display dynamic expression pattern during rice crown root primordia morphogenesis. Plant Physiology and Biochemistry, 206, 108307. https://doi.org/https://doi.org/10.1016/j.plaphy.2023.108307
Li, S.-M., Zheng, H.-X., Zhang, X.-S., & Sui, N. (2021). Cytokinins as central regulators during plant growth and stress response. Plant Cell Reports, 40(2), 271-282. https://doi.org/10.1007/s00299-020-02612-1
Li, W., Zhang, M., Qiao, L., Chen, Y., Zhang, D., Jing, X., Gan, P., Huang, Y., Gao, J., Liu, W., Shi, C., Cui, H., Li, H., & Chen, K. (2022). Characterization of wavy root 1, an agravitropism allele, reveals the functions of OsPIN2 in fine regulation of auxin transport and distribution and in ABA biosynthesis and response in rice (Oryza sativa L.). The Crop Journal, 10(4), 980-992. https://doi.org/https://doi.org/10.1016/j.cj.2021.12.004
Liu, H., Wu, Y., Cai, J., Xu, L., Zhou, C., & Wang, C. (2025). Auxin controls root gravitropic response by affecting starch granule accumulation and cell wall modification in tomato. Plants, 14(7), 1020. https://www.mdpi.com/2223-7747/14/7/1020
Lobet, G., Pagès, L., & Draye, X. (2011). A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiology, 157(1), 29-39. https://doi.org/10.1104/pp.111.179895
Luo, S., Li, Q., Liu, S., Pinas, N. M., Tian, H., & Wang, S. (2015). Constitutive expression of OsIAA9 affects starch granules accumulation and root gravitropic response in Arabidopsis. Frontiers in plant science, 6, 1156.
Lynch, J. P. (2022). Harnessing root architecture to address global challenges. The Plant Journal, 109(2), 415-431. https://doi.org/https://doi.org/10.1111/tpj.15560
Mangano, S., Denita-Juarez, S. P., Choi, H.-S., Marzol, E., Hwang, Y., Ranocha, P., Velasquez, S. M., Borassi, C., Barberini, M. L., Aptekmann, A. A., Muschietti, J. P., Nadra, A. D., Dunand, C., Cho, H.-T., & Estevez, J. M. (2017). Molecular link between auxin and ROS-mediated polar growth. Proceedings of the National Academy of Sciences, 114(20), 5289-5294. https://doi.org/doi:10.1073/pnas.1701536114
Maqbool, S., Hassan, M. A., Xia, X., York, L. M., Rasheed, A., & He, Z. (2022). Root system architecture in cereals: progress, challenges and perspective. The Plant Journal, 110(1), 23-42. https://doi.org/https://doi.org/10.1111/tpj.15669
Marchant, A., Kargul, J., May, S. T., Muller, P., Delbarre, A., Perrot‐Rechenmann, C., & Bennett, M. J. (1999). AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. The EMBO Journal, 18(8), 2066-2073. https://doi.org/https://doi.org/10.1093/emboj/18.8.2066
Marhavý, P., Duclercq, J., Weller, B., Feraru, E., Bielach, A., Offringa, R., Friml, J., Schwechheimer, C., Murphy, A., & Benková, E. (2014). Cytokinin controls polarity of PIN1-dependent auxin transport during lateral root organogenesis. Current Biology, 24(9), 1031-1037. https://doi.org/https://doi.org/10.1016/j.cub.2014.04.002
Meng, F., Xiang, D., Zhu, J., Li, Y., & Mao, C. (2019). Molecular mechanisms of root development in rice. Rice, 12(1), 1. https://doi.org/10.1186/s12284-018-0262-x
Moreira, S., Bishopp, A., Carvalho, H., & Campilho, A. (2013). AHP6 inhibits cytokinin signaling to regulate the orientation of pericycle cell division during lateral root initiation. PLoS One, 8(2), e56370. https://doi.org/10.1371/journal.pone.0056370
Nirmalaruban, R., Yadav, R., S., S., Meda, A., Babu, P., Kumar, M., Gaikwad, Kiran B., Bainsla, Naresh K., Singh, Shiv K., R., S., & Rahimi, M. (2025). Root traits: A key for breeding climate-smart wheat (Triticum aestivum). Plant Breeding, 144(3), 310-334. https://doi.org/https://doi.org/10.1111/pbr.13248
Norton, G. J., & Price, A. H. (2009). Mapping of quantitative trait loci for seminal root morphology and gravitropic response in rice. Euphytica, 166, 229-237.
Péret, B., Swarup, K., Ferguson, A., Seth, M., Yang, Y., Dhondt, S., James, N., Casimiro, I., Perry, P., Syed, A., Yang, H., Reemmer, J., Venison, E., Howells, C., Perez-Amador, M. A., Yun, J., Alonso, J., Beemster, G. T. S., Laplaze, L., & Swarup, R. (2012). AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development. The Plant Cell, 24(7), 2874-2885. https://doi.org/10.1105/tpc.112.097766
Peer, W. A., Cheng, Y., & Murphy, A. S. (2013). Evidence of oxidative attenuation of auxin signalling. Journal of Experimental Botany, 64(9), 2629-2639. https://doi.org/10.1093/jxb/ert152
Pernisova, M., Prat, T., Grones, P., Harustiakova, D., Matonohova, M., Spichal, L., Nodzynski, T., Friml, J., & Hejatko, J. (2016). Cytokinins influence root gravitropism via differential regulation of auxin transporter expression and localization in Arabidopsis. New Phytologist, 212(2), 497-509. https://doi.org/https://doi.org/10.1111/nph.14049
Retzer, K., Akhmanova, M., Konstantinova, N., Malínská, K., Leitner, J., Petrášek, J., & Luschnig, C. (2019). Brassinosteroid signaling delimits root gravitropism via sorting of the Arabidopsis PIN2 auxin transporter. Nature Communications, 10(1), 5516. https://doi.org/10.1038/s41467-019-13543-1
Růžička, K., Šimášková, M., Duclercq, J., Petrášek, J., Zažímalová, E., Simon, S., Friml, J., Van Montagu, M. C. E., & Benková, E. (2009). Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proceedings of the National Academy of Sciences, 106(11), 4284-4289. https://doi.org/doi:10.1073/pnas.0900060106
Sauer, M., Robert, S., & Kleine-Vehn, J. (2013). Auxin: simply complicated. Journal of Experimental Botany, 64(9), 2565-2577. https://doi.org/10.1093/jxb/ert139
Schaller, G. E., Bishopp, A., & Kieber, J. J. (2015). The Yin-Yang of Hormones: Cytokinin and auxin interactions in plant development. The Plant Cell, 27(1), 44-63. https://doi.org/10.1105/tpc.114.133595
Sharma, M., Singh, D., Saksena, H. B., Sharma, M., Tiwari, A., Awasthi, P., Botta, H. K., Shukla, B. N., & Laxmi, A. (2021). Understanding the intricate web of phytohormone signalling in modulating root system architecture. International Journal of Molecular Sciences, 22(11), 5508. https://www.mdpi.com/1422-0067/22/11/5508
Šimášková, M., O’Brien, J. A., Khan, M., Van Noorden, G., Ötvös, K., Vieten, A., De Clercq, I., Van Haperen, J. M. A., Cuesta, C., Hoyerová, K., Vanneste, S., Marhavý, P., Wabnik, K., Van Breusegem, F., Nowack, M., Murphy, A., Friml, J., Weijers, D., Beeckman, T., & Benková, E. (2015). Cytokinin response factors regulate PIN-FORMED auxin transporters. Nature Communications, 6(1), 8717. https://doi.org/10.1038/ncomms9717
Singh, K. L., Mukherjee, A., & Kar, R. K. (2017). Early axis growth during seed germination is gravitropic and mediated by ROS and calcium. Journal of Plant Physiology, 216, 181-187. https://doi.org/https://doi.org/10.1016/j.jplph.2017.07.001
Singh, R., Singh, S., Parihar, P., Mishra, R. K., Tripathi, D. K., Singh, V. P., Chauhan, D. K., & Prasad, S. M. (2016). Reactive oxygen species (ROS): beneficial companions of plants' developmental processes. Frontiers in plant science, Volume 7 - 2016. https://doi.org/10.3389/fpls.2016.01299
Street, I. H., Mathews, D. E., Yamburkenko, M. V., Sorooshzadeh, A., John, R. T., Swarup, R., Bennett, M. J., Kieber, J. J., & Schaller, G. E. (2016). Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root. Development, 143(21), 3982-3993. https://doi.org/10.1242/dev.132035
Su, S.-H., Gibbs, N. M., Jancewicz, A. L., & Masson, P. H. (2017). Molecular mechanisms of root gravitropism. Current Biology, 27(17), R964-R972. https://doi.org/https://doi.org/10.1016/j.cub.2017.07.015
Takahashi, S., Kimura, S., Kaya, H., Iizuka, A., Wong, H. L., Shimamoto, K., & Kuchitsu, K. (2012). Reactive oxygen species production and activation mechanism of the rice NADPH oxidase OsRbohB. The Journal of Biochemistry, 152(1), 37-43. https://doi.org/10.1093/jb/mvs044
Thomas, M., Soriano, A., O’connor, C., Crabos, A., Nacry, P., Thompson, M., Hrabak, E., Divol, F., & Péret, B. (2023). pin2 mutant agravitropic root phenotype is conditional and nutrient-sensitive. Plant Science, 329, 111606.
Thordal-Christensen, H., Zhang, Z., Wei, Y., & Collinge, D. B. (1997). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley powdery mildew interaction. The Plant Journal, 11(6), 1187-1194. https://doi.org/https://doi.org/10.1046/j.1365-313X.1997.11061187.x
Toyota, M., Furuichi, T., Sokabe, M., & Tatsumi, H. (2013). Analyses of a gravistimulation-specific Ca2+ signature in Arabidopsis using parabolic flights. Plant Physiol, 163(2), 543-554. https://doi.org/10.1104/pp.113.223313
Toyota, M., Spencer, D., Sawai-Toyota, S., Jiaqi, W., Zhang, T., Koo, A. J., Howe, G. A., & Gilroy, S. (2018). Glutamate triggers long-distance, calcium-based plant defense signaling. Science, 361(6407), 1112-1115. https://doi.org/doi:10.1126/science.aat7744
Tsai, Y.-C., Weir, N. R., Hill, K., Zhang, W., Kim, H. J., Shiu, S.-H., Schaller, G. E., & Kieber, J. J. (2012). Characterization of genes involved in cytokinin signaling and metabolism from rice. Plant Physiology, 158(4), 1666-1684. https://doi.org/10.1104/pp.111.192765
Tsukagoshi, H. (2016). Control of root growth and development by reactive oxygen species. Current Opinion in Plant Biology, 29, 57-63. https://doi.org/https://doi.org/10.1016/j.pbi.2015.10.012
Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., Kitomi, Y., Inukai, Y., Ono, K., Kanno, N., Inoue, H., Takehisa, H., Motoyama, R., Nagamura, Y., Wu, J., Matsumoto, T., Takai, T., Okuno, K., & Yano, M. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 45(9), 1097-1102. https://doi.org/10.1038/ng.2725
Vaughan-Hirsch, J., Tallerday, E. J., Burr, C. A., Hodgens, C., Boeshore, S. L., Beaver, K., Melling, A., Sari, K., Kerr, I. D., Šimura, J., Ljung, K., Xu, D., Liang, W., Bhosale, R., Schaller, G. E., Bishopp, A., & Kieber, J. J. (2021). Function of the pseudo phosphotransfer proteins has diverged between rice and Arabidopsis. The Plant Journal, 106(1), 159-173. https://doi.org/https://doi.org/10.1111/tpj.15156
Wang, G.-F., Li, W.-Q., Li, W.-Y., Wu, G.-L., Zhou, C.-Y., & Chen, K.-M. (2013). Characterization of rice NADPH oxidase genes and their expression under various environmental conditions. International Journal of Molecular Sciences, 14(5), 9440-9458. https://www.mdpi.com/1422-0067/14/5/9440
Wang, H.-Q., Zhao, X.-Y., Xuan, W., Wang, P., & Zhao, F.-J. (2023). Rice roots avoid asymmetric heavy metal and salinity stress via an RBOH-ROS-auxin signaling cascade. Molecular Plant, 16(10), 1678-1694. https://doi.org/10.1016/j.molp.2023.09.007
Wang, H., Ouyang, Q., Yang, C., Zhang, Z., Hou, D., Liu, H., & Xu, H. (2022). Mutation of OsPIN1b by CRISPR/Cas9 reveals a role for auxin transport in modulating rice architecture and root gravitropism. International Journal of Molecular Sciences, 23(16), 8965. https://www.mdpi.com/1422-0067/23/16/8965
Wang, J.-R., Hu, H., Wang, G.-H., Li, J., Chen, J.-Y., & Wu, P. (2009). Expression of PIN genes in rice (Oryza sativa L.): tissue specificity and regulation by hormones. Molecular Plant, 2(4), 823-831. https://doi.org/10.1093/mp/ssp023
Wang, X., Liu, C., Li, T., Zhou, F., Sun, H., Li, F., Ma, Y., Jia, H., Zhang, X., Shi, W., Gong, C., & Li, J. (2024). Hydrogen sulfide antagonizes cytokinin to change root system architecture through persulfidation of CKX2 in Arabidopsis. New Phytologist, 244(4), 1377-1390. https://doi.org/https://doi.org/10.1111/nph.20122
Watanabe, S., Takahashi, N., Kanno, Y., Suzuki, H., Aoi, Y., Takeda-Kamiya, N., Toyooka, K., Kasahara, H., Hayashi, K.-i., Umeda, M., & Seo, M. (2020). The Arabidopsis NRT1/PTR FAMILY protein NPF7.3/NRT1.5 is an indole-3-butyric acid transporter involved in root gravitropism. Proceedings of the National Academy of Sciences, 117(49), 31500-31509. https://doi.org/doi:10.1073/pnas.2013305117
Wu, Y., Liu, H., Wang, Q., & Zhang, G. (2021). Roles of cytokinins in root growth and abiotic stress response of Arabidopsis thaliana. Plant Growth Regulation, 94(2), 151-160. https://doi.org/10.1007/s10725-021-00711-x
Xu, H., Zhang, Y., Yang, X., Wang, H., & Hou, D. (2022). Tissue specificity and responses to abiotic stresses and hormones of PIN genes in rice. Biologia, 77(5), 1459-1470. https://doi.org/10.1007/s11756-022-01031-9
Yadav, C., Rawat, N., Singla-Pareek, S. L., & Pareek, A. (2025). Knockdown of OsPHP1 leads to improved yield under salinity and drought in rice via regulating the complex set of TCS members and cytokinin signalling. Plant, Cell & Environment, 48(4), 2769-2782. https://doi.org/https://doi.org/10.1111/pce.15337
Yang, C., Wang, H., Ouyang, Q., Chen, G., Fu, X., Hou, D., & Xu, H. (2023). Deficiency of auxin efflux carrier OsPIN1b impairs chilling and drought tolerance in rice. Plants, 12(23), 4058. https://www.mdpi.com/2223-7747/12/23/4058
Yu, C., Sun, C., Shen, C., Wang, S., Liu, F., Liu, Y., Chen, Y., Li, C., Qian, Q., Aryal, B., Geisler, M., Jiang, D. A., & Qi, Y. (2015). The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.). The Plant Journal, 83(5), 818-830. https://doi.org/https://doi.org/10.1111/tpj.12929
Zhang, W., To, J. P. C., Cheng, C.-Y., Eric Schaller, G., & Kieber, J. J. (2011). Type-A response regulators are required for proper root apical meristem function through post-transcriptional regulation of PIN auxin efflux carriers. The Plant Journal, 68(1), 1-10. https://doi.org/https://doi.org/10.1111/j.1365-313X.2011.04668.x
Zhang, X. H., Yu, X. Z., & Yue, D. M. (2016). Phytotoxicity of dimethyl sulfoxide (DMSO) to rice seedlings. International Journal of Environmental Science and Technology, 13(2), 607-614. https://doi.org/10.1007/s13762-015-0899-6
Zhang, Y., He, P., Ma, X., Yang, Z., Pang, C., Yu, J., Wang, G., Friml, J., & Xiao, G. (2019). Auxin-mediated statolith production for root gravitropism. New Phytologist, 224(2), 761-774. https://doi.org/https://doi.org/10.1111/nph.15932
Zhao, H., Ma, T., Wang, X., Deng, Y., Ma, H., Zhang, R., & Zhao, J. (2015). OsAUX1 controls lateral root initiation in rice (Oryza sativa L.). Plant, Cell & Environment, 38(11), 2208-2222. https://doi.org/https://doi.org/10.1111/pce.12467
Zhao, Y. (2010). Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology, 61(Volume 61, 2010), 49-64. https://doi.org/https://doi.org/10.1146/annurev-arplant-042809-112308
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99636-
dc.description.abstract水稻擬磷酸轉運蛋白 (pseudo-histidine phosphotransfer proteins, OsPHPs) 在細胞分裂素訊號傳遞中扮演負向調控的角色,但其在水稻初生根向地性反應中的功能尚不明確。本研究首先建立系統性分析根向地性反應的流程,並透過根生長方向圖及根彎曲程度指標,量化水稻初生根對重力刺激的外表型變化。結合外源性細胞分裂素 (trans-zeatin)、生長素 (IAA、IBA) 處理與基因型比較,深入探討 php1/2/3 三重突變株在多層次訊號整合中的調控作用。表型分析結果顯示,php1/2/3 三重突變株對重力刺激反應速度顯著加快以及根彎曲程度下降,證實 OsPHP1/2/3 具有調節根向地性反應的能力。分子層級證據進一步顯示,OsPHP1/2/3 缺失導致細胞分裂素訊號負回饋失衡,使 Type-A OsRR2 表現更敏感,同時調控部分 OsPINs 生長素極性運輸基因的表現,進而影響生長素極性運輸與梯度建立。此外,php1/2/3 突變株初生根的活性氧 (ROS) 累積能力也明顯降低,進一步影響根部的彎曲調節。綜合上述,OsPHP1/2/3 作為細胞分裂素訊號傳遞途徑的負回饋因子,協同整合細胞分裂素、生長素及 ROS 累積之多層面網絡,確保水稻初生根對重力訊號作出合理的向地性反應,並維持根系適應環境及生長方向調整的能力。本研究成果不僅揭示 OsPHP1/2/3 的相關調控機制,亦為作物根生長方向適應能力與分子育種提供了理論依據。zh_TW
dc.description.abstractPseudo-histidine phosphotransfer proteins (OsPHPs) in rice act as negative regulators within the cytokinin signaling pathway, yet their roles in primary root gravitropic responses remain largely unexplored. In this study, we developed a systematic workflow for analyzing root gravitropism, quantifying phenotypic changes in rice primary roots in response to gravistimulation using vectorial changes of root growth and root bending level parameters. By integrating exogenous cytokinin (trans-zeatin) and auxin (IAA, IBA) treatments with genotype comparisons, we investigated the regulatory roles of OsPHP1/2/3 through analysis of a php1/2/3 triple mutant in the multi-layered integration of signaling networks. Phenotypic analyses showed that the php1/2/3 triple mutant responded significantly more rapidly to gravitstimulation and displayed reduced root curvature, demonstrating that OsPHP1/2/3 modulate primary root gravitropic responses. At the molecular level, loss of OsPHP1/2/3 disrupted negative feedback within cytokinin signaling, resulting in heightened sensitivity of the Type-A response regulator OsRR2, as well as altered expression of specific OsPINs auxin transport genes, thereby affecting auxin polar transport and gradient formation. Furthermore, the capacity for reactive oxygen species (ROS) accumulation in the primary roots of the php1/2/3 mutant was significantly reduced, further influencing root bending regulation. Collectively, OsPHP1/2/3 function as negative feedback regulators in cytokinin signaling, integratively coordinating cytokinin, auxin, and ROS accumulation in a multilayered network to ensure appropriate gravitropic responses of rice primary roots and maintain the adaptability and directional growth of the root system. This study not only elucidates the regulatory mechanisms of OsPHP1/2/3 but also provides a theoretical foundation for improving crop root orientation and molecular breeding strategies.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:13:20Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:13:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 ........................................................................................................... I
摘要 .................................................................................................................................. II
Abstract............................................................................................................................ III
目次 .................................................................................................................................IV
圖次 .................................................................................................................................VI
表次 .............................................................................................................................. VIII
附錄 .............................................................................................................................. VIII
縮寫字對照表 .................................................................................................................IX
第一章 前言 .....................................................................................................................1
1.1 水稻根系結構與根角度分析對植株生長的影響 ............................................1
1.2 生長素調控根向地性反應 ................................................................................2
1.3 二級訊號分子影響根向地性反應 ....................................................................3
1.4 細胞分裂素訊號途徑影響根向地性反應 ........................................................5
1.5 OsPHP1/2/3 與根向地性之關係 .......................................................................6
第二章 材料與方法 .........................................................................................................7
2.1 試驗材料 ............................................................................................................7
2.2 向地性試驗 ........................................................................................................7
2.2.1 植株生長條件.......................................................................................7
2.2.2 重力刺激處理.......................................................................................8
2.2.3 透過 SmartRoot 影像分析初生根外表型 .........................................9
2.2.4 評估初生根生長方向以及反應速度...................................................9
2.2.5 評估根彎曲程度 (Bending level parameter).....................................10
2.3 檢測基因表現量 ..............................................................................................11
2.3.1 RNA萃取 .............................................................................................11
2.3.2 RT-PCR (Reverse transcription polymerase chain reaction) ...............12
2.3.3 Real-time qPCR ...................................................................................13
2.4 活性氧化物染色與量化分析 ..........................................................................14
2.5 統計分析方法 ..................................................................................................15
第三章 結果 ...................................................................................................................16
3.1 OsPHP1/2/3 對於水稻初生根向地性的影響 .................................................16
3.1.1 系統性分析水稻初生根之向地性反應.............................................16
3.1.2 php1/2/3 三重突變株在幼苗初生根的向地性反應 .........................16
3.1.3 細胞分裂素影響 php1/2/3 突變株之向地性反應速度並抑制彎曲程度...............................................................................................................17
3.1.4 生長素抑制 php1/2/3 突變株之向地性反應速度並促進彎曲程度.......................................................................................................................18
3.1.5 抑制生長素轉運影響 php1/2/3 突變株之向地性反應 ..................19
3.2 探索 OsPHP1/2/3 影響初生根向地性反應的原因 ......................................21
3.2.1 細胞分裂素影響 php1/2/3 突變株之 Type-A OsRRs 與生長素運輸基因的表現...............................................................................................21
3.2.2 生長素影響 php1/2/3 突變株之 Type-A OsRRs 與生長素運輸基因的表現.......................................................................................................22
3.2.3 php1/2/3 突變株影響活性氧化物的累積 .........................................23
3.2.4 基因轉錄體分析 php1/2/3 突變株的差異表現 ..............................25
第四章 討論 ...................................................................................................................46
4.1 OsPHP1/2/3 調控水稻初生根對於重力刺激的向地性反應 .........................47
4.2 探討 OsPHP1/2/3 影響初生根向地性之潛在分子機制 ..............................51
4.3 推測 OsPHP1/2/3 調控初生根向地性反應的模型機制 ..............................54
第五章 結論 ...................................................................................................................56
參考文獻 .........................................................................................................................57
-
dc.language.isozh_TW-
dc.subject水稻zh_TW
dc.subject細胞分裂素訊號zh_TW
dc.subject擬磷酸轉運蛋白zh_TW
dc.subject根向地性zh_TW
dc.subject生長素運輸zh_TW
dc.subject活性氧化物zh_TW
dc.subjectpseudo-histidine phosphotransfer proteinen
dc.subjectRiceen
dc.subjectreactive oxygen speciesen
dc.subjectauxin transporten
dc.subjectroot gravitropismen
dc.subjectcytokinin signalingen
dc.title水稻擬磷酸轉運蛋白對於初生根之向地性探討zh_TW
dc.titleInvestigation of the Role of Pseudo-Histidine Phosphotransfer protein (OsPHPs) in Gravitropism of Rice Primary Rootsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭佳宜;洪傳揚zh_TW
dc.contributor.oralexamcommitteeChia-Yi Cheng;Chwan-Yang Hongen
dc.subject.keyword水稻,細胞分裂素訊號,擬磷酸轉運蛋白,根向地性,生長素運輸,活性氧化物,zh_TW
dc.subject.keywordRice,cytokinin signaling,pseudo-histidine phosphotransfer protein,root gravitropism,auxin transport,reactive oxygen species,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202504308-
dc.rights.note未授權-
dc.date.accepted2025-08-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農藝學系-
dc.date.embargo-liftN/A-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
9.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved