請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99624完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 范致豪 | zh_TW |
| dc.contributor.advisor | Chihhao Fan | en |
| dc.contributor.author | 黃雅甄 | zh_TW |
| dc.contributor.author | Ya-Zhen Huang | en |
| dc.date.accessioned | 2025-09-17T16:10:38Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-08 | - |
| dc.identifier.citation | 彭宗仁、劉滄棽、林幸助(2006)。穩定同位素在農業及生態環境上之應用。台灣農業研究,55(2),79–90。
李芳胤 & 陳士賢(2007)。土壤分析實驗手冊。新文京開發出版。ISBN:9789861506838。 劉滄棽、彭宗仁、吳昇鴻、范家華、林毓雯(2009)。分析植體氮同位素組成鑑別有機蔬菜之初步評估。台灣農業研究,58(3),169–175。 國家環境研究院(1999)。水溫之測定(NIEA W217)。國家環境研究院,環署授檢字第44692號。 國家環境研究院(2019)。水中氫離子濃度指數之測定(NIEA W424)。國家環境研究院,環署授檢字第1080000393號。 國家環境研究院(2023)。水中導電度之測定(NIEA W203)。國家環境研究院,環署授檢字第1120006576號。 國家環境研究院(2015)。水中硝酸鹽氮及亞硝酸鹽氮檢測方法-鎘還原法(NIEA W452.52C)。國家環境研究院,環署授檢字第 1040060441號。 國家環境研究院(2000)。凱氏氮之消化與流動注入分析法-類靛酚法 (NIEA W438.50C)。國家環境研究院,環署檢字第71165號。 國家環境研究院(2023)。水中總氮之測定(NIEA W423.53C)。國家環境研究院,環署授檢字第1127106488號。 國家環境研究院(1994)。土壤中陽離子交換容量-醋酸鈉法 (NIEA S202.60A)。國家環境研究院,環署授檢字第00529號。 國家環境研究院(2009)。土壤酸鹼值(pH值)測定方法-電極法(NIEA S410.62C)。國家環境研究院,環署檢字第0970075579號。 農業部農業試驗所(2023)。土壤導電度測定法(TARI S101.1B)。農業部農業試驗所,農試化字第1122136608號。 農業部農業試驗所(2023)。土壤有機質測定方法-燃燒/紅外線測定法(TARI S201.1B)。農業部農業試驗所,農試化字第1122136705號。 鄭昭欣、萬乃容、闕山仲(2012)。穩定同位素比值質譜儀於鑑識科學之應用與展望。Carbon (C),12(13C),98–892。 Abalos, D., Recous, S., Butterbach‑Bahl, K., De Notaris, C., Rittl, T. F., Topp, C. F. E., Petersen, S. O., Hansen, S., Bleken, M. A., Rees, R. M., & Olesen, J. E. (2022). A review and meta-analysis of mitigation measures for nitrous oxide emissions from crop residues. Science of The Total Environment, 828, 154388.https://doi.org/10.1016/j.scitotenv.2022.154388 Abbasi, H. N., Vasileva, V., & Lu, X. (2017). The influence of the ratio of nitrate to ammonium nitrogen on nitrogen removal in the economical growth of vegetation in hybrid constructed wetlands. Environments, 4(1), 24.https://doi.org/10.3390/environments4010024 Adekiya, A. O., Agbede, T. M., Aboyeji, C. M., Dunsin, O., & Simeon, V. T. (2019). Effects of biochar and poultry manure on soil characteristics and the yield of radish. Scientia Horticulturae, 243, 457-463. https://doi.org/10.1016/j.scienta.2018.08.040 Adhikari, K., & Hartemink, A. E. (2016). Linking soils to ecosystem services—A global review. Geoderma, 262, 101-111.https://doi.org/10.1016/j.geoderma.2015.08.009 Are, K. S., Adelana, A. O., Fademi, I. O., & Aina, O. A. (2017). Improving physical properties of degraded soil: Potential of poultry manure and biochar. Agriculture and Natural Resources, 51(6), 454-462. https://doi.org/10.1016/j.anres.2017.03.001 Ayele, H. S., & Atlabachew, M. (2021). Review of characterization, factors, impacts, and solutions of Lake eutrophication: lesson for lake Tana, Ethiopia. Environmental Science and Pollution Research, 28(12), 14233-14252. https://doi.org/10.1007/s11356-020-11814-4 Aziz, T., Maqsood, M. A., Kanwal, S., Hussain, S., Ahmad, H. R., & Sabir, M. (2015). Fertilizers and environment: Issues and challenges. In M. A. Hossain, T. Kamiya, D. J. Burritt, L.-S. Tran, & H. Fujita (Eds.), Crop production and global environmental issues (pp. 575–598). Springer. https://doi.org/10.1007/978-3-319-23162-4_24 Bateman, A. S., & Kelly, S. D. (2007). Fertilizer nitrogen isotope signatures. Isotopes in Environmental and Health Studies, 43(3), 237-247. https://doi.org/10.1080/10256010701550732 Bateman, A. S., Kelly, S. D., & Jickells, T. D. (2005). Nitrogen isotope relationships between crops and fertilizer: implications for using nitrogen isotope analysis as an indicator of agricultural regime. Journal of Agricultural and Food Chemistry, 53(14), 5760-5765.https://doi.org/10.1021/jf050374h Bhunia, S., Bhowmik, A., Mallick, R., & Mukherjee, J. (2021). Agronomic efficiency of animal-derived organic fertilizers and their effects on biology and fertility of soil: A review. Agronomy, 11(5), 823.https://doi.org/10.3390/agronomy11050823 Bian, R. J., Chen, D., Liu, X. Y., Cui, L. Q., Li, L. Q., Pan, G. X., Xie, D., Zheng, J. W., Zhang, X. H., Zheng, J. F., & Chang, A. (2013). Biochar soil amendment as a solution to prevent Cd-tainted rice from China: results from a cross-site field experiment. Ecological Engineering, 58, 378-383.https://doi.org/10.1016/j.ecoleng.2013.06.027 Brady, N. C., & Weil, R. R. (2004). Elements of the nature and properties of soils (2nd ed.). Pearson Prentice Hall. Brondi, M., Eisa, M., Bortoletto‑Santos, R., Drapanauskaite, D., Reddington, T., Williams, C., Ribeiro, C., & Baltrusaitis, J. (2023). Recovering, stabilizing, and reusing nitrogen and carbon from nutrient-containing liquid waste as ammonium carbonate fertilizer. Agriculture, 13(4), 909. https://doi.org/10.3390/agriculture13040909 Bugg, R. A., Donald, W., Zech, W., & Perez, M. (2017). Performance evaluations of three silt fence practices using a full-scale testing apparatus. Water, 9(7), 502.https://doi.org/10.3390/w9070502 Cameron, K. C., Di, H. J., & Moir, J. L. (2013). Nitrogen losses from the soil/plant system: a review. Annals of Applied Biology, 162(2), 145-173.https://doi.org/10.1111/aab.12014 Cao, M., Yin, X., Zhang, J., Jin, M., & Huang, X. (2022). Sources and transformations of nitrogen in an agricultural watershed on the Jianghan Plain, China: an integration of δ15N–NH4+, δ15N–NO3⁻, δ18O–NO3⁻and a Bayesian isotope mixing model. Applied Geochemistry, 142, 105329.https://doi.org/10.1016/j.apgeochem.2022.105329 Chalk, P. M., Craswell, E. T., Polidoro, J. C., & Chen, D. (2015). Fate and efficiency of 15N-labelled slow-and controlled-release fertilizers. Nutrient Cycling in Agroecosystems, 102, 167-178.https://doi.org/10.1007/s10705-015-9709-8 Chalk, P. M., Inácio, C. T., & Chen, D. (2019). An overview of contemporary advances in the usage of 15N natural abundance (δ15N) as a tracer of agro-ecosystem N cycle processes that impact the environment. Agriculture, Ecosystems & Environment, 283, 106570.https://doi.org/10.1016/j.agee.2019.106570 Chalk, P. M., Inacio, C. T., & Chen, D. (2020). Tracing the dynamics of animal excreta N in the soil-plant-atmosphere continuum using 15N enrichment. Advances in Agronomy, 160(1), 187-247.https://doi.org/10.1016/bs.agron.2020.06.002 Channab, B. E., El Idrissi, A., Zahouily, M., Essamlali, Y., & White, J. C. (2023). Starch-based controlled release fertilizers: a review. International Journal of Biological Macromolecules, 238, 124075. https://doi.org/10.1016/j.ijbiomac.2023.124075 Chen, X., Cui, Z., Fan, M., Vitousek, P., Zhao, M., Ma, W., ... & Zhang, F. (2014). Producing more grain with lower environmental costs. Nature, 514(7523), 486-489.https://doi.org/10.1038/nature13609 Chen, Z., Wang, H., Liu, X., Lu, D., & Zhou, J. (2016). The fates of 15N-labeled fertilizer in a wheat–soil system as influenced by fertilization practice in a loamy soil. Scientific Reports, 6(1), 34754.https://doi.org/10.1038/srep34754 Choi, W. J., Kwak, J. H., Lim, S. S., Park, H. J., Chang, S. X., Lee, S. M., Arshad, M. A., Yun, S. I., & Kim, H. Y. (2017). Synthetic fertilizer and livestock manure differently affect δ15N in the agricultural landscape: A review. Agriculture, Ecosystems & Environment, 237, 1-15.https://doi.org/10.1016/j.agee.2016.12.027 Cui, Z., Dou, Z., Chen, X., Ju, X., & Zhang, F. (2014). Managing agricultural nutrients for food security in China: past, present, and future. Agronomy Journal, 106(1), 191-198.https://doi.org/10.2134/agronj2013.0302 Dincă, L. C., Grenni, P., Onet, C., & Onet, A. (2022). Fertilization and soil microbial community: a review. Applied Sciences, 12(3), 1198.https://doi.org/10.3390/app12031198 Dong Feng, G., Ma, Y., Zhang, M., You Jia, P., Hong Hu, L., Guo Liu, C., & Hong Zhou, Y. (2019). Polyurethane-coated urea using fully vegetable oil-based polyols: Design, nutrient release and degradation. Progress in Organic Coatings, 133, 267–275.https://doi.org/10.1016/j.porgcoat.2019.04.056 Du, J., Zhang, Y., Qu, M., Yin, Y., Fan, K., Hu, B., Zhang, H., Wei, M., & Ma, C. (2019). Effects of biochar on the microbial activity and community structure during sewage sludge composting. Bioresource Technology, 272, 171-179.https://doi.org/10.1016/j.biortech.2018.10.021 Du, L., Zhong, H., Guo, X., Li, H., Xia, J., & Chen, Q. (2024). Nitrogen fertilization and soil nitrogen cycling: Unraveling the links among multiple environmental factors, functional genes, and transformation rates. Science of The Total Environment, 951, 175561.https://doi.org/10.1016/j.scitotenv.2024.175561 Dubey, A., & Mailapalli, D. R. (2019). Zeolite coated urea fertilizer using different binders: Fabrication, material properties and nitrogen release studies. Environmental Technology & Innovation, 16, 100452.https://doi.org/10.1016/j.eti.2019.100452 El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A. K., ... & Ok, Y. S. (2019). Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 337, 536-554.https://doi.org/10.1016/j.geoderma.2018.09.034 Fang, F., Li, Y., Yuan, D., Zheng, Q., Ding, J., Xu, C., Lin, W., & Li, Y. (2021). Distinguishing N2O and N2 ratio and their microbial source in soil fertilized for vegetable production using a stable isotope method. Science of The Total Environment, 801, 149694.https://doi.org/10.1016/j.scitotenv.2021.149694 Feng, Q., Wang, B., Zimmerman, A. R., Wu, P., Lee, X., Chen, M., & Zhang, J. (2024). Application of C and N isotopes to the study of biochar biogeochemical behavior in soil: A review. Earth-Science Reviews, 104860. Fogel, M. L., & Cifuentes, L. A. (1993). Isotope fractionation during primary production. In Organic geochemistry: principles and applications (pp. 73-98). Boston, MA: Springer US. Ganetri, I., Essamlali, Y., Amadine, O., Danoun, K., Aboulhrouz, S., & Zahouily, M. (2021). Controlling factors of slow or controlled-release fertilizers. In Controlled release fertilizers for sustainable agriculture (pp. 111-129). Academic Press. Gao, Y., Fang, Z., Van Zwieten, L., Bolan, N., Dong, D., Quin, B. F., ... & Chen, W. (2022). A critical review of biochar-based nitrogen fertilizers and their effects on crop production and the environment. Biochar, 4(1), 36. Gentry, L. E., David, M. B., Below, F. E., Royer, T. V., & McIsaac, G. F. (2009). Nitrogen mass balance of a tile‐drained agricultural watershed in east‐central Illinois. Journal of environmental quality, 38(5), 1841-1847. Ghafoor, I., Habib-ur-Rahman, M., Ali, M., Afzal, M., Ahmed, W., Gaiser, T., & Ghaffar, A. (2021). Slow-release nitrogen fertilizers enhance growth, yield, NUE in wheat crop and reduce nitrogen losses under an arid environment. Environmental Science and Pollution Research, 28(32), 43528-43543. Ghumman, A. S. M., Shamsuddin, R., Nasef, M. M., Yahya, W. Z. N., Abbasi, A., & Almohamadi, H. (2022). Sulfur enriched slow-release coated urea produced from inverse vulcanized copolymer. Science of The Total Environment, 846, 157417. Girard, P., & Hillaire-Marcel, C. (1997). Determining the source of nitrate pollution in the Niger discontinuous aquifers using the natural 15N14N ratios. Journal of Hydrology, 199(3-4), 239-251. Gormly, J. R., & Spalding, R. F. (1979). Sources and Concentrations of Nitrate‐Nitrogen in Ground Water of the Central Platte Region, Nebraska a. Groundwater, 17(3), 291-301. Grafton, R. Q., Daugbjerg, C., & Qureshi, M. E. (2015). Towards food security by 2050. Food Security, 7, 179-183. Gul, S., & Whalen, J. K. (2016). Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biology and Biochemistry, 103, 1-15. Guo, C., Ren, T., Li, P., Wang, B., Zou, J., Hussain, S., ... & Li, X. (2019). Producing more grain yield of rice with less ammonia volatilization and greenhouse gases emission using slow/controlled-release urea. Environmental Science and Pollution Research, 26, 2569-2579. Hanrahan, B. R., Tank, J. L., Dee, M. M., Trentman, M. T., Berg, E. M., & McMillan, S. K. (2018). Restored floodplains enhance denitrification compared to naturalized floodplains in agricultural streams. Biogeochemistry, 141, 419-437. Hartemink, A. E., & Barrow, N. J. (2023). Soil pH-nutrient relationships: the diagram. Plant and Soil, 486(1), 209-215. He, T., Yuan, J., Luo, J., Wang, W., Fan, J., Liu, D., & Ding, W. (2019). Organic fertilizers have divergent effects on soil N2O emissions. Biology and Fertility of Soils, 55, 685-699. Högberg, P. (1997). Tansley review no. 95 15N natural abundance in soil–plant systems. The New Phytologist, 137(2), 179-203. Hong, J., Chen, T. T., Hu, L., Yang, J., Hu, P., & Wang, S. Y. (2015). Purification and characterization of a novel lectin from Chinese leek seeds. Journal of agricultural and food chemistry, 63(5), 1488-1495. Houlton, B. Z., Almaraz, M., Aneja, V., Austin, A. T., Bai, E., Cassman, K. G., ... & Zhang, X. (2019). A world of cobenefits: solving the global nitrogen challenge. Earth's future, 7(8), 865-872. Hsu, C. M., & Lai, H. Y. (2022). Comprehensive Assessment of the Influence of Applying Two Kinds of Chicken-Manure-Processed Organic Fertilizers on Soil Properties, Mineralization of Nitrogen, and Yields of Three Crops. Agronomy, 12(10), 2355. Hu, Y., Fernández, V., & Ma, L. (2014). Nitrate transporters in leaves and their potential roles in foliar uptake of nitrogen dioxide. Frontiers in Plant Science, 5, 360. Huang, Y. Z., Lee, Y. Y., & Fan, C. (2025). Innovative fertilization strategies for in-situ pollution control and carbon negativity enhancement in agriculture. Agricultural Water Management, 307, 109270. IFA. (2023). International Fertilizer Industry Association (IFA) Annual Report 2023. Accessed May 20, 2024. Inácio, C. T., Chalk, P. M., & Magalhães, A. M. (2015). Principles and limitations of stable isotopes in differentiating organic and conventional foodstuffs: 1. Plant products. Critical reviews in food science and nutrition, 55(9), 1206-1218. Jain, C. K., & Singh, S. (2019). Best management practices for agricultural nonpoint source pollution: Policy interventions and way forward. World Water Policy, 5(2), 207-228. Ji, C., Tao, E., Cheng, Y., Yang, S., Chen, L., Wang, D., ... & Li, Y. (2024). Preparation of Mn modified waste dander biochar and its effect on soil carbon sequestration. Environmental Research, 247, 118147. Ji, L., Wu, Z., You, Z., Yi, X., Ni, K., Guo, S., & Ruan, J. (2018). Effects of organic substitution for synthetic N fertilizer on soil bacterial diversity and community composition: A 10-year field trial in a tea plantation. Agriculture, Ecosystems & Environment, 268, 124-132. Jia, L. E., Sheng, L. I. U., Duan, X. M., Zhang, C., Wu, Z. H., Liu, M. C., ... & Wang, L. B. (2017). 6-Benzylaminopurine treatment maintains the quality of Chinese chive (Allium tuberosum Rottler ex Spreng.) by enhancing antioxidant enzyme activity. Journal of integrative agriculture, 16(9), 1968-1977. Jia, Y., Hu, Z., Ba, Y., & Qi, W. (2021). Application of biochar-coated urea controlled loss of fertilizer nitrogen and increased nitrogen use efficiency. Chemical and Biological Technologies in Agriculture, 8, 1-11. Kalu, S., Seppänen, A., Mganga, K. Z., Sietiö, O. M., Glaser, B., & Karhu, K. (2024). Biochar reduced the mineralization of native and added soil organic carbon: evidence of negative priming and enhanced microbial carbon use efficiency. Biochar, 6(1), 7. Kellman, L. M., & Hillaire-Marcel, C. (2003). Evaluation of nitrogen isotopes as indicators of nitrate contamination sources in an agricultural watershed. Agriculture, ecosystems & environment, 95(1), 87-102. Kendall, C. (1998). Tracing nitrogen sources and cycling in catchments. In Isotope tracers in catchment hydrology (pp. 519-576). Elsevier. Kendall, C., & McDonnell, J. J. (Eds.). (2012). Isotope tracers in catchment hydrology. Elsevier. Klimczyk, M., Siczek, A., & Schimmelpfennig, L. (2021). Improving the efficiency of urea-based fertilization leading to reduction in ammonia emission. Science of the Total Environment, 771, 145483. Kong, L., Y. Xie, L. Hu, J. Si, and Z. Wang. 2017. “Excessive Nitrogen Application Dampens Antioxidant Capacity and Grain Filling in Wheat as Revealed by Metabolic and Physiological Analyses.” Scientific Reports 7 (1): 43363. Koga, N. (2013). Nitrous oxide emissions under a four-year crop rotation system in northern Japan: impacts of reduced tillage, composted cattle manure application and increased plant residue input. Soil Science and Plant Nutrition, 59(1), 56-68. Kreitler, C. W. (1979). Nitrogen-isotope ratio studies of soils and groundwater nitrate from alluvial fan aquifers in Texas. Journal of Hydrology, 42(1-2), 147-170. Kreitler, C. W., & Jones, D. C. (1975). Natural Soil Nitrate: The Cause of the Nitrate Contamination of Ground Water in Runnels County, Texas a. Groundwater, 13(1), 53-62. Kumar, R., & Bordoloi, N. (2024). Role of Slow-Release Fertilizers and Nitrification Inhibitors in Greenhouse Gas Nitrous Oxide (N2O) Emission Reduction from Rice-Wheat Agroecosystem. Agricultural Greenhouse Gas Emissions: Problems and Solutions, 245-259. Kusumastuti, Y., Istiani, A., Rochmadi, & Purnomo, C. W. (2019). Chitosan‐based Polyion multilayer coating on NPK fertilizer as controlled released fertilizer. Advances in Materials Science and Engineering, 2019(1), 2958021. Lal, R. (2015). Restoring soil quality to mitigate soil degradation. Sustainability, 7(5), 5875-5895. Lavu, R. V. S., Du Laing, G., Van De Wiele, T., Pratti, V. L., Willekens, K., Vandecasteele, B., & Tack, F. (2012). Fertilizing soil with selenium fertilizers: impact on concentration, speciation, and bioaccessibility of selenium in leek (Allium ampeloprasum). Journal of agricultural and food chemistry, 60(44), 10930-10935. Lawrencia, D., Wong, S. K., Low, D. Y. S., Goh, B. H., Goh, J. K., Ruktanonchai, U. R., ... & Tang, S. Y. (2021). Controlled release fertilizers: A review on coating materials and mechanism of release. Plants, 10(2), 238. Lee, X., Yang, F., Xing, Y., Huang, Y., Xu, L., Liu, Z., ... & Zhou, H. (2022). Use of biochar to manage soil salts and water: Effects and mechanisms. Catena, 211, 106018. Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar Effects on Soil Biota: A Review. Soil Bi-ology and Biochemistry, 43, 1812-1836. Lehnert, N., Dong, H. T., Harland, J. B., Hunt, A. P., & White, C. J. (2018). Reversing nitrogen fixation. Nature Reviews Chemistry, 2(10), 278-289. Leroy, M. C., Portet-Koltalo, F., Legras, M., Lederf, F., Moncond'Huy, V., Polaert, I., & Marcotte, S. (2016). Performance of vegetated swales for improving road runoff quality in a moderate traffic urban area. Science of the Total Environment, 566, 113-121. Li, C., Yan, K., Tang, L., Jia, Z., & Li, Y. (2014). Change in deep soil microbial communities due to long-term fertilization. Soil Biology and Biochemistry, 75, 264-272. Li, R., Ren, C., Wu, L., Zhang, X., Mao, X., Fan, Z., ... & Shu, D. (2023). Fertilizing-induced alterations of microbial functional profiles in soil nitrogen cycling closely associate with crop yield. Environmental research, 231, 116194. Li, Y., Zheng, Q., Yang, R., Zhuang, S., Lin, W., & Li, Y. (2021). Evaluating microbial role in reducing N2O emission by dual isotopocule mapping following substitution of inorganic fertilizer for organic fertilizer. Journal of Cleaner Production, 326, 129442. Li, Z., Wen, X., Hu, C., Li, X., Li, S., Zhang, X., & Hu, B. (2020). Regional simulation of nitrate leaching potential from winter wheat-summer maize rotation croplands on the North China Plain using the NLEAP-GIS model. Agriculture, Ecosystems & Environment, 294, 106861. Liao, X., Müller, C., Jansen-Willems, A., Luo, J., Lindsey, S., Liu, D., ... & Ding, W. (2021). Field-aged biochar decreased N2O emissions by reducing autotrophic nitrification in a sandy loam soil. Biology and Fertility of Soils, 57, 471-483. Lim, T. K. (2012). Edible medicinal and non-medicinal plants (Vol. 1, pp. 285-292). Dordrecht, The Netherlands: Springer. Lin, W., Ding, J., Li, Y., Zhang, W., Ahmad, R., Xu, C., ... & Li, Q. (2019). Partitioning of sources of N2O from soil treated with different types of fertilizers by the acetylene inhibition method and stable isotope analysis. European Journal of Soil Science, 70(5), 1037-1048. Liu, M., Song, F., Yin, Z., Chen, P., Zhang, Z., Qi, Z., ... & Zheng, E. (2022). Effects of reduced Nitrogen Fertilizer Rates on its fate in Maize Fields in Mollisols in Northeast China: a 15N tracing study. Agronomy, 12(12), 3030. Liu, N., Zhou, J., Han, L., Ma, S., Sun, X., & Huang, G. (2017). Role and multi-scale characterization of bamboo biochar during poultry manure aerobic composting. Bioresource Technology, 241, 190-199. Liu, S., Lin, F., Wu, S., Ji, C., Sun, Y. I., Jin, Y., ... & Zou, J. (2017). A meta‐analysis of fertilizer‐induced soil NO and combined NO+N2O emissions. Global Change Biology, 23(6), 2520-2532. Liu, X., Ju, X., Zhang, F., Pan, J., & Christie, P. (2003). Nitrogen dynamics and budgets in a winter wheat–maize cropping system in the North China Plain. Field Crops Research, 83(2), 111-124. Lu, J., Cheng, M., Zhao, C., Li, B., Peng, H., Zhang, Y., ... & Hassan, M. (2022). Application of lignin in preparation of slow-release fertilizer: Current status and future perspectives. Industrial Crops and Products, 176, 114267. Ma, H., Jia, X., Chen, W., Yang, J., Liu, J., Zhang, X., ... & Yan, W. (2025). Impact of warming and nitrogen addition on soil greenhouse gas fluxes: A global perspective. Journal of Environmental Sciences, 151, 88-99. Mahmud, K., Panday, D., Mergoum, A., & Missaoui, A. (2021). Nitrogen losses and potential mitigation strategies for a sustainable agroecosystem. Sustainability, 13(4), 2400. Mariotti, A., Pierre, D., Vedy, J. C., Bruckert, S., & Guillemot, J. (1980). The abundance of natural nitrogen 15 in the organic matter of soils along an altitudinal gradient (Chablais, Haute Savoie, France). Catena, 7(1), 293-300. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., ... & Zhou, B. (2021). Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2(1), 2391. ME Trenkel, T. (2021). Slow-and controlled-release and Stabilized Fertilizers: an option for enhancing nutrient use effiiency in agriculture. International Fertilizer Industry Association (IFA). Mei, H., Nie, J., Pan, M., Rogers, K. M., Guo, Z., Li, C., ... & Yuan, Y. (2024). Geographical origin identification of Pujiang Kyoho grapes in China using stable isotope and elemental profiles. Food Control, 162, 110454. Menegat, S., Ledo, A., & Tirado, R. (2022). Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Scientific Reports, 12(1), 1-13. Moon, G. S., Ryu, B. M., & Lee, M. J. (2003). Components and antioxidative activities of buchu (Chinese chives) harvested at different times. Korean Journal of Food Science and Technology, 35(3), 493-498. Moridi, A., Zarei, M., Moosavi, A. A., & Ronaghi, A. (2021). Effect of liquid organic fertilizers and soil moisture status on some biological and physical properties of soil. Polish Journal of Soil Science, 54(1), 41-58. Mu, X., Chen, Q., Chen, F., Yuan, L., & Mi, G. (2016). Within-leaf nitrogen allocation in adaptation to low nitrogen supply in maize during grain-filling stage. Frontiers in plant science, 7, 699. Mukherjee, A., & Lal, R. (2013). Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy, 3(2), 313-339. Natelhoffer, K. J., & Fry, B. (1988). Controls on natural nitrogen‐15 and carbon‐13 abundances in forest soil organic matter. Soil Science Society of America Journal, 52(6), 1633-1640. Naz, M. Y., & Sulaiman, S. A. (2016). Slow release coating remedy for nitrogen loss from conventional urea: a review. Journal of Controlled Release, 225, 109-120. Nelissen, V., Saha, B. K., Ruysschaert, G., & Boeckx, P. (2014). Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biology and Biochemistry, 70, 244-255. Nikolenko, O., Jurado, A., Borges, A. V., Knӧller, K., & Brouyѐre, S. (2018). Isotopic composition of nitrogen species in groundwater under agricultural areas: a review. Science of the Total Environment, 621, 1415-1432. O'Brien, D. M. (2015). Stable isotope ratios as biomarkers of diet for health research. Annual review of nutrition, 35(1), 565-594. Pan, S. Y., He, K. H., & Liao, Y. L. (2023). Fertilization-induced reactive nitrogen gases and carbon dioxide emissions: insight to the carbon-nitrogen cycles. Sustainable Environment Research, 33(1), 23. Pan, S. Y., He, K. H., Lin, K. T., Fan, C., & Chang, C. T. (2022). Addressing nitrogenous gases from croplands toward low-emission agriculture. Npj Climate and Atmospheric Science, 5(1), 43. Pathak, H., Jain, N., Bhatia, A., Kumar, A., & Chatterjee, D. (2016). Improved nitrogen management: a key to climate change adaptation and mitigation. Indian J Fertil, 12(11), 151-162. Peng, L., Tao, L., Ma, S., Wang, X., Wang, R., Tu, Y., ... & Yan, X. (2022). 15N natural abundance characteristics of ammonia volatilization from soils applied by different types of fertilizer. Atmosphere, 13(10), 1566. Pitumpe Arachchige, P. S., Hettiarachchi, G. M., Rice, C. W., Dynes, J. J., Maurmann, L., Kilcoyne, A. D., & Attanayake, C. P. (2024). Direct evidence on the impact of organic amendments on carbon stabilization in soil microaggregates. Soil Science Society of America Journal. Puga, A. P., Grutzmacher, P., Cerri, C. E. P., Ribeirinho, V. S., & de Andrade, C. A. (2020). Biochar-based nitrogen fertilizers: Greenhouse gas emissions, use efficiency, and maize yield in tropical soils. Science of the Total Environment, 704, 135375. Rahman, M. H., Haque, K. S., & Khan, M. Z. H. (2021). A review on application of controlled released fertilizers influencing the sustainable agricultural production: A Cleaner production process. Environmental Technology & Innovation, 23, 101697. Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. science, 326(5949), 123-125. Rehrah, D., Bansode, R. R., Hassan, O., & Ahmedna, M. (2016). Physico-chemical characterization of biochars from solid municipal waste for use in soil amendment. Journal of analytical and applied pyrolysis, 118, 42-53. Richter, J., & Roelcke, M. (2000). The N-cycle as determined by intensive agriculture–examples from central Europe and China. Nutrient Cycling in Agroecosystems, 57, 33-46. Robinson, D. (2001). δ15N as an integrator of the nitrogen cycle. Trends in ecology & evolution, 16(3), 153-162. Rodriguez, A., & Sanders, I. R. (2015). The role of community and population ecology in applying mycorrhizal fungi for improved food security. The ISME journal, 9(5), 1053-1061. Ruser, R., H. Flessa, R. Schilling, F. Beese, and J. C. Munch. "Effect of crop-specific field management and N fertilization on N2O emissions from a fine-loamy soil." Nutrient Cycling in Agroecosystems, 59 (2001): 177-191. Saha, A., Saha, G. K., Cibin, R., Spiegal, S., Kleinman, P. J., Veith, T. L., ... & Tsegaye, T. (2023). Evaluating water quality benefits of manureshed management in the Susquehanna River Basin. Journal of Environmental Quality, Vol. 52, No. 2, pp. 328-340. Shah, F., & Wu, W. (2019). Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability, 11(5), 1485. Shakoor, A., Shahzad, S. M., Chatterjee, N., Arif, M. S., Farooq, T. H., Altaf, M. M., ... & Mehmood, T. (2021). Nitrous oxide emission from agricultural soils: Application of animal manure or biochar? A global meta-analysis. Journal of Environmental Management, 285, 112170. Shi, W., Ju, Y., Bian, R., Li, L., Joseph, S., Mitchell, D. R., ... & Pan, G. (2020). Biochar bound urea boosts plant growth and reduces nitrogen leaching. Science of the Total Environment, 701, 134424. Shoji, S., Delgado, J., Mosier, A., & Miura, Y. (2001). Use of controlled release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air andwater quality. Communications in Soil Science and Plant Analysis, 32(7-8), 1051-1070. Sinha, D., & Tandon, P. K. (2020). An overview of nitrogen, phosphorus and potassium: Key players of nutrition process in plants. Sustainable solutions for elemental deficiency and excess in crop plants, 85-117. Sivojienė, D., Masevičienė, A., Žičkienė, L., Ražukas, A., & Kačergius, A. (2024). Soil Microbial Community Structure and Carbon Stocks Following Fertilization with Organic Fertilizers and Biological Inputs. Biology, 13(7), 534. Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in agronomy, 105, 47-82. Sommer, S. G., & Hutchings, N. J. (2001). Ammonia emission from field applied manure and its reduction. European journal of agronomy, 15(1), 1-15. Staley, C., Breuillin-Sessoms, F., Wang, P., Kaiser, T., Venterea, R. T., & Sadowsky, M. J. (2018). Urea amendment decreases microbial diversity and selects for specific nitrifying strains in eight contrasting agricultural soils. Frontiers in Microbiology, 9, 634. Su, C., Jiang, J., Xie, X., Han, Z., Wang, M., Li, J., & Shi, H. (2023). Sources and cycling processes of nitrogen revealed by stable isotopes and hydrochemistry in a typical agricultural lake basin. Applied Geochemistry, 156, 105662. Sun, H., Zhou, S., Zhang, J., Zhang, X., & Wang, C. (2020). Effects of controlled-release fertilizer on rice grain yield, nitrogen use efficiency, and greenhouse gas emissions in a paddy field with straw incorporation. Field Crops Research, 253, 107814. Sun, J., Li, W., Li, C., Chang, W., Zhang, S., Zeng, Y., ... & Peng, M. (2020). Effect of different rates of nitrogen fertilization on crop yield, soil properties and leaf physiological attributes in banana under subtropical regions of China. Frontiers in Plant Science, 11, 613760. Tahmasebi Nasab, M., Grimm, K., Bazrkar, M. H., Zeng, L., Shabani, A., Zhang, X., & Chu, X. (2018). SWAT modeling of non-point source pollution in depression-dominated basins under varying hydroclimatic conditions. International Journal of Environmental Research and Public Health, 15(11), 2492. Tang, X., Olatunji, O. J., Zhou, Y., & Hou, X. (2017). Allium tuberosum: Antidiabetic and hepatoprotective activities. Food Research International, 102, 681-689. Thilakarathna, S. K., & Hernandez-Ramirez, G. (2021). Primings of soil organic matter and denitrification mediate the effects of moisture on nitrous oxide production. Soil Biology and Biochemistry, 155, 108166. Thomas, S. C., & Gale, N. (2015). Biochar and forest restoration: a review and meta-analysis of tree growth responses. New Forests, 46(5), 931-946. Tian, S., Zhu, B., Yin, R., Wang, M., Jiang, Y., Zhang, C., ... & Liu, M. (2022). Organic fertilization promotes crop productivity through changes in soil aggregation. Soil Biology and Biochemistry, 165, 108533. Trandel, M. A., Vigardt, A., Walters, S. A., Lefticariu, M., & Kinsel, M. (2018). Nitrogen isotope composition, nitrogen amount, and fruit yield of tomato plants affected by the soil–fertilizer types. ACS omega, 3(6), 6419-6426. Tufail, M. A., Ayyub, M., Tariq, L., Iltaf, J., Asbat, A., Bashir, I., & Umar, W. (2024). Nitrogen fertilizers and the future of sustainable agriculture: a deep dive into production, pollution, and mitigation measures. Soil Science and Plant Nutrition, 1-21. Turner, G. L., Bergersen, F. J., & Tantala, H. (1983). Natural enrichment of 15N during decomposition of plant material in soil. Uzoh, C. F., Onukwuli, O. D., Ozofor, I. H., & Odera, R. S. (2019). Encapsulation of urea with alkyd resin-starch membranes for controlled N2 release: Synthesis, characterization, morphology and optimum N2 release. Process Safety and Environmental Protection, 121, 133-142. Wan, X., Wu, W., & Shah, F. (2021). Nitrogen fertilizer management for mitigating ammonia emission and increasing nitrogen use efficiencies by 15N stable isotopes in winter wheat. Science of the Total Environment, 790, 147587. Wang, C., Lv, J., Xie, J., Yu, J., Li, J., Zhang, J., ... & Patience, B. E. (2021). Effect of slow-release fertilizer on soil fertility and growth and quality of wintering Chinese chives (Allium tuberm Rottler ex Spreng.) in greenhouses. Scientific Reports, 11(1), 8070. Wang, M., Jiang, T., Mao, Y., Wang, F., Yu, J., & Zhu, C. (2023). Current situation of agricultural non-point source pollution and its control. Water, Air, & Soil Pollution, 234(7), 471. Wang, S., Luo, S., Yue, S., Shen, Y., & Li, S. (2016). Fate of 15 N fertilizer under different nitrogen split applications to plastic mulched maize in semiarid farmland. Nutrient cycling in agroecosystems, 105, 129-140. Wang, Y., Ying, H., Yin, Y., Zheng, H., & Cui, Z. (2019). Estimating soil nitrate leaching of nitrogen fertilizer from global meta-analysis. Science of the Total Environment, 657, 96-102. Wang, Y., Zhu, G., Song, L., Wang, S., & Yin, C. (2014). Manure fertilization alters the population of ammonia‐oxidizing bacteria rather than ammonia‐oxidizing archaea in a paddy soil. Journal of basic microbiology, 54(3), 190-197. Wang, Z., Liu, J., Hamoud, Y. A., Wang, Y., Qiu, R., Agathokleous, E., ... & Shaghaleh, H. (2022). Natural 15N abundance as an indicator of nitrogen utilization efficiency in rice under alternate wetting and drying irrigation in soils with high clay contents. Science of The Total Environment, 838, 156528. Wangari, E. G., Mwanake, R. M., Houska, T., Kraus, D., Kikowatz, H. M., Wolf, B., ... & Butterbach-Bahl, K. (2024). Spatial-temporal patterns of foliar and bulk soil 15N isotopic signatures across a heterogeneous landscape: Linkages to soil N status, nitrate leaching, and N2O fluxes. Soil Biology and Biochemistry, 199, 109609. Wei, M., Hu, G., Wang, H., Bai, E., Lou, Y., Zhang, A., & Zhuge, Y. (2017). 35 years of manure and chemical fertilizer application alters soil microbial community composition in a Fluvo-aquic soil in Northern China. European Journal of Soil Biology, 82, 27-34. Wen, Y. C., Li, H. Y., Lin, Z. A., Zhao, B. Q., Sun, Z. B., Yuan, L., ... & Li, Y. Q. (2020). Long-term fertilization alters soil properties and fungal community composition in fluvo-aquic soil of the North China Plain. Scientific Reports, 10(1), 7198. Wu, H., Lai, C., Zeng, G., Liang, J., Chen, J., Xu, J., ... & Wan, J. (2017). The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review. Critical reviews in biotechnology, 37(6), 754-764. Wu, M., Tang, X., Li, Q., Yang, W., Jin, F., Tang, M., & Scholz, M. (2013). Review of ecological engineering solutions for rural non-point source water pollution control in Hubei Province, China. Water, Air, & Soil Pollution, 224, 1-18. Xia, Y., Zhang, M., Tsang, D. C., Geng, N., Lu, D., Zhu, L., ... & Ok, Y. S. (2020). Recent advances in control technologies for non-point source pollution with nitrogen and phosphorous from agricultural runoff: current practices and future prospects. Applied Biological Chemistry, 63, 1-13. Xiang, Y., Liu, Y., Niazi, N. K., Bolan, N., Zhao, L., Zhang, S., ... & Li, Y. (2023). Biochar addition increased soil bacterial diversity and richness: Large-scale evidence of field experiments. Science of the Total Environment, 893, 164961. Xie, S., Yang, F., Feng, H., Yu, Z., Liu, C., Wei, C., & Liang, T. (2021). Organic fertilizer reduced carbon and nitrogen in runoff and buffered soil acidification in tea plantations: Evidence in nutrient contents and isotope fractionations. Science of the total environment, 762, 143059. Xiong, W., Guo, S., Jousset, A., Zhao, Q., Wu, H., Li, R., ... & Shen, Q. (2017). Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome. Soil Biology and Biochemistry, 114, 238-247. Xu, W., Wang, G., Deng, F., Zou, X., Ruan, H., & Chen, H. Y. H. (2018). Responses of soil microbial biomass, diversity and metabolic activity to biochar applications in managed poplar plantations on reclaimed coastal saline soil. Soil Use and Management, 34(4), 597-605. Yang, G., Kang, J., Wang, Y., Zhao, X., & Wang, S. (2024). Environmental transport of excess nitrogen fertilizer in peach orchard: Evidence arising from 15N tracing trial. Agriculture, Ecosystems & Environment, 370, 109066. Yang, G., Wang, Y., Wang, S., & Zhao, X. (2023). Legume cover with optimal nitrogen management and nitrification inhibitor enhanced net ecosystem economic benefits of peach orchard. Science of the Total Environment, 873, 162141. Yang, H. C., Kan, C. C., Hung, T. H., Hsieh, P. H., Wang, S. Y., Hsieh, W. Y., & Hsieh, M. H. (2017). Identification of early ammonium nitrate-responsive genes in rice roots. Scientific reports, 7(1), 16885. Yang, Q., Liu, P., Dong, S., Zhang, J., & Zhao, B. (2020). Combined application of organic and inorganic fertilizers mitigates ammonia and nitrous oxide emissions in a maize field. Nutrient Cycling in Agroecosystems, 117(1), 13-27. Yang, T., Li, F., Zhou, X., Xu, C., Feng, J., & Fang, F. (2019). Impact of nitrogen fertilizer, greenhouse, and crop species on yield-scaled nitrous oxide emission from vegetable crops: A meta-analysis. Ecological Indicators, 105, 717-726. Yang, Y., Sun, K., Han, L., Chen, Y., Liu, J., & Xing, B. (2022). Biochar stability and impact on soil organic carbon mineralization depend on biochar processing, aging and soil clay content. Soil Biology and Biochemistry, 169, 108657. Ye, Z., Liu, L., Tan, Z., Zhang, L., & Huang, Q. (2020). Effects of pyrolysis conditions on migration and distribution of biochar nitrogen in the soil-plant-atmosphere system. Science of The Total Environment, 723, 138006. Yoneyama, T. (1996). Characterization of natural 15N abundance of soils. Yu, X., & Li, B. (2019). Release mechanism of a novel slow-release nitrogen fertilizer. Particuology, 45, 124-130. Yuan, Y., Zhao, M., Zhang, Z., Chen, T., Yang, G., & Wang, Q. (2012). Effect of different fertilizers on nitrogen isotope composition and nitrate content of Brassica campestris. Journal of agricultural and food Chemistry, 60(6), 1456-1460. Zhang, M., Hou, R., Li, T., Fu, Q., Zhang, S., Su, A., ... & Yang, X. (2022). Study of soil nitrogen cycling processes based on the 15N isotope tracking technique in the black soil areas. Journal of Cleaner Production, 375, 134173. Zhang, Y., Li, F., Zhang, Q., Li, J., & Liu, Q. (2014). Tracing nitrate pollution sources and transformation in surface-and ground-waters using environmental isotopes. Science of the Total Environment, 490, 213-222. Zhang, X., Davidson, E. A., Mauzerall, D. L., Searchinger, T. D., Dumas, P., & Shen, Y. (2015). Managing nitrogen for sustainable development. Nature, 528(7580), 51-59. Zhao, Y., Lu, Y., Zhuang, H., & Shan, S. (2023). In-situ retention of nitrogen, phosphorus in agricultural drainage and soil nutrients by biochar at different temperatures and the effects on soil microbial response. Science of the Total Environment, 904, 166292. Zhu, J. G., Han, Y., Liu, G., Zhang, Y. L., & Shao, X. H. (2000). Nitrogen in percolation water in paddy fields with a rice/wheat rotation. Nutrient Cycling in Agroecosystems, 57, 75-82. Zhu, X., Chen, B., Zhu, L., & Xing, B. (2017). Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environmental pollution, 227, 98-115. Zubair, M., Ihsanullah, I., Aziz, H. A., Ahmad, M. A., & Al-Harthi, M. A. (2021). Sustainable wastewater treatment by biochar/layered double hydroxide composites: Progress, challenges, and outlook. Bioresource technology, 319, 124128. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99624 | - |
| dc.description.abstract | 氮素作為植物生長不可或缺的營養元素,其在農業生產中廣泛施用。然而,隨著全球糧食需求上升與化學肥料與有機肥料大量使用,氮營養鹽於農業系統中的動態與宿命日益受到關注。過量施肥造成氮素利用效率低,進而導致地表水與地下水污染、溫室氣體排放及生態失衡,對環境與人類健康皆構成潛在威脅。儘管如此,氮素在農田中經由作物吸收、土壤吸附轉化、水體流失與氣體逸散等複雜過程,迄今仍缺乏一套系統性和可量化的分析工具以整體評估農業系統中氮的移動和累積。
本研究旨在應用穩定同位素追蹤技術(15N)和營養鹽質量平衡模式,深入解析不同施肥策略下氮素於農業系統中土壤-水體-作物-氣體介面間的流布與累積行為。田間試驗在地點選於臺灣桃園市大溪區一處面積600平方公尺的露天韭菜(Allium tuberosum)農田,進行系統性田間試驗。種植韭菜的常規施肥做法遵循臺灣良好農業規範(TGAP)中的建議,試驗設計涵蓋四類肥料(化學肥料(CF)、有機肥料(OF)、緩效性肥料(SF)與雞糞粒肥(CM))與三種施用量(過量施肥150%、全量施肥100%、半量施肥50%),並探討生物炭添加對氮素流布之調節效果。 研究結果顯示,作物吸收為氮素主要去向,約佔總施肥量之50 ~ 60%,其中以施用緩效性肥料與雞糞粒肥結合生物炭的組別表現最佳。在氮素損失方面,施用化學肥料組別之氮流失量最高,其後依序為施用有機肥組別、施用雞糞粒肥組別與施用緩效性肥料組別。氮素流失形式以地表逕流與垂直入滲為主,而緩效性肥料與有機肥料組別具顯著減緩氮素向水體遷移,提升氮肥利用效率。氣體通量分析結果亦指出,相較於施用化學肥料,施用有機與雞糞粒肥的組別,其N2O與NH3排放量較低,具有潛在減碳效益。 穩定同位素δ15N值分析進一步驗證氮源辨識與累積特性,雞糞粒肥處理組別於作物、土壤與水體中δ15N值(平均約10.3‰)明顯高於化學肥料組別(約4.6‰)與有機肥(約7.2‰),展現15N追蹤技術於肥料來源鑑別與氮素累積判釋之高效性。透過營養鹽質量收支平衡模式,本研究定量評估氮素流向比例,結果顯示緩效性肥料超過65%的氮被有效保留於作物與土壤中,而化學肥料則有近40%的氮以水體與氣體形式逸失。生物炭施用則有助於減少土壤中總氮流失。 本研究應用多層次農業氮素動態分析方法,整合15N穩定同位素示蹤、氮源辨識、流布量化與損失評估之成果,未來可作為農業施肥管理、水質保育與農業碳足跡核算之科學工具。研究成果對精準施肥策略的制定、農田氮素利用效率提升、環境污染降低與永續農業發展具高度參考價值,並有助於推動臺灣農業邁向科學化管理與環境友善之目標。 | zh_TW |
| dc.description.abstract | Nitrogen is an essential nutrient for plant growth and is widely applied in agricultural production. However, with the rising global demand for food and the extensive use of chemical and organic fertilizers, increasing attention has been paid to the dynamics and fate of nitrogen nutrients within agricultural systems. Excessive fertilization leads to low nitrogen use efficiency, resulting in surface and groundwater pollution, greenhouse gas emissions, and ecological imbalances, all posing potential threats to the environment and human health. Despite this, the complex processes involving crop uptake, transformation and adsorption in soil, loss through water pathways, and gaseous emissions still lack a systematic and quantifiable analytical framework to assess nitrogen mobility and accumulation in agricultural systems comprehensively.
This study aimed to apply stable isotope tracing technology (15N) and nutrient mass balance modeling to investigate nitrogen distribution and accumulation behavior at the soil–water–crop–gas interface under different fertilization strategies. Field experiments were conducted in an open leek (Allium tuberosum) field covering 600 square meters in Daxi District, Taoyuan City, Taiwan. The fertilization practices followed the guidelines of the Taiwan Good Agricultural Practice (TGAP). The experimental framework was designed to include four distinct fertilizer types of chemical fertilizer (CF), organic fertilizer (OF), slow-release fertilizer (SF), and pelletized chicken manure (CM). Each fertilizer was applied at three different rates of 150% (excessive), 100% (recommended), and 50% (reduced) to assess dosage effects. Additionally, the study systematically investigated the regulatory role of biochar amendment in influencing nitrogen dynamics, including its distribution, transformation, and retention within the soil–plant–water continuum. The results indicated that crop uptake was the primary nitrogen sink, accounting for approximately 50 ~ 60% of the total nitrogen applied, with the best performance observed in treatments combining slow-release fertilizer or chicken manure with biochar. Regarding nitrogen losses, the chemical fertilizer treatments showed the highest loss rates, followed by organic fertilizer, chicken manure, and slow-release fertilizer treatments. Nitrogen losses occurred mainly via surface runoff and vertical leaching. Using slow-release and organic fertilizers significantly reduced nitrogen transport to water bodies and improved nitrogen use efficiency. Gas flux analysis revealed that treatments using organic and chicken manure fertilizers emitted less N2O and NH3 compared to chemical fertilizers, indicating potential benefits for carbon reduction. The δ15N stable isotope analysis further confirmed nitrogen source identification and accumulation characteristics. The δ15N values in crops, soil, and water for the chicken manure treatments averaged around 10.3‰, significantly higher than those for chemical fertilizers (4.6‰) and organic fertilizers (7.2‰), demonstrating the effectiveness of 15N tracing in fertilizer source identification and nitrogen accumulation interpretation. This study quantitatively assessed nitrogen flow proportions using a nutrient mass balance model. Results showed that over 65% of nitrogen from slow-release fertilizers was effectively retained in crops and soil. In comparison, nearly 40% of nitrogen from chemical fertilizers was lost via water and gas pathways. Biochar application was found to reduce total nitrogen losses from soil. This study presents a multilayered approach to analyzing agricultural nitrogen dynamics by integrating 15N stable isotope tracing, nitrogen source identification, distribution quantification, and loss evaluation. The findings provide a scientific basis for guiding fertilizer management, protecting water quality, and calculating the agricultural carbon footprint. The results offer high reference value for developing precision fertilization strategies, improving nitrogen use efficiency, mitigating environmental pollution, and promoting sustainable agriculture, supporting the advancement of Taiwan's agricultural practices toward scientific management and ecological sustainability. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:10:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:10:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員會審定書 i
誌謝 ii 摘要 iv Abstract vi 目次 x 圖次 xiv 表次 xix 第一章 前言 1 1.1 研究背景 1 1.2 研究目的 5 1.3 論文架構 6 第二章 文獻回顧 8 2.1 韭菜簡介 8 2.2 肥料種類簡介 9 2.2.1 化學肥料 9 2.2.2 有機肥料 10 2.2.3 緩效性肥料 11 2.2.4 雞糞粒肥 13 2.3 生物炭簡介 13 2.3.1 生物炭的性質與特徵 13 2.3.2 生物炭在環境污染削減應用 14 2.4 農業環境中氮營養鹽的流佈與宿命 15 2.5 穩定同位素原理與應用 17 2.5.1 同位素基本原理 17 2.5.2 同位素分化與分餾 19 2.6 氮同位素 21 2.6.1 氮循環對氮同位素組成之影響 22 2.6.2 肥料氮同位素組成 23 第三章 研究內容與方法 25 3.1 研究內容 25 3.2 現地試驗流程與條件 27 3.3 土壤樣本採樣與分析 35 3.4 水體樣本採樣與分析 36 3.5 氣體樣本採樣與分析 38 3.6 植體樣本分析與產量統計 40 3.7 同位素樣本採集與分析 41 3.7.1 肥料、土壤、植體和水體氮同位素分析前處理 41 3.7.2 肥料、土壤、植體和水體氮同位素分析 41 3.8 營養鹽收支平衡計算方法 43 第四章 結果與討論 45 4.1 現地試驗農田土壤基本性質調查 45 4.1.1 土壤質地 45 4.1.2 土壤總體密度及孔隙率 47 4.1.3 土壤有機質含量 52 4.1.4 土壤陽離子交換容量 54 4.2 現地試驗農田土壤pH值、EC值和總氮含量變化 56 4.2.1 土壤pH值變化 56 4.2.2 土壤EC值變化 64 4.2.3 土壤總氮含量變化 66 4.3 現地試驗農田逕流水與入滲水溫度、pH值和EC值變化 72 4.3.1 逕流水與入滲水溫度變化 72 4.3.2 逕流水與入滲水pH值變化 82 4.3.3 逕流水與入滲水EC值變化 83 4.4 地表逕流與入滲水中氮肥流失量之變化 86 4.4.1 施用化學肥料對逕流水與入滲水中氮肥流失量變化 86 4.4.2 施用有機肥料對逕流水與入滲水中氮肥流失量變化 90 4.4.3 施用緩效性肥料對逕流水與入滲水中氮肥流失量變化 94 4.4.4 施用雞糞粒肥對逕流水與入滲水中氮肥流失量變化 98 4.5 NH3和N2O排放通量與排放強度 102 4.5.1 NH3和N2O排放通量 102 4.5.2 NH3和N2O排放強度 109 4.6 韭菜生產總量和氮吸收總量 117 4.6.1 韭菜生產總量 117 4.6.2 韭菜氮吸收總量 121 4.7 氮同位素組成分析 125 4.7.1 各類肥料氮同位素組成特徵 125 4.7.2 土壤中δ15N值之變化 127 4.7.3 逕流水δ15N值之變化 136 4.7.4 入滲水δ15N值之變化 144 4.7.5 氣體中δ15N值之變化 152 4.7.6 植體中δ15N值之變化 161 4.8 氮質量收支平衡結果 165 4.8.1 化學肥料於農業系統中之分布 165 4.8.2 有機肥料於農業系統中之分布 174 4.8.3 緩效性肥料於農業系統中之分布 183 4.8.4 雞糞粒肥於農業系統中之分布 192 第五章 結論與建議 202 5.1 結論 202 5.2 建議 205 參考文獻 206 附錄A 口試委員意見回覆對照表 附錄-1 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 營養鹽氮循環 | zh_TW |
| dc.subject | 農業系統 | zh_TW |
| dc.subject | 15N同位素 | zh_TW |
| dc.subject | 韭菜 | zh_TW |
| dc.subject | 流布 | zh_TW |
| dc.subject | 肥料 | zh_TW |
| dc.subject | 15N isotope | en |
| dc.subject | Nutrient nitrogen cycling | en |
| dc.subject | fertilizer | en |
| dc.subject | Chinese leek | en |
| dc.subject | Agricultural system | en |
| dc.title | 應用穩定同位素技術研析氮營養鹽於韭菜田中的分佈與遷移途徑 | zh_TW |
| dc.title | Application of stable isotope analysis to explore the distribution and migration pathways of nitrogen nutrients in Allium tuberosum fields | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 劉振宇;彭宗仁;施養信;莊愷瑋;潘述元;許心蘭 | zh_TW |
| dc.contributor.oralexamcommittee | Chen-Wuing Liu;Tsung-Ren Peng;Yang-hsin Shih;Kai-Wei Juang;Shu-Yuan Pan;Hsin-Lan Hsu | en |
| dc.subject.keyword | 營養鹽氮循環,農業系統,15N同位素,韭菜,流布,肥料, | zh_TW |
| dc.subject.keyword | Nutrient nitrogen cycling,Agricultural system,15N isotope,Chinese leek,fertilizer, | en |
| dc.relation.page | 247 | - |
| dc.identifier.doi | 10.6342/NTU202503614 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物環境系統工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 7.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
