請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99628完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋聖榮 | zh_TW |
| dc.contributor.advisor | Sheng-Rong Song | en |
| dc.contributor.author | 吳琮壬 | zh_TW |
| dc.contributor.author | Tsung-Jen Wu | en |
| dc.date.accessioned | 2025-09-17T16:11:53Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-08 | - |
| dc.identifier.citation | [1] Abadeer, N. S., & Murphy, C. J. (2016). Recent progress in cancer thermal therapy using gold nanoparticles. The Journal of Physical Chemistry C, 120(9), 4691–4716.
[2] Afanasev, V. V., Bassler, M., Pensl, G., & Schulz, M. (1997). Intrinsic sic/sio2 interface states. physica status solidi (a), 162(1), 321-337. [3] Ahmed, I., Khoo, E. H., Kurniawan, O., & Li, E. P. (2011). Modeling and simulation of active plasmonics with the FDTD method by using solid state and Lorentz–Drude dispersive model. Journal of the Optical Society of America B, 28(3), 352-359. [4] Ahn C.C., Ed. (2006) Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas. John Wiley & Sons. [5] Anderson, M. S. (2005). Surface enhanced infrared absorption by coupling phonon and plasma resonance. Applied Physics Letters, 87(14), 144102. [6] Andreeva, A. Y., Pankin, I. A., Sukhikh, T. S., Kravtsova, A. N., Konchenko, S. N., Kozlova, S. G., & Soldatov, A. V. (2019). Application of X-ray absorption spectroscopy for L3-edges of Dy and Yb in dibenzoylmethanide complexes: Experiment and theoretical interpretation. Journal of Molecular Structure, 1188, 205-213. [7] Ashcroft, N. W., & Mermin, N. D. (1976). Solid state. Physics. Holt, Rinehart and Winston. [8] Ayvacıkli, M., Kotan, Z., Ekdal, E., Karabulut, Y., Canimoglu, A., Guinea, J. G., Khatab, A., Henini, M., & Can, N. (2013). Solid state synthesis of SrAl2O4: Mn2+ co-doped with Nd3+ phosphor and its optical properties. Journal of Luminescence, 144, 128-132. [9] Baliga, B. J. (2022). Silicon carbide power devices. In Springer handbook of semiconductor devices (pp. 491-523). Cham: Springer International Publishing. [10] Binnemans, K. (2015). Interpretation of europium (III) spectra. Coordination Chemistry Reviews, 295, 1-45. [11] Biswas, T., & Jain, M. (2019). Electronic structure and optical properties of F centers in α-alumina. Physical Review B, 99(14), 144102. [12] Blasse, G., & Grabmaier, B. (1994) Luminescence Materials (248 pp.) Springer, Berlin. [13] Breeding, C. M., Shen, A. H., Eaton-Magaña, S., Rossman, G. R., Shigley, J. E., & Gilbertson, A. (2010). Developments in gemstone analysis techniques and instrumentation during the 2000s. Gems & Gemology, 46(3). [14] Bristow, J. K., Tiana, D., Parker, S. C., & Walsh, A. (2014). Defect chemistry of Ti and Fe impurities and aggregates in Al2O3. Journal of Materials Chemistry A, 2(17), 6198-6208. [15] Bunker, G. (2010). Introduction to XAFS: a practical guide to X-ray absorption fine structure spectroscopy. Cambridge University Press. [16] Burns, P. C., & Finch, R. (1999). The crystal chemistry of uranium. Reviews in mineralogy, 38, 23-90. [17] Cao, H., Bao, H., Yu, H., Wang, J., & Huang, Y. (2019). Lattice modification of U 3 O 8 matrix induced by cerium substitution. Nuclear Techniques, 42(7), 5-11. [18] Catalano, J. G., & Brown, G. E. (2004). Analysis of uranyl-bearing phases by EXAFS spectroscopy: Interferences, multiple scattering, accuracy of structural parameters, and spectral differences. American Mineralogist, 89(7), 1004-1021. [19] Chen, K. Y., Chen, T. Y., Chan, Y. T., Cheng, C. Y., Tzou, Y. M., Liu, Y. T., & Teah, H. Y. (2016). Stabilization of natural organic matter by short-range-order iron hydroxides. Environmental Science & Technology, 50(23), 12612-12620. [20] Chen, L., Chen, X., Liu, F., Chen, H., Wang, H., Zhao, E., Jiang, Y., Chan, T. S., Wang, C. H., Zhang, W., & Chen, S. (2015). Charge deformation and orbital hybridization: intrinsic mechanisms on tunable chromaticity of Y3Al5O12: Ce3+ luminescence by doping Gd3+ for warm white LEDs. Scientific reports, 5(1), 11514. [21] Chen X.F., Xu X.G., Tian G.L., & Jiang M.H. (2008) Synthetic silicon carbide gemstone. In B. K. Chen, Ed., Chinese Artificial Gemstones (pp. 54–56). Geological Publishing House. [22] Chen, X. Y., Rao, L. F., & Liu, G. K. (2003). On the physical nature of uranyl charge transfer vibronic interactions. MRS Online Proceedings Library (OPL), 802, DD4-6. [23] Cheng, B., Zhang, Z., Han, Z., Xiao, Y., & Lei, S. (2011). SrAlxOy: Eu2+, Dy3+(x= 4) nanostructures: Structure and morphology transformations and long-lasting phosphorescence properties. CrystEngComm, 13(10), 3545-3550. [24] Cheng, J., Zhai, H., Wang, Y., Xu, W., Liu, S., & Cao, G. (2016). Role of valence changes and nanoscale atomic displacements in BiS2-based superconductors. Scientific Reports, 6(1), 37394. [25] Chung, M. F., & Jenkins, L. H. (1970). Auger electron energies of the outer shell electrons. Surface Science, 22(2), 479-485. [26] Cooper, A., & Renfro, N. (2014). Lab Notes: Titanium-coated tanzanite. Gems & Gemology, 50(1), 71. [27] Cowley, J. M. (1995). Diffraction physics (3rd ed.). Elsevier. [28] Csáki, A., Stranik, O., & Fritzsche, W. (2018). Localized surface plasmon resonance based biosensing. Expert review of molecular diagnostics, 18(3), 279-296. [29] Cullity, B. D., & Stock, S. R. (2014). Elements of X-ray Diffraction (3rd ed.). Pearson Education. [30] Delaunay A. (2018) Gem News International: Coated pink synthetic moissanite. Gems & Gemology, 54(4), 459–460. [31] Delgado, T., Ajoubipour, S., Afshani, J., Yoon, S., Walfort, B., & Hagemann, H. (2019). Spectroscopic properties of Dy3+-and Dy3+, B3+-doped SrAl2O4. Optical Materials, 89, 268-275. [32] Demnitz, M., Hilpmann, S., Lösch, H., Bok, F., Steudtner, R., Patzschke, M., Stumpf, T., & Huittinen, N. (2020). Temperature-dependent luminescence spectroscopic investigations of uranyl (vi) complexation with the halides F− and Cl−. Dalton Transactions, 49(21), 7109-7122. [33] Denning, R. G. (2007). Electronic structure and bonding in actinyl ions and their analogs. The Journal of Physical Chemistry A, 111(20), 4125-4143. [34] Devynck F. (2008) First-principles study of defects at the SiC/SiO2 interface through hybrid functionals. PhD thesis, Swiss Federal Institute of Technology Lausanne. [35] Digitalfire. (n.d.). Uranium and ceramics. Digitalfire, from https://digitalfire.com/hazard/uranium+and+ceramics [36] Driskell, J. D., Lipert, R. J., & Porter, M. D. (2006). Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering. The journal of physical chemistry B, 110(35), 17444-17451. [37] Du, J., Feng, A., & Poelman, D. (2020). Temperature dependency of trap‐controlled persistent luminescence. Laser & Photonics Reviews, 14(8), 2000060. [38] Duan, C. K., & Tanner, P. A. (2008). Simulation of 4f–5d transitions ofYb2+ in potassium and sodium halides. Journal of Physics: Condensed Matter, 20(21), 215228. [39] Eaton-Magaña, S., Ardon, T., Breeding, C. M., & Shigley, J. E. (2019). Natural-color fancy white and fancy black diamonds: Where color and clarity converge. Gems Gemol, 55(3), 320-337. [40] Egerton, R. F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope (3rd ed.). Springer. [41] Elasser, A., & Chow, T. P. (2002). Silicon carbide benefits and advantages for power electronics circuits and systems. Proceedings of the IEEE, 90(6), 969-986. [42] Ertl G., & Küppers J. (1985) Low Energy Electrons and Surface Chemistry. Verlag Chemie, Weinheim, West Germany. [43] Ewart P. (2019) Atomic Physics. Morgan & Claypool Publishers, San Rafael, California. [44] Faraday, M. (1857). X. The Bakerian Lecture.—Experimental relations of gold (and other metals) to light. Philosophical transactions of the Royal Society of London, (147), 145-181. [45] Faulques, E., Kalashnyk, N., Massuyeau, F., & Perry, D. L. (2015). Spectroscopic markers for uranium (VI) phosphates: a vibronic study. RSC Advances, 5(87), 71219-71227. [46] Filipponi, A. (2016). XAS in liquids and disordered systems: a personal review. Journal of Physics: Conference Series, 712, 012001. [47] Formosinho, S. J., Maria da Graça, M. M., & Burrows, H. D. (1984). Photophysics of the excited uranyl ion in aqueous solutions. Part 1.-Reversible crossing. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 80(7), 1717-1733. [48] Friedrichs P., Kimoto T., Ley L., & Pensl G., Eds. (2011) Silicon Carbide: Volume 1: Growth, Defects, and Novel Applications. John Wiley & Sons, New York. [49] Fritsch, E., & Rossman, G. R. (1987). An update on color in gems. Part 1: Introduction and colors caused by dispersed metal ions. Gems & Gemology, 23(3), 126-139. [50] Fritsch, E., Megaw, P. K., Spano, T. L., Chauviré, B., Rondeau, B., Gray, M., Hainschwang, T., & Renfro, N. (2015). Green-luminescing hyalite opal from Zacatecas, Mexico. Journal of Gemmology, 34(6), 490-508. [51] Gabasch, H., Klauser, F., Bertel, E., & Rauch, T. (2008). Coloring of topaz by coating and diffusion processes: An x-ray photoemission study of what happens beneath the surface. Gems & Gemology, 44(2), 148-154. [52] Gaft, M., Reisfeld, R., & Panczer, G. (2015). Modern luminescence spectroscopy of minerals and materials. Springer. [53] Garnett, J. C. M. (1904). XII. Colours in metal glasses and in metallic films. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 203(359-371), 385-420. [54] Gatan, Inc. (n.d.). DigitalMicrograph Software. Retrieved March 29, 2025, from https://www.gatan.com/products/tem-analysis/gatan-microscopy-suite-software [55] Georgobiani, A. N., Gutan, V. B., Demin, V. I., & Semendyaev, S. V. (2009). Luminescence and Optical-Memory model of SrAl2O4: Eu2+, Dy3+ and Sr4Al14O25: Eu2+, Dy3+. Inorganic Materials, 45, 1289-1294. [56] Goldstein, J. I., Newbury, D. E., Michael, J. R., Ritchie, N. W., Scott, J. H. J., & Joy, D. C. (2017). Scanning electron microscopy and X-ray microanalysis. springer. [57] Gorobets B, & Rogojine A (2001) Luminescence Spectra of Minerals. Handbook, RPC VIMS, Moscow. [58] Götze, J. (2012). Application of cathodoluminescence microscopy and spectroscopy in geosciences. Microscopy and microanalysis, 18(6), 1270-1284. [59] Götze, J., Gaft, M., & Möckel, R. (2015). Uranium and uranyl luminescence in agate/chalcedony. Mineralogical Magazine, 79(4), 985-995. [60] Grenthe, I., Fuger, J., Konings, R. J., Lemire, R. J., Muller, A. B., Nguyen-Trung, C., & Wanner, H. (1992). Chemical thermodynamics of uranium (Vol. 1, p. 735). Amsterdam: Elsevier. [61] Guinier, A. (1952). X-ray crystallographic technology. Hilger and Watts. [62] Guo, X., Szenknect, S., Mesbah, A., Labs, S., Clavier, N., Poinssot, C., Ushakov,S. V., Curtius, H., Bosbach, D., Ewing, R. C., Burns, P. C., Dacheux, N., & Navrotsky, A. (2015). Thermodynamics of formation of coffinite, USiO4. Proceedings of the National Academy of Sciences, 112(21), 6551-6555. [63] Hageraats, S., Keune, K., Stanescu, S., Laurent, J. M., Fresquet, W., & Thoury, M. (2021). Combining X-ray excited optical luminescence and X-ray absorption spectroscopy for correlative imaging on the nanoscale. Synchrotron Radiation, 28(6), 1858-1864. [64] Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B., & Urban, K. (1998). Electron microscopy image enhanced. Nature, 392(6678), 768-769. [65] Hanus, R., Sobek, K., Johnová, K., Trojek, T., Štubňa, J., Hanus, T., & Jungmannová, K. (2022). Hyalite Opal from Erongo, Namibia, Showing Green Daylight Fluorescence. The Journal of Gemmology, 38(2), 172-182. [66] Hao, Q.L., Shen, C.Q., Shi, C.N., Cui, & W.X. (2011) Study on Structure and Luminous Mechanism of Artificial Luminous Gem-"Qinglong Luminous Gem" for Example. In Chen, B.K. (Ed.), Chinese Artificial Gemstones (pp. 85-89). Geological Publishing House. [67] Haranath, D., Shanker, V., Chander, H., & Sharma, P. (2003). Tuning of emission colours in strontium aluminate long persisting phosphor. Journal of Physics D: Applied Physics, 36(18), 2244. [68] Harfouche, M., Wieland, E., Dähn, R., Fujita, T., Tits, J., Kunz, D., & Tsukamoto, M. (2006). EXAFS study of U (VI) uptake by calcium silicate hydrates. Journal of colloid and interface science, 303(1), 195-204. [69] He, X. M., & Shen, C. Q. (2020). Artificial synthesis technology of gemstones (3rd ed., pp. 175–183). Chemical Industry Press. [70] Hennig, C., Reich, T., Funke, H., Rossberg, A., Rutsch, M., & Bernhard, G. (2001). EXAFS as a tool for bond-length determination in the environment of heavy atoms. Synchrotron Radiation, 8(2), 695-697. [71] Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W., & Whelan, M. J. (1977). Electron microscopy of thin crystals (2nd ed.). Krieger Publishing Company. [72] Hölsä, J., Jungner, H., Lastusaari, M., & Niittykoski, J. (2001). Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4: Eu2+. Journal of Alloys and Compounds, 323, 326-330. [73] Homayoni, H., Sahi, S., Ma, L., Zhang, J., Mohapatra, J., Liu, P., Sotelo, A.P., Macaluso, R.T., Davis, T., & Chen, W. (2018) X-ray excited luminescence and persistent luminescence of Sr2MgSi2O7: Eu2+, Dy3+ and their associations with synthesis conditions. Journal of Luminescence, 198, 132-137. [74] Housecroft, C. E., & Sharpe, A. G. (2005). Inorganic chemistry (pp. 310–315). Pearson Prentice Hall. [75] Hudson, E. A., Rehr, J. J., & Bucher, J. J. (1995). Multiple-scattering calculations of the uranium L3-edge x-ray-absorption near-edge structure. Physical Review B, 52(19), 13815. [76] Isenberg, J., Reber, S., & Warta, W. (2003). Diffusion Properties of Ion-Implanted Vanadium in PECVD SiO2 and PECVD SiNx. Journal of The Electrochemical Society, 150(7), G365. [77] Jara, E., Valiente, R., González, J., Espeso, J. I., Khaidukov, N., & Rodríguez, F. (2022). Optical spectroscopy of the Sr4Al14O25: Mn4+, Cr3+ phosphor: pressure and temperature dependences. Journal of Materials Chemistry C, 10(16), 6380-6391. [78] Jeon, H. B., Tsalu, P. V., & Ha, J. W. (2019). Shape effect on the refractive index sensitivity at localized surface plasmon resonance inflection points of single gold nanocubes with vertices. Scientific reports, 9(1), 13635. [79] Jia, C. L., Lentzen, M., & Urban, K. (2004). High-resolution transmission electron microscopy using negative spherical aberration. Microscopy and Microanalysis, 10(2), 174-184. [80] Jin, H. P. (2004). New technology and new standard of modern surface treatment (pp. 435–475). Contemporary China Audiovisual Publishing House. [81] Johnson, P. B., & Christy, R. W. (1972). Optical constants of the noble metals. Physical review B, 6(12), 4370. [82] Joseph, D., Nayak, C., Babu, P. V., Jha, S. N., & Bhattacharyya, D. (2014). Chemical shift of U L3 edges in different uranium compounds obtained by X-ray absorption spectroscopy with synchrotron radiation. Bulletin of Materials Science, 37, 643-647. [83] Karsai, F., Tiwald, P., Laskowski, R., Tran, F., Koller, D., Gräfe, S., Burgdörfer, J., Wirtz, L., & Blaha, P. (2014) F center in lithium fluoride revisited: Comparison of solid-state physics and quantum-chemistry approaches. Physical Review B, 89(12), 125429. [84] Karthik, H. G. S., Menon, S. G., Hebbar, N. D., Choudhari, K. S., Santhosh, C., & Kulkarni, S. D. (2017) Nanocrystalline MgCrxAl2-xO4: Facile synthesis and thermal dependency of photoluminescence. Materials Research Bulletin, 94, 513-519. [85] Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B, 107(3), 668-677. [86] Kelly, S. D., Hesterberg, D., & Ravel, B. (2008). Analysis of soils and minerals using X‐ray absorption spectroscopy. In L. R. Drees & A. L. Ulery (Eds.), Methods of soil analysis (Part 5—Mineralogical Methods, SSSA Book Series) (pp. 387–463). John Wiley & Sons. [87] Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry, 12(7), 908-931. [88] Khan, L. U., Alzubi, R. I., Juwhari, H. K., Mousa, Y. A., Khan, Z. U., Figueroa, S. J., & Hans, P. (2025). Advanced probing of Eu2+/Eu3+ photoemitter sites in BaAl2O4: Eu scintillators by synchrotron radiation X-ray excited optical luminescence probe. Optical Materials, 162, 116937. [89] Kim D.K., Jeong K.S., Kang Y.S., Kang H.K., Cho S.W., Kim S.O., Suh D., Kim S., & Cho M.H. (2016) Controlling the defects and transition layer in SiO2 films grown on 4 H-SiC via direct plasma-assisted oxidation. Scientific Reports, 6(1), 34945. [90] Knapp, G. S., Veal, B. W., Lam, D. J., Paulikas, A. P., & Pan, H. K. (1984). EXAFS studies of silicate glasses containing uranium. Materials Letters, 2(4), 253-256. [91] Kobayashi, T., Okuda, T., Tachiki, K., Ito, K., Matsushita, Y. I., & Kimoto, T. (2020). Design and formation of SiC (0001)/SiO2 interfaces via Si deposition followed by low-temperature oxidation and high-temperature nitridation. Applied Physics Express, 13(9), 091003. [92] Koningsberger, D. C., & Prins, R. (Eds.). (1988). X ray absorption: Principles, applications, techniques of EXAFS, SEXAFS, and XANES (Vol. 92, pp. 1-673). John Wiley & Sons. [93] Korthout, K., Parmentier, A. B., Smet, P. F., & Poelman, D. (2013). A XAS study of the luminescent Eu centers in thiosilicate phosphors. Physical Chemistry Chemical Physics, 15(22), 8678-8683. [94] Korthout, K., Van den Eeckhout, K., Botterman, J., Nikitenko, S., Poelman, D., & Smet, P. F. (2011). Luminescence and x-ray absorption measurements of persistent SrAl2O4: Eu, Dy powders: evidence for valence state changes. Physical Review B—Condensed Matter and Materials Physics, 84(8), 085140. [95] Kostyukov, A. I., Zhuzhgov, A. V., Kaichev, V. V., Rastorguev, A. A., Snytnikov, V. N., & Snytnikov, V. N. (2018). Photoluminescence of oxygen vacancies in nanostructured Al2O3. Optical Materials, 75, 757-763. [96] Kotomin, E. A., & Popov, A. I. (1998). Radiation-induced point defects in simple oxides. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 141(1-4), 1-15. [97] Krumpel, A. H., van der Kolk, E., Dorenbos, P., Boutinaud, P., Cavalli, E., & Bettinelli, M. (2008). Energy level diagram for lanthanide-doped lanthanum orthovanadate. Materials Science and Engineering: B, 146(1-3), 114-120. [98] Lanzara, A., Bogdanov, P. V., Zhou, X. J., Kellar, S. A., Feng, D. L., Lu, E. D., Yoshida, T., Eisaki, H., Fujimori, A., Kishio, K., Shimoyama, J.-I., Noda, T., Uchida, S., Hussain, Z., & Shen, Z.-X. (2001). Evidence for ubiquitous strong electron–phonon coupling in high-temperature superconductors. Nature, 412(6846), 510–514. [99] Lastusaari, M., Brito, H. F., Carlson, S., Hölsä, J., Laamanen, T., Rodrigues, L. C. V., & Welter, E. (2014). Valences of dopants in Eu2+ persistent luminescence materials. Physica Scripta, 89(4), 044004. [100] Lastusaari, M., Laamanen, T., Malkamäki, M., Eskola, K. O., Kotlov, A., Carlson, S., Welter, E., Brito, H. F., Bettinelli, M., Jungner, H., & Hölsä, J. (2012). The Bologna Stone: History’s first persistent luminescent material. European Journal of Mineralogy, 24(5), 885-890. [101] Lee, K. X., Shameli, K., Yew, Y. P., Teow, S. Y., Jahangirian, H., Rafiee-Moghaddam, R., & Webster, T. J. (2020). Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. International journal of nanomedicine, 275-300. [102] Lefevre, G., Herfurth, A., Kohlmann, H., Sayede, A., Wylezich, T., Welinski, S., Vaz, P. D., Parker, S. F., Blach, J. F., Goldner, P., & Kunkel, N. (2018). Electron–phonon coupling in luminescent europium-doped hydride perovskites studied by luminescence spectroscopy, inelastic neutron scattering, and first-principles calculations. The Journal of Physical Chemistry C, 122(19), 10501-10509. [103] Leinders, G., Bes, R., Kvashnina, K. O., & Verwerft, M. (2020). Local structure in U (IV) and U (V) environments: The case of U3O7. Inorganic chemistry, 59(7), 4576-4587. [104] Lenz, C., Nasdala, L., Talla, D., Hauzenberger, C., Seitz, R., & Kolitsch, U. (2015). Laser-induced REE3+ photoluminescence of selected accessory minerals—An “advantageous artefact” in Raman spectroscopy. Chemical Geology, 415, 1-16. [105] Lenz, C., Talla, D., Ruschel, K., Škoda, R., Götze, J., & Nasdala, L. (2013). Factors affecting the Nd3+ (REE3+) luminescence of minerals. Mineralogy and Petrology, 107, 415-428. [106] Lephoto, M. A., Ntwaeaborwa, O. M., Pitale, S. S., Swart, H. C., Botha, J. R., & Mothudi, B. M. (2012). Synthesis and characterization of BaAl2O4: Eu2+ co-doped with different rare earth ions. Physica B: Condensed Matter, 407(10), 1603-1606. [107] Li, F., Li, Z., Wang, X., Zhang, M., Shen, Y., Cai, P., & He, X. (2017). Crystal structure and luminescent property of flaky-shaped Sr4Al14O25: Eu2+, Dy3+ phosphor doped with Er3+ ions. Journal of Alloys and Compounds, 692, 10-21. [108] Li, M. Y., Zhang, Q., Pandey, P., Sui, M., Kim, E. S., & Lee, J. (2015). From the Au nano-clusters to the nanoparticles on 4H-SiC (0001). Scientific Reports, 5(1), 13954. [109] Li, M. Y., Sui, M., Pandey, P., Zhang, Q. Z., Kunwar, S., Salamo, G. J., & Lee, J. (2016). Precise control of configuration, size and density of self-assembled Au nanostructures on 4H-SiC (0001) by systematic variation of deposition amount, annealing temperature and duration. CrystEngComm, 18(19), 3347-3357. [110] Li, X., Ermakov, A., Amarasinghe, V., Garfunkel, E., Gustafsson, T., & Feldman, L. C. (2017). Oxidation induced stress in SiO2/SiC structures. Applied Physics Letters, 110(14), 141604. [111] Li, Z., & Bradt, R. C. (1986). Thermal expansion of the hexagonal (4 H) polytype of SiC. Journal of applied physics, 60(2), 612-614. [112] Li, Z. H. (2013). Principles and applications of synchrotron radiation. Science Monthly, 44(1), 62-69. [113] Lin, B. H., Huang, T. C., Ke, S. W., Yuan, Y. H., Li, X. Y., Hsu, H. C., Chiu, Y. C., Lee, C. Y., Chen, B. Y., Yin, G. C., Tseng, S. C., Chang, S. H., Tang, M. T., & Hsieh, W. F. (2020). Capabilities of time-resolved X-ray excited optical luminescence of the Taiwan Photon Source 23A X-ray nanoprobe beamline. Synchrotron Radiation, 27(1), 217-221. [114] Lin, B. H., Wu, Y. H., Wu, T. S., Wu, Y. C., Li, X. Y., Liu, W. R., Tang, M. T., & Hsieh, W. F. (2019). Hard X-ray nanoprobe and time-resolved XEOL to observe increasing luminescence of ZnO and GaN epitaxial structures. Applied Physics Letters, 115(17), 171903. [115] Lin, C.-H. (2015). A study on the synthesis and properties of strontium aluminate phosphor materials (Master’s thesis). National Pingtung University, Taiwan. pp. 9-29. [116] Link, S., & El-Sayed, M. A. (1999). Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. The Journal of Physical Chemistry B, 103(40), 8410-8426. [117] Liu, G., Tuttle, B. R., & Dhar, S. (2015). Silicon carbide: A unique platform for metal-oxide-semiconductor physics. Applied Physics Reviews, 2(2), 021307. [118] Liu, G., Deifel, N. P., Cahill, C. L., Zhurov, V. V., & Pinkerton, A. A. (2012). Charge transfer vibronic transitions in uranyl tetrachloride compounds. The Journal of Physical Chemistry A, 116(2), 855-864. [119] Liu, X., Hao, J., You, N., Bai, Y., & Wang, S. (2019). High-pressure microwave plasma oxidation of 4H-SiC with low interface trap density. AIP Advances, 9(12), 125150. [120] Liu, X. Y., Hao, J. L., You, N. N., Bai, Y., Tang, Y. D., Yang, C. Y., & Wang, S. K. (2020). High-mobility SiC MOSFET with low density of interface traps using high pressure microwave plasma oxidation. Chinese Physics B, 29(3), 037301. [121] Liu, Y. T., & Hesterberg, D. (2011). Phosphate bonding on noncrystalline Al/Fe-hydroxide coprecipitates. Environmental Science & Technology, 45(15), 6283-6289. [122] Lopez-Odriozola, L., Shaw, S., Abrahamsen-Mills, L., Waters, C., & Natrajan, L. S. (2024). Identification and Quantification of Multiphase U (VI) Speciation on Gibbsite with pH Using TRLFS and PARAFAC of Excitation Emission Matrices. Environmental Science & Technology, 58(40), 17916-17925. [123] Lu, H. C., Peng, Y. C., Lin, M. Y., Chou, S. L., Lo, J. I., & Cheng, B. M. (2013). Photoluminescence of a CVD Diamond Excited with VUV Light from a Synchrotron. Optics and Photonics Journal, 3(6), 25-28. [124] Lushchik, A., Feldbach, E., Kotomin, E.A., Kudryavtseva, I., Kuzovkov, V.N., Popov, A.I., Seeman, V., & Shablonin, E. (2020). Distinctive features of diffusion-controlled radiation defect recombination in stoichiometric magnesium aluminate spinel single crystals and transparent polycrystalline ceramics. Scientific reports, 10(1), 7810. [125] Lv, X., Sun, M., Zhang, J., Zhu, H., & Wang, T. (2010). Fabrication and luminescent properties of artificial luminous gem. Ceramics International, 36(4), 1201-1203. [126] Magnuson, M., Butorin, S. M., Werme, L., Nordgren, J., Ivanov, K. E., Guo, J. H., & Shuh, D. K. (2006). Uranium oxides investigated by X-ray absorption and emission spectroscopies. Applied Surface Science, 252(15), 5615-5618. [127] Marcantonatos, M. D. (1979). Chemical quenching by water of the photoexcited uranyl ion in aqueous acidic solution. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 75, 2273-2284. [128] Massey, M. S., Lezama-Pacheco, J. S., Nelson, J. M., Fendorf, S., & Maher, K. (2014). Uranium incorporation into amorphous silica. Environmental science & technology, 48(15), 8636-8644. [129] McClure S.F., & Smith C.P. (2000) Gemstone enhancement and detection in the 1990s. Gems & Gemology, 36(4), 336-359. [130] Mie, G. (1908). Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der physik, 330(3), 377-445. [131] Miessler, G. L., Fischer, P. J. & Tarr, D. A., Inorganic Chemistry, (5th ed., pp. 280-285), Pearson Prentice Hall, Harlow. [132] Mobilio, S., Boscherini, F., & Meneghini, C. (Eds.). (2015). Synchrotron radiation: Basics, methods and applications (pp. 3–20). Springer Verlag Berlin Heidelberg. [133] Moe K.S., Johnson P., & Lu R. (2013) Lab Notes: Large synthetic moissanite with silicon carbide polytypes. Gems & Gemology, 49(4), 255-256. [134] Na-Phattalung, S., Limpijumnong, S., Jiraroj, T., & Yu, J. (2018). Magnetic states and intervalence charge transfer of Ti and Fe defects in α-Al2O3: The origin of the blue in sapphire. Acta Materialia, 143, 248-256. [135] Nassau, K. (1984). The early history of gemstone treatments. Gems & Gemology, 20(1), 22-33. [136] Nassau, K., McClure, S. F., Elen, S., & Shigley, J. E. (1997). Synthetic moissanite: A new diamond substitute. Gems & Gemology, 33(4), 260-275. [137] Newville, M. (2001). IFEFFIT: interactive XAFS analysis and FEFF fitting. Synchrotron Radiation, 8(2), 322-324. [138] Noguez, C. (2007). Surface plasmons on metal nanoparticles: the influence of shape and physical environment. The Journal of Physical Chemistry C, 111(10), 3806-3819. [139] Ozhikandathil, J., & Packirisamy, M. (2014). Simulation and implementation of a morphology-tuned gold nano-islands integrated plasmonic sensor. Sensors, 14(6), 10497-10513. [140] Palilla, F. C., Levine, A. K., & Tomkus, M. R. (1968). Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium. Journal of the Electrochemical Society, 115(6), 642-644.. [141] Pathak, N., Ghosh, P. S., Gupta, S. K., Kadam, R. M., & Arya, A. (2016). Defects induced changes in the electronic structures of MgO and their correlation with the optical properties: a special case of electron–hole recombination from the conduction band. RSC advances, 6(98), 96398-96415. [142] Popov, A. I., Kotomin, E. A., & Maier, J. (2010). Basic properties of the F-type centers in halides, oxides and perovskites. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(19), 3084-3089. [143] Pushpakaran, B. N., Subburaj, A. S., Bayne, S. B., & Mookken, J. (2016). Impact of silicon carbide semiconductor technology in Photovoltaic Energy System. Renewable and Sustainable Energy Reviews, 55, 971-989. [144] Qiu, Z., Zhou, Y., Lü, M., Zhang, A., & Ma, Q. (2007). Combustion synthesis of long-persistent luminescent MAl2O4: Eu2+, R3+ (M= Sr, Ba, Ca, R= Dy, Nd and La) nanoparticles and luminescence mechanism research. Acta Materialia, 55(8), 2615-2620. [145] Qun, L. I., Junwu, Z. H. A. O., & Feilong, S. U. N. (2010). Energy transfer mechanism of Sr4Al14O25: Eu2+ phosphor. Journal of Rare Earths, 28(1), 26-29. [146] Reed, S. J. B. (1993). Electron microprobe analysis (2nd ed.). Cambridge University Press. [147] Reed, S. J. B. (1995). Electron probe microanalysis. In P. J. Potts, J. F. W. Bowles, S. J. B. Reed, & M. R. Cave (Eds.), Microprobe techniques in the earth sciences (The Mineralogical Society Series, Vol. 6, pp. 49-89). [148] Reed, S. J. B. (2005). Electron microprobe analysis and scanning electron microscopy in geology (2nd Ed.). Cambridge University Press. [149] Rehr, J. J., & Albers, R. C. (2000). Theoretical approaches to x-ray absorption fine structure. Reviews of modern physics, 72(3), 621-654. [150] Reich, T., Moll, H., Denecke, M. A., Geipel, G., Bernhard, G., Nitsche, H., Allen, P. G., Bucher, J. J., Kaltsoyannis, N., Edelstein, N. M., & Shuh, D. K. (1996). Characterization of hydrous uranyl silicate by EXAFS. Radiochimica Acta, 74(s1), 219-224. [151] Rezende, M. V. D. S., Montes, P. J., Andrade, A. B., Macedo, Z. S., & Valerio, M. E. (2016). Mechanism of X-ray excited optical luminescence (XEOL) in europium doped BaAl2O4 phosphor. Physical Chemistry Chemical Physics, 18(26), 17646-17654. [152] Rivera, V. A. G., Ferri, F. A., & Marega Jr., E. (2012). Localized surface plasmon resonances: Noble metal nanoparticle interaction with rare earth ions. In K. Y. Kim (Ed.), Plasmonics – Principles and Applications (Ch. 11, pp. 283–312). InTech. [153] Sarantopoulou, E., Kollia, Z., Cefalas, A.C., Semashko, V.V., Abdulsabirov, R.Y., Naumov, A.K., Korableva, S.L., Szczurek, T., Kobe, S., & McGuiness, P.J. (2002). Crystal field splitting of the 4f 5d electronic configuration of Pr3+ ions in wide band gap fluoride dielectric crystals. Optics communications, 208(4-6), 345-358. [154] Saruwatari, K., Katsurada, Y., Odake, S., & Abduriyim, A. (2015). Uranium contents of hyalite. Gems & Gemology, 51(4), 431-432. [155] Sayers, D. E., Stern, E. A., & Lytle, F. W. (1971). New technique for investigating noncrystalline structures: Fourier analysis of the extended x-ray—absorption fine structure. Physical review letters, 27(18), 1204. [156] Scarani, A., & Åström, M. (2017). Gemological applications of uv-vis-nir spectroscopy. Riv. Ital. Gemmol, 7, 32-35. [157] Schirmer, O. F. (2006). O- bound small polarons in oxide materials. Journal of Physics: Condensed Matter, 18(43), R667. [158] Sharma, A., Singh, J. P., Won, S. O., Chae, K. H., Sharma, S. K., & Kumar, S. (2018). Introduction to X Ray Absorption Spectroscopy and its applications in material science. In S. K. Sharma (Ed.), Handbook of Materials Characterization (pp. 497-548). Springer, Cham. [159] Shen, A. H., Wang, W., Hall, M. S., Novak, S., McClure, S. F., Shigley, J. E., & Moses, T. M. (2007). Serenity coated colored diamonds: detection and durability. Gems & Gemology, 43(1), 16–33. [160] Shenashen, M. A., El‐Safty, S. A., & Elshehy, E. A. (2014). Synthesis, morphological control, and properties of silver nanoparticles in potential applications. Particle & Particle Systems Characterization, 31(3), 293-316. [161] Shtepliuk, I., Ivanov, I. G., Pliatsikas, N., Iakimov, T., Lara-Avila, S., Kim, K. H., ... & Yakimova, R. (2021). Clustering and morphology evolution of gold on nanostructured surfaces of silicon carbide: implications for catalysis and sensing. ACS Applied Nano Materials, 4(2), 1282-1293. [162] Shtepliuk, I., Ivanov, I. G., Pliatsikas, N., Iakimov, T., Lara Avila, S., Kim, K. H., Sedrine, N. B., Kubatkin, S. E., Sarakinos, K., & Yakimova, R. (2021). Clustering and morphology evolution of gold on nanostructured surfaces of silicon carbide: implications for catalysis and sensing. ACS Applied Nano Materials, 4(2), 1282-1293. [163] Stanciu, M., Ciresan, M., & Avram, N. (2009). Crystal field analysis of Cr3+ doped SrAl2O4 spinel. Acta physica polonica A, 116(4), 544-546. [164] Stokes, G. G. (1852). On the change of refrangibility of light. In Abstracts of the Papers Communicated to the Royal Society of London (No. 6, pp. 195-200). London: The Royal Society. [165] Stoneham, A. M. (2001). Theory of defects in solids: Electronic structure of defects in insulators and semiconductors (2nd ed., pp. 250–260). Oxford University Press. [166] Strek, W., Dere, P., Jezowska-Trzebiatowska, B. (1987) Broad-band emission of Cr3+ in MgAl2O4 spinel. Le Journal de Physique Colloques, 48(C7), 475–477. [167] Swati, G., Chawla, S., Mishra, S., Rajesh, B., Vijayan, N., Sivaiah, B., Dhar, A., Haranath, D. (2015). Investigation on luminescence enhancement and decay characteristics of long afterglow nanophosphors for dark-vision display applications. Applied Surface Science, 333, 178-185. [168] Taflove, A. (1980). Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems. IEEE Transactions on electromagnetic compatibility, (3), 191-202. [169] Taflove, A., & Brodwin, M. E. (1975). Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations. IEEE Transactions on Microwave Theory and Techniques, 23(8), 623–630. [170] Taflove, A., & Hagness, S. C. (2005). Computational electrodynamics: The finite-difference time-domain method (3rd ed., pp. 153-180). Artech House. [171] Takahara, H., & Kobayashi, H. (2021). Standardless FP XRF Analysis for Lithium Ion Battery Electrode Materials. Rigaku Journal, 37(2), 6–11. Retrieved from https://resources.rigaku.com/hubfs/2024%20Rigaku%20Global%20Site/Resource%20Hub/Knowledge%20Library/Rigaku%20Journals/Volume%2037%282%29%20-%20Summer%202021/Rigaku%20Journal%2037-2_6-11.pdf [172] Tanaka, N. (2008). Present status and future prospects of spherical aberration corrected TEM/STEM for study of nanomaterials. Science and Technology of Advanced Materials, 9(1), 014111. [173] Qiu, T, Ji, Z. G., Kong, Z,, Li, H. X., Zhang, E. P. (2012). Preparation and optimization of long persistent luminescent Sr4Al14O25:(Eu, Dy) phosphor materials. Journal of Inorganical Materials, 27, 1341-1344. [174] Teng, Y., Zhou, J., Khisro, S. N., Zhou, S., & Qiu, J. (2014). Persistent luminescence of SrAl2O4: Eu2+, Dy3+, Cr3+ phosphors in the tissue transparency window. Materials Chemistry and Physics, 147(3), 772-776. [175] Teo, B. K. (1986). EXAFS: Basic principles and data analysis (Vol. 9, Inorganic Chemistry Concepts). Springer Verlag. [176] Tesfaye, G.S., Li, Y.T., Wu, Y.H., Wu, T.S., Lee, C.Y., Chen, B.Y., Yin, G.C., Tang, M.T., Chiu, Y.C., & Lin, B.H.. (2023). Probing free and bound excitons in Eu-doped CsPbBr3 by temperature-dependent photoluminescence and time-resolved photoluminescence. Optical Materials, 138, 113749. [177] Thompson, H. A., Brown Jr, G. E., & Parks, G. A. (1997). XAFS spectroscopic study of uranyl coordination in solids and aqueous solution. American Mineralogist, 82(5-6), 483-496. [178] Torpy, A., Wilson, N. C., MacRae, C. M., Pownceby, M. I., Biswas, P. K., Rahman, M. A., & Zaman, M. N. (2020). Deciphering the complex mineralogy of river sand deposits through clustering and quantification of hyperspectral X-ray maps. Microscopy and Microanalysis, 26(4), 768-792. [179] Underwood, S., & Mulvaney, P. (1994). Effect of the solution refractive index on the color of gold colloids. Langmuir, 10(10), 3427-3430. [180] Van der Heggen, D., Joos, J.J., Feng, A., Fritz, V., Delgado, T., Gartmann, N., Walfort, B., Rytz, D., Hagemann, H., Poelman, D., Viana, B, Smet, P.F. (2022). Persistent luminescence in strontium aluminate: a roadmap to a brighter future. Advanced Functional Materials, 32(52), 2208809. [181] Vitola, V., Millers, D., Smits, K., Bite, I., & Zolotarjovs, A. (2019a). The search for defects in undoped SrAl2O4 material. Optical Materials, 87, 48-52. [182] Vitola, V., Millers, D., Bite, I., Smits, K., & Spustaka, A. (2019b). Recent progress in understanding the persistent luminescence in SrAl2O4: Eu, Dy. Materials Science and Technology, 35(14), 1661-1677. [183] Walters, D. L., & Bhalla, C. P. (1971). Nonrelativistic Auger Rates, X-Ray Rates, and Fluorescence Yields for the 2 p Shell. Physical Review A, 4(6), 2164. [184] Wang, C., & Astruc, D. (2014). Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chemical Society Reviews, 43(20), 7188-7216. [185] Wang, C., Shen, A. H., Heaney, P. J., Palke, A., Wang, K., Wang, H., & Kiefert, L. (2025). Cu nanoparticle geometry as the key to bicolor behavior in Oregon sunstones: An application of LSPR theory in nanomineralogy. American Mineralogist, 110(2), 293-305. [186] Wang, E.R., Huang, T.C., Chang, Y.H., Wu, Y.H., Ke, S.W., Chang, C.H., Lee, C.Y., Chen, B.Y., Yin, G.C., Tang, M.T., & Lin, B.H. (2023) Probing the emission properties of color centers in MgAl2O4 wafers using hard X-ray nanoprobes. Optical Materials, 142, 114146. [187] Wang, X., Gogol, P., Cambril, E., & Palpant, B. (2012). Near-and far-field effects on the plasmon coupling in gold nanoparticle arrays. The Journal of Physical Chemistry C, 116(46), 24741-24747. [188] Willets, K. A., & Van Duyne, R. P. (2007). Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 58(1), 267-297. [189] Williams, D. B., & Carter, C. B. (2009). Transmission Electron Microscopy: A Textbook for Materials Science (2nd ed., pp. 73–652). Springer. [190] Wolstenholme, J. (2015). Auger electron spectroscopy: Practical application to materials analysis and characterization of surfaces, interfaces, and thin films (pp. 1–224). Momentum Press, New York. [191] Wu, T. J., Song, S. R., Chen, W. S., Lin, W., & Cheng, C. T. (2024). Nanoscale Techniques For Characterizing Gemstone Coatings: A Case Study On Synthetic Moissanite. Gems & Gemology, 60(1), 42-54. [192] Wu, Y. H., Lin, Y. Y., Chen, J. L., Fu, S. Y., Huang, S. C., Lee, C. Y., Chen, B. Y., Yin, G. C., Huang, E. W., Tang, M. T., & Lin, B. H. (2022). Visualizing the valence states of europium ions in Eu-doped BaAl2O4 using X-ray nanoprobe mapping. Synchrotron Radiation, 29(2), 456-461. [193] Wu, Y. J., Wu, C. R., Chou, S. L., Lin, M. Y., Lu, H. C., Lo, J. I., & Cheng, B. M. (2012). Spectra and Photolysis of pure nitrogen and methane dispersed in solid nitrogen with vacuum–ultraviolet light. The Astrophysical Journal, 746(2), 175. [194] Xia, S., Duan, C. K., Deng, Q., & Ruan, G. (2005). Assignment of 4f→ 5d excitation spectra of Nd3+ in crystals using the simple model. Journal of Solid State Chemistry, 178(9), 2643-2646. [195] Yang, F., Wilkinson, M., Austin, E. J., & O’Donnell, K. P. (1993). Origin of the Stokes shift: A geometrical model of exciton spectra in 2D semiconductors. Physical review letters, 70(3), 323. [196] Yao, M., Wang, D., & Zhao, M. (2015). Element Analysis Based on Energy‐Dispersive X‐Ray Fluorescence. Advances in Materials Science and Engineering, 2015(1), 290593. [197] Yee, K. (1966). Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on antennas and propagation, 14(3), 302-307. [198] Yoon, S., Bierwagen, J., Trottmann, M., Walfort, B., Gartmann, N., Weidenkaff, A., Hagemann, H., & Pokrant, S. (2015). The influence of boric acid on improved persistent luminescence and thermal oxidation resistance of SrAl2O4: Eu2+. Journal of Luminescence, 167, 126-131. [199] Yu, G. Q., Tay, B. K., Zhao, Z. W., Sun, X. W., & Fu, Y. Q. (2005). Ion beam co-sputtering deposition of Au/SiO2 nanocomposites. Physica E: Low-dimensional Systems and Nanostructures, 27(3), 362-368. [200] Zeng, P., Wei, X., Yin, M., & Chen, Y. (2018). Investigation of the long afterglow mechanism in SrAl2O4: Eu2+/Dy3+ by optically stimulated luminescence and thermoluminescence. Journal of Luminescence, 199, 400-406. [201] Zhang, S., Pereira, L., Hu, Z., Ranieiro, L., Fortonato, E., Ferreira, I., & Martins, R. (2006). Characterization of nanocrystalline silicon carbide films. Journal of Non-Crystalline Solids, 352(9-20), 1410-1415. [202] Zhou, Q., Shang, Z., Huang, R., & Shen, A. H. (2024). In situ formation of silver nanoparticles within labradorite mineral crystals exhibiting third-order nonlinearity. Optical Materials, 154, 115632. [203] Zimmermann, P., Peredkov, S., Abdala, P. M., DeBeer, S., Tromp, M., Müller, C., & van Bokhoven, J. A. (2020). Modern X-ray spectroscopy: XAS and XES in the laboratory. Coordination Chemistry Reviews, 423, 213466. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99628 | - |
| dc.description.abstract | 發光礦物及其光學現象長久以來備受關注。傳統上對礦物色彩與發光機制的研究大多著眼於晶體場理論中的電子躍遷、電荷轉移及晶格缺陷等。隨著奈米材料科技的發展,新的機制例如: 金屬奈米顆粒引發的局域表面電漿共振(Localized Surface Plasmon Resonance, LSPR)效應,以及稀土元素摻雜發光礦物的長磷光現象,為研究發光礦物提供新一個的方向。本論文利用先進的同步輻射奈米顯微技術,結合多種奈米尺度的分析方法與理論模擬,探討發光礦物中複雜的譜學特徵與機制。
本研究首先著眼於局域表面電漿共振效應對礦物色彩的影響。藉由歐傑電子能譜(Auger Electron Spectroscopy, AES)、球差校正穿透式電子顯微鏡(Aberration-Corrected Transmission Electron Microscope, AC-TEM)並結合聚焦離子束(Focused Ion Beam, FIB)、電子能量損失譜(Electron Energy Loss Spectroscopy, EELS)以及能量色散X光譜(Energy-Dispersive X-ray Spectroscopy, EDS)等技術,對金奈米顆粒(Gold Nanoparticles, AuNPs)塗層的合成莫桑石進行了微觀結構與成分分析。研究發現金屬奈米顆粒的尺寸、形狀、分佈及其周圍介電環境(包括基底的結晶性)會顯著影響局域表面電漿共振效應的共振波長與強度,進而決定礦物所呈現的外觀色彩。此外,本研究利用時域有限差分法(Finite-Difference Time-Domain, FDTD)進行了數值模擬,驗證局域表面電漿共振效應與奈米顆粒參數間的關係,模擬結果與實驗觀測相符。 本論文進一步利用同步輻射光源(台灣光子源-TPS 23A)的X光奈米探針技術,深入研究稀土元素(Rare-Earth Elements, REEs)摻雜的合成發光礦物(主成分為SrAl2O4:Eu, Dy)的長效磷光(Afterglow)特性與機制。結合X光螢光光譜(X-ray Fluorescence Spectroscopy, XRF)、X光螢光光譜成像(XRF mapping)、X光吸收光譜(X-ray absorption spectroscopy, XAS)、X光激發發光光譜(X-ray Excited Optical Luminescence, XEOL)及X光激發發光光譜成像(XEOL mapping)等多種技術,分辨出多個發光中心及其價態。主要發光貢獻來自Eu2+的4f65d1→4f7躍遷,呈現強烈的藍綠色螢光與磷光。X光吸收光譜分析確認了樣品中存在Eu2+與Eu3+兩種價態,且Eu2+濃度相對較高。同時確定了Dy3+的存在。Eu3+與Dy3+則貢獻源自4f-4f躍遷的多個窄線發射峰。研究也發現由氧空位缺陷形成的F中心(F-Center)以及微量雜質Cr3+(R線發射)和Mn2+離子(藉由X光吸收光譜確認存在)等其他潛在的發光中心。本研究整合並修改目前對於稀土摻雜鋁酸鹽磷光體的解釋與模型,特別是Dy3+作為陷阱中心在長效磷光機制中的作用,藉由先進的同步輻射分析技術提供更直接、更全面的譜學證據,釐清各發光中心的貢獻與相互作用。 此外,也將所建立的先進分析方法拓展至天然礦物。以產自墨西哥、具強烈綠色螢光的玻璃蛋白石(Hyalite Opal)為例,結合同步輻射真空紫外光致發光光譜(Vacuum Ultraviolet Photoluminescence and Photoluminescence Excitation Spectroscopy, VUV-PL/PLE)與X光吸收光譜技術,證實其發光中心為鈾醯離子(UO2)2+,並精確判定樣本中的鈾價態為U6+。透過變溫光致發光光譜分析進一步解釋其複雜的光物理過程,包括存在孤立的鈾醯離子(UO2)2+與鈾-鈾聚集體(U–U clusters)兩種發光群體,以及兩者之間隨溫度變化的能量轉移與熱淬滅競爭機制。本論文針對天然玻璃蛋白石(Hyalite Opal)提出了一個完整且創新的光物理模型。 本論文整合運用同步輻射奈米顯微術、先進電子顯微學以及光學模擬計算等多種方式,系統性地研究了兩類發光礦物體系: (1)由金屬奈米顆粒的局域表面電漿共振效應引發的顯色機制,同時探討基底結晶性的影響;(2)由稀土元素及缺陷中心主導的發光機制,並藉由同步輻射技術精確解析了多重發光中心及其價態。本研究結果對這些複雜光學現象背後物理、化學機制提出解釋,同時提供對於發光材料的鑑別、設計與應用的重要依據以及分析方法的基礎。 | zh_TW |
| dc.description.abstract | Luminescent minerals and their associated optical phenomena have long attracted significant scientific interest. Traditional studies on mineral coloration and luminescence mechanisms have largely focused on crystal field theory, including electronic transitions, charge transfer processes, and lattice defects. However, the advent of nanomaterials has introduced new paradigms, such as localized surface plasmon resonance (LSPR) induced by metallic nanoparticles and the persistent luminescence observed in rare-earth-doped minerals. This dissertation employs advanced synchrotron-based nanoscale microscopy, combined with a suite of nanoscopic characterization techniques and theoretical simulations, to investigate the complex spectroscopic behaviors and underlying mechanisms in luminescent minerals.
The first part of this work examines the influence of LSPR on the coloration of minerals. Using Auger Electron Spectroscopy (AES), Aberration-Corrected Transmission Electron Microscopy (AC-TEM), Focused Ion Beam (FIB) milling, Electron Energy Loss Spectroscopy (EELS), and Energy-Dispersive X-ray Spectroscopy (EDS), the microstructure and composition of gold nanoparticle (AuNP) coatings on synthetic moissanite were thoroughly analyzed. The results demonstrate that the LSPR wavelength and intensity are highly sensitive to nanoparticle parameters such as size, shape, spatial distribution, and surrounding dielectric environment, including the crystallinity of the substrate. Finite-Difference Time-Domain (FDTD) simulations were conducted to further validate the relationship between these parameters and LSPR behavior, showing strong agreement with experimental observations. The second part focuses on the persistent luminescence (afterglow) of rare-earth-doped luminescent ceramics, specifically SrAl₂O₄:Eu, Dy. Utilizing the X-ray nanoprobe capabilities of the Taiwan Photon Source (TPS 23A), in conjunction with X-ray Fluorescence Spectroscopy (XRF), XRF mapping, X-ray Absorption Spectroscopy (XAS), X-ray Excited Optical Luminescence (XEOL), and XEOL mapping, multiple luminescent centers and their valence states were spatially and spectroscopically resolved. The dominant emission arises from Eu²⁺ 4f⁶5d¹ → 4f⁷ transitions, resulting in strong blue-green fluorescence and afterglow. XAS data confirm the coexistence of Eu²⁺ and Eu³⁺, with Eu²⁺ being predominant. The presence of Dy³⁺ was also confirmed, contributing several narrow emission lines via 4f–4f transitions. Additional emission was attributed to F-centers formed by oxygen vacancies, Cr³⁺ (R-line emission), and Mn²⁺ ions, as identified by XAS. An updated luminescence model is proposed, clarifying the role of Dy³⁺ as a trap center and offering direct spectroscopic evidence for the interplay among multiple emission centers. Finally, the developed analytical approach was extended to natural minerals. Using a green-luminescent hyalite opal from Mexico as a case study, a combination of vacuum ultraviolet photoluminescence and photoluminescence excitation spectroscopy (VUV-PL/PLE) and XAS confirmed the presence of uranyl ions (UO₂)²⁺ as the principal luminescent species, with uranium predominantly in the hexavalent oxidation state (U⁶⁺). Temperature-dependent PL spectra revealed two distinct emissive species: isolated uranyl ions and U–U clusters. Their interactions, governed by thermally activated energy transfer and competitive thermal quenching, were elucidated through a comprehensive photophysical model proposed for this material. This dissertation integrates synchrotron-based nanoscale imaging, advanced electron microscopy, and optical simulations to systematically explore two major classes of luminescent minerals: (1) coloration mechanisms governed by LSPR from metallic nanoparticles, including the influence of substrate crystallinity, and (2) luminescence processes dominated by rare-earth elements and defect centers. The findings offer mechanistic insights into these complex optical phenomena and establish a methodological framework for the identification, design, and functionalization of luminescent materials. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:11:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:11:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員會審定書 I
致謝 II 中文摘要 III 英文摘要 V 目次 VII 圖次 X 表次 XIII 一、前言 1 二、研究背景 4 2.1. 前人研究 4 2.1.1. 發光礦物與發現與研究 4 2.1.2. 礦物與寶石的塗層技術歷史與現代發展 6 2.1.3. 金屬奈米顆粒的局域表面電漿共振效應理論與發展 7 2.1.4. 稀土元素摻雜的發光機制及應用 9 2.2. 研究目標 12 三、 實驗材料與方法 17 3.1. 實驗材料與前處理 17 3.1.1. 合成莫桑石 17 3.1.2. 合成鋁酸鍶(摻雜銪與鏑) 18 3.1.3. 天然玻璃蛋白石 18 3.2. 實驗方法 19 3.2.1. 能量色散X光螢光光譜法 19 3.2.2. 歐傑電子能譜法 24 3.2.3. 球差校正穿透式電子顯微鏡法 26 3.2.4. 電子能量損失譜法與能量色散X光譜法 29 3.2.5. 選區電子繞射法 30 3.2.6. 電子探針微量分析法 31 3.2.7. 紫外-可見光譜法 33 3.2.8. X光繞射法 34 3.2.9. 同步輻射硬X光奈米探針法 36 3.2.10. 同步輻射快速掃描X光吸收光譜法 40 3.2.11. 同步輻射真空紫外光光致發光與光致發光激發光譜法 40 3.2.12. 時域有限差分法模擬 42 四、實驗結果 46 4.1. 合成的鍍膜彩色莫桑石: 46 4.1.1. 合成鍍膜彩色莫桑石的鍍膜分析 46 4.1.2 合成鍍膜彩色莫桑石的顏色成因分析與時域有限差分法模擬 53 4.2. 合成鋁酸鍶(摻雜銪與鏑) 60 4.3. 天然玻璃蛋白石 66 五、討論 72 5.1. 合成的鍍膜彩色莫桑石 72 5.1.1. 微量元素檢測 72 5.1.2. 關於鍍膜合成莫桑石的著色討論 73 5.1.3. 表面電漿共振效應的著色討論與時域有限差分法模擬 74 5.2. 合成鋁酸鍶(摻雜銪與鏑) 80 5.2.1. 發光中心 80 5.3. 天然玻璃蛋白石 87 5.3.1. X光吸收近邊緣結構的價態判定 87 5.3.2. 延伸X光吸收精細結構的對於鍵長與配位環境的鑑別 88 5.3.3. 與晶體結構的對比分析 91 5.3.4. 光物理性質與(UO2)2+發光中心 92 六、結論 100 七、參考文獻 102 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 局域表面電漿共振 | zh_TW |
| dc.subject | 發光礦物 | zh_TW |
| dc.subject | 鈾醯離子發光機制 | zh_TW |
| dc.subject | 同步輻射奈米顯微技術 | zh_TW |
| dc.subject | 稀土元素摻雜磷光體 | zh_TW |
| dc.subject | Rare-Earth-Doped Phosphors | en |
| dc.subject | Synchrotron Nanoscale Microscopy | en |
| dc.subject | Uranyl Ion Photophysics | en |
| dc.subject | Localized Surface Plasmon Resonance (LSPR) | en |
| dc.subject | Luminescent Minerals | en |
| dc.title | 同步輻射奈米顯微術在發光礦物的譜學研究 | zh_TW |
| dc.title | Synchrotron Radiation Nanoscale Microscopy and Spectroscopic Studies of Luminescent Minerals | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 陳文山;林文;吳宇中;許良境 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Shan Chen;Wen Lin;Yu-Jong Wu;Liang-Ching Hsu | en |
| dc.subject.keyword | 發光礦物,局域表面電漿共振,稀土元素摻雜磷光體,同步輻射奈米顯微技術,鈾醯離子發光機制, | zh_TW |
| dc.subject.keyword | Luminescent Minerals,Localized Surface Plasmon Resonance (LSPR),Rare-Earth-Doped Phosphors,Synchrotron Nanoscale Microscopy,Uranyl Ion Photophysics, | en |
| dc.relation.page | 118 | - |
| dc.identifier.doi | 10.6342/NTU202503637 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地質科學系 | - |
| dc.date.embargo-lift | 2030-08-04 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-08-04 | 5.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
