Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99626Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳琪芳 | zh_TW |
| dc.contributor.advisor | Chi-Fang Chen | en |
| dc.contributor.author | 王硯葶 | zh_TW |
| dc.contributor.author | Yen-Ting Wang | en |
| dc.date.accessioned | 2025-09-17T16:11:31Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-13 | - |
| dc.identifier.citation | [1] R. J. Vaccaro, “The past, present, and the future of underwater acoustic signal processing,” IEEE Signal Processing Magazine, vol. 15, pp. 21-51, 1998.
[2] H. Pranjoto, and Sutoyo, "Innovative tester for underwater locator beacon used in flight/voyage recorder (black box)." pp. 299-307. [3] C. Erbe, C. f. M. Science, a. Technology, C. University, W. Perth, Australia, J. A. T. (deceased), and I. Moline, USA, Exploring Animal Behavior Through Sound: Volume 1: Springer Cham, 2022. [4] M. C. H. Whitlow W. L. Au Principles of Marine Bioacoustics, p.^pp. 501-564: Springer New York, NY, 2008. [5] Y. M. Barkley, T. Sakai, E. M. Oleson, and E. C. Franklin, “Examining distribution patterns of foraging and non-foraging sperm whales in Hawaiian waters using visual and passive acoustic data,” Frontiers in Remote Sensing, vol. 3, 2022. [6] H. Johnson. "WhaleMap: Latest Right Whale Observations," 04/26, 2025; https://whalemap.org/. [7] D. K. Mellinger, K. M. Stafford, S. E. Moore, R. P. Dziak, and H. Matsumoto, “An Overview of Fixed Passive Acoustic Observation Methods for Cetaceans,” Oceanography, vol. 20, no. 4, pp. 36-45, 2007. [8] A. B. Baggeroer, W. A. Kuperman, and P. N. Mikhalevsky, “An overview of matched field methods in ocean acoustics,” IEEE Journal of Oceanic Engineering, vol. 18, no. 4, pp. 401-424, 1993. [9] B. Mohl, M. Wahlberg, P. T. Madsen, A. Heerfordt, and A. Lund, “The monopulsed nature of sperm whale clicks,” J Acoust Soc Am, vol. 114, no. 2, pp. 1143-54, Aug, 2003. [10] L. E. Freitag, and P. L. Tyack, “Passive acoustic localization of the Atlantic bottlenose dolphin using whistles and echolocation clicks,” J Acoust Soc Am, vol. 93, no. 4 Pt 1, pp. 2197-205, Apr, 1993. [11] J. L. Spiesberger, and K. M. Fristrup, “Passive Localization of Calling Animals and Sensing of their Acoustic Environment Using Acoustic Tomography,” The American Naturalist, vol. 135, no. 1, pp. 107-153, 1990. [12] E. Alvanas, “A LINE ARRAY OF DIRECTIONAL HYDROPHONES FOR IMPROVED DETECTION OF EMERGENCY LOCATOR BEACONSDETECTION OF EMERGENCY LOCATOR BEACONS,” Ocean Engineering, University of Rhode Island, 2018. [13] W.-X. Zhou, “Multifractal detrended cross-correlation analysis for two nonstationary signals,” Physical Review E, vol. 77, no. 6, pp. 066211, 06/18/, 2008. [14] C. C. Carter, and C. N. Knapp, “TIME DELAY ESTIMATION,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 24, pp. 320-327, 1976. [15] D. A. Abraham, Underwater Acoustic Signal Processing, p.^pp. 33-93: Springer Cham, 2019. [16] M. J. Hinich, “Maximum-likelihood signal processing for a vertical array,” The Journal of the Acoustical Society of America, vol. 54, no. 2, pp. 499-503, 1973. [17] M. S. C. H. H. M. B. Porter, “A passive fathometer technique for imaging seabed layering using ambient noise,” J. Acoust. Soc. Am., vol. 120, pp. 1315-1323, 2006. [18] C. Yardim, P. Gerstoft, and W. S. Hodgkiss, “Tracking of geoacoustic parameters using Kalman and particle filters,” J Acoust Soc Am, vol. 125, no. 2, pp. 746-60, Feb, 2009. [19] J. E. Quijano, S. E. Dosso, J. Dettmer, L. M. Zurk, M. Siderius, and C. H. Harrison, “Bayesian geoacoustic inversion using wind-driven ambient noise,” The Journal of the Acoustical Society of America, vol. 131, no. 4, pp. 2658-2667, 2012. [20] S. E. Dosso, and J. Dettmer, “Bayesian matched-field geoacoustic inversion,” Inverse Problems, vol. 27, no. 5, 2011. [21] C. Knapp, and G. Carter, “The generalized correlation method for estimation of time delay,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 24, pp. 320-327, 1976. [22] L. D. Stone, C. M. Keller, T. M. Kratzke, and J. Strumpfer, Search Analysis for the Location of the AF447 Underwater Wreckage, Bureau d’Enquêtes et d’Analyses, 2011. [23] P. Gruden, E.-M. Nosal, and E. E. Henderson, "Automated Acoustic Tracking of a Sperm Whale (Physeter macrocephalus) using a Wide Baseline Array of Sensors." pp. 1-7. [24] 國家運輸安全調查委員會, 中華民國 107 年 2 月 5 日內政部空中勤務總隊 UH-60M 型機號 NA-706 自蘭嶼機場起飛後墜海, 2019. [25] 劉文暘, “飛航紀錄器水下定位研究,” 工程科學及海洋工程學系, 國立臺灣大學, 2020. [26] 蘇逸芸, “飛航紀錄器水下偵蒐系統建置之研究,” 工程科學及海洋工程學系, 國立臺灣大學, 2021. [27] 楊開丞, “使用拖曳式水下麥克風陣列之飛航紀錄器水下偵蒐及定位,” 工程科學及海洋工程學研究所, 國立臺灣大學, 2022. [28] 吳昭蓉, “飛航紀錄器水下定位精進研究,” 工程科學及海洋工程學系, 國立臺灣大學, 2023. [29] 洪靖唐, “水下音響目標偵測與追蹤研究,” 工程科學及海洋工程學系, 國立臺灣大學, 2024. [30] M. Bittle, and A. Duncan, "A review of current marine mammal detection and classification algorithms for use in automated passive acoustic monitoring." [31] Y. M. Barkley, E. M. Nosal, and E. M. Oleson, “Model-based localization of deep-diving cetaceans using towed line array acoustic data,” J Acoust Soc Am, vol. 150, no. 2, pp. 1120, Aug, 2021. [32] J. L. K. McCullough, E. E. Henderson, J. S. Trickey, J. Barlow, S. Baumann‐Pickering, R. Manzano‐Roth, G. Alongi, S. Martin, S. Fregosi, D. K. Mellinger, H. Klinck, A. R. Szesciorka, and E. M. Oleson, “Geographic distribution of the Cross Seamount beaked whale based on acoustic detections,” Marine Mammal Science, vol. 40, no. 1, pp. 164-183, 2023. [33] A. I. DeAngelis, R. Valtierra, S. M. Van Parijs, and D. Cholewiak, “Using multipath reflections to obtain dive depths of beaked whales from a towed hydrophone array,” J Acoust Soc Am, vol. 142, no. 2, pp. 1078, Aug, 2017. [34] V. Červený, M. M. Popov, and I. Pšenčík, “Computation of wave fields in inhomogeneous media Gaussian beam approach,” Geophysical Journal International, vol. 70, no. 1, pp. 109-128, 1982. [35] M. B. Porter, “The bellhop manual and user’s guide: Preliminary draft,” Heat, Light, and Sound Research, Inc., La Jolla, CA, USA, Tech. Rep, vol. 260, 2011. [36] G. Goubau, and F. Schwering, “On the guided propagation of electromagnetic wave beams,” IRE Transactions on Antennas and Propagation, vol. 9, pp. 248-256, 1961. [37] M. A. Bandres, and J. C. Gutiérrez-Vega, “Ince–Gaussian beams,” Optics Letters, vol. 29, no. 2, pp. 144-146, 2004/01/15, 2004. [38] F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics, Second ed., p.^pp. 65-153: Springer New York, NY, 2011. [39] D. M. A. Ainslie, Principles of Sonar Performance Modeling, p.^pp. 53-112, 439-512: Springer Berlin, Heidelberg, 2019. [40] W. C. Burgess, Acousonde User Manual Model B003A and B003B, Acoustimetrics, Felton, California, 2021. [41] S. O. H. Madgwick, An efficient orientation filter for inertial and inertial/magnetic sensor arrays, vol. 25, University of Bristol, 2010. [42] J. B. KUIPERS, "QUATERNIONS AND ROTATION SEQUENCES," Geometry, Integrability and Quantization, I. M. M. a. G. L. Naber, ed., p. 127, Varna, Bulgaria: Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, 1999. [43] G. V. Frisk, Ocean and seabed acoustics: A theory of wave propagation /George V Frisk, Englewood Cliffs: PH, 1994. [44] R. Aubauer, M. O. Lammers, and W. W. Au, “One-hydrophone method of estimating distance and depth of phonating dolphins in shallow water,” J Acoust Soc Am, vol. 107, no. 5 Pt 1, pp. 2744-9, May, 2000. [45] "STAR ODDI Salinity, Conductivity, Temperature and Depth Logger," 05/14, 2025; https://www.star-oddi.com/products/data-loggers/salinity-logger-probe-CTD. [46] I. E. Commission. "icListen HF Hydrophone," 05/10, 2025; https://oceansonics.com/iclisten-hf-hydrophone/. [47] K. M. Yano, E. M. Oleson, J. L. Keating, L. T. Ballance, M. C. Hill, A. L. Bradford, A. N. Allen, T. W. Joyce, J. E. Moore, and A. E. Henry, “Cetacean and Seabird Data Collected During the Hawaiian Islands Cetacean and Ecosystem Assessment Survey (HICEAS), July–December 2017,” 2018. [48] N. N. C. f. E. Information, "NOAA National Centers for Environmental Information," 2022: ETOPO 2022 15 Arc-Second Global Relief Model. [49] M. Andre, A. Caballe, M. van der Schaar, A. Solsona, L. Houegnigan, S. Zaugg, A. M. Sanchez, J. V. Castell, M. Sole, F. Vila, D. Djokic, S. Adrian-Martinez, A. Albert, M. Anghinolfi, G. Anton, M. Ardid, J. J. Aubert, T. Avgitas, B. Baret, J. Barrios-Marti, S. Basa, V. Bertin, S. Biagi, R. Bormuth, M. C. Bouwhuis, R. Bruijn, J. Brunner, J. Busto, A. Capone, L. Caramete, J. Carr, S. Celli, T. Chiarusi, M. Circella, A. Coleiro, R. Coniglione, H. Costantini, P. Coyle, A. Creusot, A. Deschamps, G. De Bonis, C. Distefano, I. Di Palma, C. Donzaud, D. Dornic, D. Drouhin, T. Eberl, I. El Bojaddaini, D. Elsasser, A. Enzenhofer, K. Fehn, I. Felis, L. A. Fusco, S. Galata, P. Gay, S. Geisselsoder, K. Geyer, V. Giordano, A. Gleixner, H. Glotin, R. Gracia-Ruiz, K. Graf, S. Hallmann, H. van Haren, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, J. Hossl, J. Hofestadt, C. Hugon, G. Illuminati, C. W. James, M. de Jong, M. Jongen, M. Kadler, O. Kalekin, U. Katz, D. Kiessling, A. Kouchner, M. Kreter, I. Kreykenbohm, V. Kulikovskiy, C. Lachaud, R. Lahmann, D. Lefevre, E. Leonora, S. Loucatos, M. Marcelin, A. Margiotta, A. Marinelli, J. A. Martinez-Mora, A. Mathieu, K. Melis, T. Michael, P. Migliozzi, A. Moussa, C. Mueller, E. Nezri, G. E. Pavalas, C. Pellegrino, C. Perrina, P. Piattelli, V. Popa, T. Pradier, C. Racca, G. Riccobene, K. Roensch, M. Saldana, D. F. Samtleben, M. Sanguineti, P. Sapienza, J. Schnabel, F. Schussler, T. Seitz, C. Sieger, M. Spurio, T. Stolarczyk, A. Sanchez-Losa, M. Taiuti, A. Trovato, M. Tselengidou, D. Turpin, C. Tonnis, B. Vallage, C. Vallee, V. Van Elewyck, D. Vivolo, S. Wagner, J. Wilms, J. D. Zornoza, and J. Zuniga, “Sperm whale long-range echolocation sounds revealed by ANTARES, a deep-sea neutrino telescope,” Sci Rep, vol. 7, pp. 45517, Apr 12, 2017. [50] H. Whitehead, “Estimates of the current global population size and historical trajectory for sperm whales,” Marine Ecology Progress Series, vol. 242, pp. 295-304, 2002. [51] E. M. Oleson, A. E. Simonis, and K. P. Merkens, “Geographic and temporal patterns in the acoustic detection of sperm whales Physeter macrocephalus in the central and western North Pacific Ocean,” Endangered Species Research, vol. 39, pp. 115-133, 2019. [52] A. Westell, T. Sakai, R. Valtierra, S. M. Van Parijs, D. Cholewiak, and A. DeAngelis, “Sperm whale acoustic abundance and dive behaviour in the western North Atlantic,” Sci Rep, vol. 12, no. 1, pp. 16821, Oct 7, 2022. [53] K. Aoki, M. Amano, N. Sugiyama, H. Muramoto, M. Suzuki, M. Yoshioka, K. Mori, D. Tokuda, and N. Miyazaki, "Measurement of swimming speed in sperm whales." pp. 467-471. [54] C. Khan. "Sperm Whale," 04/11, 2025; https://nammco.no/sperm-whale/#1475762140566-81d47f7a-a145. [55] S. 86. "Sperm Whale Scale Chart SVG," 04/11, 2025; https://en.wikipedia.org/wiki/File:Sperm-Whale-Scale-Chart-SVG-Steveoc86.svg. [56] H. Whitehead, "Sperm Whale: Physeter macrocephalus," Encyclopedia of Marine Mammals (Third Edition), B. Würsig, J. G. M. Thewissen and K. M. Kovacs, eds., pp. 919-925: Academic Press, 2018. [57] G. Nakamura, R. Zenitani, and H. Kato, “Relative Skull Growth of the Sperm Whale, Physeter macrocephalus, with a Note of Sexual Dimorphism,” Mammal Study, vol. 38, no. 3, pp. 177-186, 10, 2013. [58] W. M. X. Z. P. L. T. M. P. J. P. T. Madsen, “Three-dimensional beam pattern of regular sperm whale clicks confirms bent-horn hypothesis,” J. Acoust. Soc. Am., vol. 117, pp. 1473–1485, 2005. [59] K. S. NORRIS, and G. W. HARVEY, "A Theory for the Function of the Spermaceti Organ of the Sperm Whale (Physeter catodon L.)," NASA Special Publication, K. S.-K. S. R. Galler, G. J. Jacob, and R. E. Belleville, ed., p. 397, 1972. [60] L. Rendell, and H. Whitehead, “Do sperm whales share coda vocalizations? Insights into coda usage from acoustic size measurement,” Animal Behaviour, vol. 67, no. 5, pp. 865-874, 2004. [61] C. Oliveira, M. Wahlberg, M. A. Silva, M. Johnson, R. Antunes, D. M. Wisniewska, A. Fais, J. Gonçalves, and P. T. Madsen, “Sperm whale codas may encode individuality as well as clan identity,” The Journal of the Acoustical Society of America, vol. 139, no. 5, pp. 2860-2869, 2016. [62] N. Jaquet, S. Dawson, and L. Douglas, “Vocal behavior of male sperm whales: Why do they click?,” The Journal of the Acoustical Society of America, vol. 109, no. 5, pp. 2254-2259, 2001. [63] P. J. O. Miller, M. P. Johnson, and P. L. Tyack, “Sperm whale behaviour indicates the use of echolocation click buzzes ‘creaks’ in prey capture,” Proceedings of the Royal Society of London. Series B: Biological Sciences, vol. 271, no. 1554, pp. 2239-2247, 2004. [64] S. L. Watwood, P. J. O. Miller, M. Johnson, P. T. Madsen, and P. L. Tyack, “Deep‐diving foraging behaviour of sperm whales (Physeter macrocephalus),” Journal of Animal Ecology, vol. 75, no. 3, pp. 814-825, 2006. [65] C. Oliveira, M. Wahlberg, M. Johnson, P. J. O. Miller, and P. T. Madsen, “The function of male sperm whale slow clicks in a high latitude habitat: Communication, echolocation, or prey debilitation?,” The Journal of the Acoustical Society of America, vol. 133, no. 5, pp. 3135-3144, 2013. [66] P. Madsen, M. Wahlberg, and B. Møhl, “Male sperm whale (Physeter macrocephalus) acoustics in a high-latitude habitat: implications for echolocation and communication,” Behavioral Ecology and Sociobiology, vol. 53, no. 1, pp. 31-41, 2002. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99626 | - |
| dc.description.abstract | 拖曳式水下聽音陣列(Towed Hydrophone Array)為一種具高機動性與廣域覆蓋能力的被動聲學監測平台。透過船舶拖曳,即時接收水下聲源訊號並進行方向與位置估算。本研究聚焦於拖曳式水下聽音陣列於水下目標定位之實際應用,涵蓋海難搜救與海洋哺乳類生態監測兩大情境,驗證其定位效能。
首先,於海空難搜救應用中,本研究針對8.8 kHz DK180水下發報器訊號,採用到達時間差法(Time Difference of Arrival, TDOA)與網格疊加定位技術實現近即時的聲源定位,並據此調整偵蒐船航向,模擬實際搜索場景中的動態作業流程。透過在小琉球外海進行之實海域實驗,進行多種海流與船速條件下之測試,並納入音傳損耗與拖曳式水下聽音陣列姿態修正之後處理,有效提升定位準確性與搜尋效率,為未來飛航紀錄器回收等搜救任務提供實用的技術支持與作業標準。此項成果顯示在水深480公尺以內可達到高精度的水下定位,未來可在深海域進行測試,俾能在航空事故救援中廣泛應用,進一步提高事故調查的效率和準確性。 生態監測應用則利用DCLDE(Detection, Classification, Localization, and Density Estimation, DCLDE)資料集進行抹香鯨(Physeter macrocephalus)之搭聲(Click)偵測與三維定位。透過建構三維網格,結合TDOA與斜距延遲分析技術,實現深潛物種之深度與行進方向推測。此技術除有望於未來結合即時演算法與聲紋辨識技術,建立更完整的海洋哺乳動物行為資料庫。 本研究建立了一套適用於不同水下目標定位需求的拖曳式聲學監測系統,不僅在實務測試中展現即時性與高機動優勢,亦具備拓展至長期生態監測與跨物種辨識的潛力,為海洋科學研究與水下搜救行動提供一套兼具效率與準確性的技術平台。 | zh_TW |
| dc.description.abstract | The towed hydrophone array is a passive acoustic monitoring platform characterized by high mobility and broad coverage capabilities. By towing an array of hydrophones behind a vessel, it enables real-time reception of underwater acoustic signals and estimation of the direction and position of sound sources. This study focuses on the practical application of towed arrays in underwater target localization, specifically in two key scenarios: maritime search and rescue, and marine mammal ecological monitoring, in order to validate the system’s localization performance.
In the context of search and rescue operations, this study targets the 8.8 kHz signal from DK180 underwater beacons, applying the Time Difference of Arrival (TDOA) method and grid-based localization techniques to achieve near real-time sound source positioning. The estimated direction is then used to dynamically adjust the search vessel’s heading, simulating real-world search operations. Field experiments conducted off the coast of Liuqiu Island tested the system under various ocean current and vessel speed conditions. Post-processing procedures including acoustic propagation loss compensation and array attitude correction were incorporated to enhance localization accuracy and search efficiency. The results demonstrated that high-precision underwater localization is achievable at depths up to 480 meters. Future deep-sea trials are planned to expand the system’s application in aviation accident recovery, potentially improving the effectiveness and accuracy of accident investigations. In the ecological monitoring application, the study utilizes the Detection, Classification, Localization, and Density Estimation (DCLDE) dataset to detect and localize the clicks of sperm whales (Physeter macrocephalus) in three dimensions. By constructing a 3D localization grid and combining TDOA with slant range delay analysis, the system effectively estimates the depth and movement direction of deep-diving marine mammals. This technique shows promise for integration with real-time algorithms and acoustic fingerprinting technologies, supporting the development of a comprehensive behavioral database for marine mammals. Overall, this research presents a versatile towed acoustic monitoring system tailored to various underwater localization needs. Demonstrating both real-time capability and operational flexibility in field trials, the system also offers strong potential for expansion into long-term ecological monitoring and multi-species identification. It provides a robust and accurate technical platform for marine scientific research and underwater search and rescue missions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:11:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:11:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
謝誌 ii 摘要 iii Abstract iv 目次 vi 圖次 ix 表次 xii 符號表 xiii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻回顧 3 1.3.1 拖曳式水下聽音陣列 3 1.3.2 水下聲源定位方法 4 1.3.3 飛航紀錄器定位 6 1.3.4 生態調查應用 8 第二章 研究方法 10 2.1 聲學環境模擬 10 2.1.1 水下音傳計算模組:Bellhop Acoustic Model 10 2.1.2 被動聲納方程式 11 2.2 訊號處理 12 2.2.1 被動式聲學監測與拖曳式水下聽音陣列 12 2.2.2 訊號偵測 14 2.3 近即時定位 15 2.3.1 短基線到達時間差 15 2.3.2 機率網格熱區統計 16 2.4 定位後處理與優化 19 2.4.1 電子羅盤解算 19 2.4.2 音傳損耗模擬與評估 20 2.4.3 多重路徑與深度估計 22 第三章 飛航紀錄器定位 24 3.1 實驗介紹 25 3.1.1 實驗規劃 25 3.1.2 實驗前作業 30 3.2 陣列姿態測試 33 3.3 遠距離音傳測試 35 3.3.1 音傳距離評估 36 3.3.2 訊號偵測 36 3.4 螺旋式測線 38 3.5 近即時定位與動態測線 40 3.5.1 接收聲壓位準與距離估計 44 第四章 生態調查應用 45 4.1 DCLDE Oahu資料集簡介 45 4.1.1 HICEAS 調查計畫 45 4.1.2 聲學資料 47 4.2 目標物種:抹香鯨 48 4.2.1 外型特徵與習性 48 4.2.2 聲學特徵 49 4.3 鯨豚聲學定位 50 4.3.1 偵測 51 4.3.2 到達時間差與方位角計算 54 4.3.3 網格熱區定位結果 56 第五章 結論與建議 59 5.1 水下發報器定位 59 5.1.1 結論 59 5.1.2 建議與展望 60 5.2 抹香鯨搭聲定位 61 5.2.1 結論 61 5.2.2 建議與展望 62 參考文獻 63 附錄A. 螺旋式測線點位經緯度 69 附錄B. 2024/08/22-23海流流向預報 70 附錄C. DCLDE Oahu 紀錄參數 71 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 到達時間差定位法 | zh_TW |
| dc.subject | 拖曳式水下聽音陣列 | zh_TW |
| dc.subject | 海洋哺乳類監測 | zh_TW |
| dc.subject | 海空難搜救 | zh_TW |
| dc.subject | 水下定位發報器 | zh_TW |
| dc.subject | Underwater Locator Beacon (ULB) | en |
| dc.subject | Air Sea Rescue | en |
| dc.subject | Marine Mammal Monitoring | en |
| dc.subject | Time Difference of Arrival (TDOA) | en |
| dc.subject | Towed Hydrophone Array | en |
| dc.title | 基於拖曳式水下聽音陣列之水下定位研究 | zh_TW |
| dc.title | A Study on Underwater Localization Utilizing a Towed Underwater Acoustic Array | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃維信;賴堅戊;莊禮彰;胡惟鈞 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Shien Hwang;Jai-Wu Lai;Li-Chang Chuang;Wei-Chun Hu | en |
| dc.subject.keyword | 拖曳式水下聽音陣列,到達時間差定位法,水下定位發報器,海空難搜救,海洋哺乳類監測, | zh_TW |
| dc.subject.keyword | Towed Hydrophone Array,Time Difference of Arrival (TDOA),Underwater Locator Beacon (ULB),Air Sea Rescue,Marine Mammal Monitoring, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202504239 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| dc.date.embargo-lift | 2030-08-01 | - |
| Appears in Collections: | 工程科學及海洋工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 5 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
