請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99623完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林維怡 | zh_TW |
| dc.contributor.advisor | Wei-Yi Lin | en |
| dc.contributor.author | 古婕渝 | zh_TW |
| dc.contributor.author | Chieh-Yu Ku | en |
| dc.date.accessioned | 2025-09-17T16:10:27Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-11 | - |
| dc.identifier.citation | 楊欣妮 (2023). 利用促進植物生長細菌提升水稻生長及抵抗褐飛蝨的侵害. 國立臺灣大學農藝學系學位論文, 1-75.
Abadía, J., Vázquez, S., Rellán-Álvarez, R., El-Jendoubi, H., Abadía, A., Álvarez-Fernández, A., and López-Millán, A. F. (2011). Towards a knowledge-based correction of iron chlorosis. Plant Physiology and Biochemistry 49, 471-482. Ali, Q., Yu, C., Wang, Y., Sheng, T., Zhao, X., Wu, X., Jing, L., Gu, Q., Wu, H., and Gao, X. (2023). High killing rate of nematode and promotion of rice growth by synthetic volatiles from Bacillus strains due to enhanced oxidative stress response. Physiologia Plantarum 175, e13868. Almeida, O. A. C., De Araujo, N. O., Mulato, A. T. N., Persinoti, G. F., Sforça, M. L., Calderan-Rodrigues, M. J., and Oliveira, J. V. d. C. (2023). Bacterial volatile organic compounds (VOCs) promote growth and induce metabolic changes in rice. Frontiers in Plant Science 13, 1056082. Arnon, D. I., and Stout, P. (1939). The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiology 14, 371. Bennett, M. J., Marchant, A., Green, H. G., May, S. T., Ward, S. P., Millner, P. A., Walker, A. R., Schulz, B., and Feldmann, K. A. (1996). Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273, 948-950. Biemelt, S., Tschiersch, H., and Sonnewald, U. (2004). Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiology 135, 254-265. Bitas, V., McCartney, N., Li, N., Demers, J., Kim, J.-E., Kim, H.-S., Brown, K. M., and Kang, S. (2015). Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling. Frontiers in Microbiology 6, 1248. Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254. Castulo-Rubio, D. Y., Alejandre-Ramírez, N. A., Orozco-Mosqueda, M. d. C., Santoyo, G., Macías-Rodríguez, L. I., and Valencia-Cantero, E. (2015). Volatile organic compounds produced by the rhizobacterium Arthrobacter agilis UMCV2 modulate Sorghum bicolor (strategy II plant) morphogenesis and SbFRO1 transcription in vitro. Journal of Plant Growth Regulation 34, 611-623. Chen, H., Xu, J., Shao, D., Zhao, C., Xu, X., Xu, X., and Chen, C. (2024a). Growth Promotion of Rice and Arabidopsis thaliana by Volatile Organic Compounds Produced by Endophytic Clonostachys Species. Journal of Fungi 10, 754. Chen, L.-H., Cheng, Z.-X., Xu, M., Yang, Z.-J., and Yang, L.-T. (2022). Effects of nitrogen deficiency on the metabolism of organic acids and amino acids in Oryza sativa. Plants 11, 2576. Chen, Y., Li, Y., Fu, Y., Jia, L., Li, L., Xu, Z., Zhang, N., Liu, Y., Fan, X., and Xuan, W. (2024b). The beneficial rhizobacterium Bacillus velezensis SQR9 regulates plant nitrogen uptake via an endogenous signaling pathway. Journal of Experimental Botany 75, 3388-3400. del Carmen Orozco-Mosqueda, M., Velázquez-Becerra, C., Macías-Rodríguez, L. I., Santoyo, G., Flores-Cortez, I., Alfaro-Cuevas, R., and Valencia-Cantero, E. (2013). Arthrobacter agilis UMCV2 induces iron acquisition in Medicago truncatula (strategy I plant) in vitro via dimethylhexadecylamine emission. Plant and Soil 362, 51-66. Delaplace, P., Delory, B. M., Baudson, C., Mendaluk-Saunier de Cazenave, M., Spaepen, S., Varin, S., Brostaux, Y., and du Jardin, P. (2015). Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv. BMC Plant Biology 15, 1-15. Desmedt, W., Kudjordjie, E. N., Chavan, S. N., Zhang, J., Li, R., Yang, B., Nicolaisen, M., Mori, M., Peters, R. J., and Vanholme, B. (2022). Rice diterpenoid phytoalexins are involved in defence against parasitic nematodes and shape rhizosphere nematode communities. New Phytologist 235, 1231-1245. Divte, P., Yadav, P., kumar Jain, P., Paul, S., and Singh, B. (2019). Ethylene regulation of root growth and phytosiderophore biosynthesis determines iron deficiency tolerance in wheat (Triticum spp). Environmental and Experimental Botany 162, 1-13. Do, P. T., De Tar, J. R., Lee, H., Folta, M. K., and Zhang, Z. J. (2016). Expression of ZmGA20ox cDNA alters plant morphology and increases biomass production of switchgrass (Panicum virgatum L.). Plant Biotechnology Journal 14, 1532-1540. Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J., and Arora, N. K. (2019). Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in Microbiology 10, 2791. Esitken, A., Yildiz, H. E., Ercisli, S., Donmez, M. F., Turan, M., and Gunes, A. (2010). Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Scientia Horticulturae 124, 62-66. Fincheira, P., and Quiroz, A. (2018). Microbial volatiles as plant growth inducers. Microbiological Research 208, 63-75. Geisseler, D., and Scow, K. M. (2014). Long-term effects of mineral fertilizers on soil microorganisms–A review. Soil Biology and Biochemistry 75, 54-63. Giehl, R. F., Lima, J. E., and von Wirén, N. (2012). Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution. The Plant Cell 24, 33-49. Gil-Jae, J. (2005). Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. Journal of Microbiology 43, 510-515. Goswami, D., Thakker, J. N., and Dhandhukia, P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food & Agriculture 2, 1127500. Gou, J., Ma, C., Kadmiel, M., Gai, Y., Strauss, S., Jiang, X., and Busov, V. (2011). Tissue‐specific expression of Populus C19 GA 2‐oxidases differentially regulate above‐and below‐ground biomass growth through control of bioactive GA concentrations. New Phytologist 192, 626-639. Gruber, B. D., Giehl, R. F., Friedel, S., and von Wirén, N. (2013). Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiology 163, 161-179. Gullner, G., Komives, T., Király, L., and Schröder, P. (2018). Glutathione S-transferase enzymes in plant-pathogen interactions. Frontiers in Plant Science 9, 1836. Gutiérrez-Luna, F. M., López-Bucio, J., Altamirano-Hernández, J., Valencia-Cantero, E., de la Cruz, H. R., and Macías-Rodríguez, L. (2010). Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51, 75-83. Gutiérrez‐Mañero, F. J., Ramos‐Solano, B., Probanza, A. n., Mehouachi, J., R. Tadeo, F., and Talon, M. (2001). The plant‐growth‐promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum 111, 206-211. Hao, H.-T., Zhao, X., Shang, Q.-H., Wang, Y., Guo, Z.-H., Zhang, Y.-B., Xie, Z.-K., and Wang, R.-Y. (2016). Comparative digital gene expression analysis of the Arabidopsis response to volatiles emitted by Bacillus amyloliquefaciens. PLoS One 11, e0158621. He, A.-L., Zhao, L.-Y., Ren, W., Li, H.-R., Paré, P. W., Zhao, Q., and Zhang, J.-L. (2023). A volatile producing Bacillus subtilis strain from the rhizosphere of Haloxylon ammodendron promotes plant root development. Plant and Soil 486, 661-680. Hsieh, P.-H., Kan, C.-C., Wu, H.-Y., Yang, H.-C., and Hsieh, M.-H. (2018). Early molecular events associated with nitrogen deficiency in rice seedling roots. Scientific Reports 8, 12207. Jenny, A., Mark, W., Robin G, W., Caroline A, H., Alexander V, R., Peter, H., and Stefan, J. (2003). Absence of the Lhcb1 and Lhcb2 proteins of the light‐harvesting complex of photosystem II–effects on photosynthesis, grana stacking and fitness. The Plant Journal 35, 350-361. Jia, Z., Giehl, R. F., and von Wirén, N. (2021). Local auxin biosynthesis acts downstream of brassinosteroids to trigger root foraging for nitrogen. Nature Communications 12, 5437. Jiang, C.-H., Xie, Y.-S., Zhu, K., Wang, N., Li, Z.-J., Yu, G.-J., and Guo, J.-H. (2019). Volatile organic compounds emitted by Bacillus sp. JC03 promote plant growth through the action of auxin and strigolactone. Plant Growth Regulation 87, 317-328. Jiang, J., Gai, Z., Wang, Y., Fan, K., Sun, L., Wang, H., and Ding, Z. (2018). Comprehensive proteome analyses of lysine acetylation in tea leaves by sensing nitrogen nutrition. BMC Genomics 19, 1-13. Joo, G.-J., Kim, Y.-M., Lee, I.-J., Song, K.-S., and Rhee, I.-K. (2004). Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnology Letters 26, 487-491. Kang, S. M., Khan, A. L., Hamayun, M., Shinwari, Z. K., Kim, Y.-H., Joo, G.-J., and Lee, I.-J. (2012). Acinetobacter calcoaceticus ameliorated plant growth and influenced gibberellins and functional biochemicals. Pakistan Journal of Botany 44, 365-372. Kim, D., Langmead, B., and Salzberg, S. L. (2015a). HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12, 357-360. Kim, J.-S., Lee, J., Seo, S.-G., Lee, C., Woo, S. Y., and Kim, S.-H. (2015b). Gene expression profile affected by volatiles of new plant growth promoting rhizobacteria, Bacillus subtilis strain JS, in tobacco. Genes & Genomics 37, 387-397. Kobayashi, T., and Nishizawa, N. K. (2012). Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology 63, 131-152. Kong, W.-L., Wang, Y.-H., and Wu, X.-Q. (2021). Enhanced iron uptake in plants by volatile emissions of Rahnella aquatilis JZ-GX1. Frontiers in Plant Science 12, 704000. Kumar, A., Singh, S., Mukherjee, A., Rastogi, R. P., and Verma, J. P. (2021). Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Microbiological Research 242, 126616. Kumar, S., and Trivedi, P. K. (2018). Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Frontiers in Plant Science 9, 751. Lavenus, J., Goh, T., Roberts, I., Guyomarc’h, S., Lucas, M., De Smet, I., Fukaki, H., Beeckman, T., Bennett, M., and Laplaze, L. (2013). Lateral root development in Arabidopsis: fifty shades of auxin. Trends in Plant Science 18, 450-458. Liao, Y., Smyth, G. K., and Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930. Liu, K., Yue, R., Yuan, C., Liu, J., Zhang, L., Sun, T., Yang, Y., Tie, S., and Shen, C. (2015). Auxin signaling is involved in iron deficiency-induced photosynthetic inhibition and shoot growth defect in rice (Oryza sativa L.). Journal of Plant Biology 58, 391-401. Liu, S., Xie, J., Luan, W., Liu, C., Chen, X., and Chen, D. (2024). Papiliotrema flavescens, a plant growth-promoting fungus, alters root system architecture and induces systemic resistance through its volatile organic compounds in Arabidopsis. Plant Physiology and Biochemistry 208, 108474. Lo, S.-F., Yang, S.-Y., Chen, K.-T., Hsing, Y.-I., Zeevaart, J. A., Chen, L.-J., and Yu, S.-M. (2008). A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. The Plant Cell 20, 2603-2618. Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15, 1-21. Lu, X., Zhang, J., Brown, B., Li, R., Rodríguez-Romero, J., Berasategui, A., Liu, B., Xu, M., Luo, D., and Pan, Z. (2018). Inferring roles in defense from metabolic allocation of rice diterpenoids. The Plant Cell 30, 1119-1131. Ma, W., Li, J., Qu, B., He, X., Zhao, X., Li, B., Fu, X., and Tong, Y. (2014). Auxin biosynthetic gene TAR2 is involved in low nitrogen‐mediated reprogramming of root architecture in Arabidopsis. The Plant Journal 78, 70-79. Marchant, A., Bhalerao, R., Casimiro, I., Eklöf, J., Casero, P. J., Bennett, M., and Sandberg, G. (2002). AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. The Plant Cell 14, 589-597. Meldau, D. G., Meldau, S., Hoang, L. H., Underberg, S., Wünsche, H., and Baldwin, I. T. (2013). Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. The Plant Cell 25, 2731-2747. Méndez-Gómez, M., Castro-Mercado, E., López-Bucio, J., and García-Pineda, E. (2021). Azospirillum brasilense Sp245 triggers cytokinin signaling in root tips and improves biomass accumulation in Arabidopsis through canonical cytokinin receptors. Physiology and Molecular Biology of Plants 27, 1639-1649. Mohidem, N. A., Hashim, N., Shamsudin, R., and Che Man, H. (2022). Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content. Agriculture 12, 741. Mu, X., and Chen, Y. (2021). The physiological response of photosynthesis to nitrogen deficiency. Plant Physiology and Biochemistry 158, 76-82. North, K. A., Ehlting, B., Koprivova, A., Rennenberg, H., and Kopriva, S. (2009). Natural variation in Arabidopsis adaptation to growth at low nitrogen conditions. Plant Physiology and Biochemistry 47, 912-918. Oikawa, T., Koshioka, M., Kojima, K., Yoshida, H., and Kawata, M. (2004). A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice. Plant Molecular Biology 55, 687-700. Ortega Pérez, R., Nieto García, J. C., Gallegos-Cedillo, V. M., Domene Ruiz, M. Á., Santos Hernández, M., Nájera, C., Miralles Mellado, I., and Diánez Martínez, F. (2023). Biofertilizers enriched with PGPB improve soil fertility and the productivity of an intensive tomato crop. Agronomy 13, 2286. Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B., and Kamili, A. N. (2021). Chemical fertilizers and their impact on soil health. Microbiota and Biofertilizers, Vol 2: Ecofriendly tools for reclamation of degraded soil environs, 1-20. Park, Y.-S., Dutta, S., Ann, M., Raaijmakers, J. M., and Park, K. (2015). Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochemical and Biophysical Research Communications 461, 361-365. Pérez-Flores, P., Valencia-Cantero, E., Altamirano-Hernández, J., Pelagio-Flores, R., López-Bucio, J., García-Juárez, P., and Macías-Rodríguez, L. (2017). Bacillus methylotrophicus M4-96 isolated from maize (Zea mays) rhizoplane increases growth and auxin content in Arabidopsis thaliana via emission of volatiles. Protoplasma 254, 2201-2213. Peters, R. J. (2006). Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants. Phytochemistry 67, 2307-2317. Petrášek, J., and Friml, J. (2009). Auxin transport routes in plant development. Qiao, F., Yang, Q., Wang, C.-L., Fan, Y.-L., Wu, X.-F., and Zhao, K.-J. (2007). Modification of plant height via RNAi suppression of OsGA20ox2 gene in rice. Euphytica 158, 35-45. Qin, X., Liu, J. H., Zhao, W. S., Chen, X. J., Guo, Z. J., and Peng, Y. L. (2013). Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. Molecular Plant-Microbe Interactions 26, 227-239. Roxas, V. P., Lodhi, S. A., Garrett, D. K., Mahan, J. R., and Allen, R. D. (2000). Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant and Cell Physiology 41, 1229-1234. Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Wei, H.-X., Paré, P. W., and Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences 100, 4927-4932. Sahraeian, S. M. E., Mohiyuddin, M., Sebra, R., Tilgner, H., Afshar, P. T., Au, K. F., Bani Asadi, N., Gerstein, M. B., Wong, W. H., and Snyder, M. P. (2017). Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis. Nature Communications 8, 59. Sánchez‐López, Á. M., Baslam, M., De Diego, N., Muñoz, F. J., Bahaji, A., Almagro, G., Ricarte‐Bermejo, A., García‐Gómez, P., Li, J., and Humplík, J. F. (2016). Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action. Plant, Cell & Environment 39, 2592-2608. Savić, J., Nakarada, Đ., Stupar, S., Tubić, L., Milutinović, M., Mojović, M., and Devrnja, N. (2024). Glutathione involvement in potato response to French Marigold Volatile Organic Compounds. Antioxidants 13, 1565. Scheible, W.-R., Morcuende, R., Czechowski, T., Fritz, C., Osuna, D., Palacios-Rojas, N., Schindelasch, D., Thimm, O., Udvardi, M. K., and Stitt, M. (2004). Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiology 136, 2483-2499. Schmidt, W., Tittel, J., and Schikora, A. (2000). Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiology 122, 1109-1118. Sharifi, R., Jeon, J.-S., and Ryu, C.-M. (2022). Belowground plant–microbe communications via volatile compounds. Journal of Experimental Botany 73, 463-486. Sharifi, R., and Ryu, C.-M. (2018). Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Annals of Botany 122, 349-358. Snyder, C. S., Bruulsema, T. W., Jensen, T. L., and Fixen, P. E. (2009). Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems & Environment 133, 247-266. Sudakov, K., Rana, A., Faigenboim-Doron, A., Gordin, A., Carmeli, S., Shimshoni, J. A., Cytryn, E., and Minz, D. (2025). Diverse effects of Bacillus sp. NYG5-emitted volatile organic compounds on plant growth, rhizosphere microbiome, and soil chemistry. Microbiological Research, 128089. Sun, H., Tao, J., Bi, Y., Hou, M., Lou, J., Chen, X., Zhang, X., Luo, L., Xie, X., and Yoneyama, K. (2018). OsPIN1b is involved in rice seminal root elongation by regulating root apical meristem activity in response to low nitrogen and phosphate. Scientific Reports 8, 13014. Sun, L., Cao, M., Liu, F., Wang, Y., Wan, J., Wang, R., Zhou, H., Wang, W., and Xu, J. (2020). The volatile organic compounds of Floccularia luteovirens modulate plant growth and metabolism in Arabidopsis thaliana. Plant and Soil 456, 207-221. Tahir, H. A., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., Colman, M. V., and Gao, X. (2017). Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Frontiers in Microbiology 8, 171. Thomas, G., Dalal, R., and Standley, J. (2007). No-till effects on organic matter, pH, cation exchange capacity and nutrient distribution in a Luvisol in the semi-arid subtropics. Soil and Tillage Research 94, 295-304. Tyagi, S., Mulla, S. I., Lee, K.-J., Chae, J.-C., and Shukla, P. (2018). VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes. Critical Reviews in Biotechnology 38, 1277-1296. Vocciante, M., Grifoni, M., Fusini, D., Petruzzelli, G., and Franchi, E. (2022). The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Applied Sciences 12, 1231. Wang, J., Zhou, C., Xiao, X., Xie, Y., Zhu, L., and Ma, Z. (2017). Enhanced iron and selenium uptake in plants by volatile emissions of Bacillus amyloliquefaciens (BF06). Applied Sciences 7, 85. Wang, K., Lin, Z., Dou, J., Jiang, M., Shen, N., and Feng, J. (2023). Identification and surveys of promoting plant growth VOCs from biocontrol bacteria Paenibacillus peoriae GXUN15128. Microbiology Spectrum 11, e04346-22. Wang, M., Li, A.-M., Pan, Y.-Q., Chen, Z.-L., Qin, C.-X., Su, Z.-L., Lakshmanan, P., Song, J.-M., Liao, F., and Huang, D.-L. (2025a). Gibberellin biosynthesis gene ScGA20 oxidase enhances sugarcane growth by modulating genes associated with phytohormone and growth processes. Plant Physiology and Biochemistry 221, 109652. Wang, Q., Zhu, Y., Zou, X., Li, F., Zhang, J., Kang, Z., Li, X., Yin, C., and Lin, Y. (2020a). Nitrogen deficiency-induced decrease in cytokinins content promotes rice seminal root growth by promoting root meristem cell proliferation and cell elongation. Cells 9, 916. Wang, R., Bie, X., Xiao, J., Xu, S., Li, P., Feng, X., and Chen, Y. (2025b). Identification of a novel screening strategy of rice resistance breeding through phytoalexin content. Planta 262, 1-12. Wang, Y., Kang, Y., Zhong, M., Zhang, L., Chai, X., Jiang, X., and Yang, X. (2022). Effects of iron deficiency stress on plant growth and quality in flowering Chinese cabbage and its adaptive response. Agronomy 12, 875. Wang, Y., Sun, J., Ali, S. S., Gao, L., Ni, X., Li, X., Wu, Y., and Jiang, J. (2020b). Identification and expression analysis of Sorghum bicolor gibberellin oxidase genes with varied gibberellin levels involved in regulation of stem biomass. Industrial Crops and Products 145, 111951. Wang, Y., Yao, Q., Zhang, Y., Zhang, Y., Xing, J., Yang, B., Mi, G., Li, Z., and Zhang, M. (2020c). The role of gibberellins in regulation of nitrogen uptake and physiological traits in maize responding to nitrogen availability. International Journal of Molecular Sciences 21, 1824. Wintermans, J., and De Mots, A. (1965). Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta (BBA)-Biophysics including Photosynthesis 109, 448-453. Wuddineh, W. A., Mazarei, M., Zhang, J., Poovaiah, C. R., Mann, D. G., Ziebell, A., Sykes, R. W., Davis, M. F., Udvardi, M. K., and Stewart Jr, C. N. (2015). Identification and overexpression of gibberellin 2‐oxidase (GA2ox) in switchgrass (P anicum virgatum L.) for improved plant architecture and reduced biomass recalcitrance. Plant Biotechnology Journal 13, 636-647. Xu, M., Galhano, R., Wiemann, P., Bueno, E., Tiernan, M., Wu, W., Chung, I. M., Gershenzon, J., Tudzynski, B., and Sesma, A. (2012). Genetic evidence for natural product‐mediated plant–plant allelopathy in rice (Oryza sativa). New Phytologist 193, 570-575. Yang, Q., Zhao, D., and Liu, Q. (2020). Connections between amino acid metabolisms in plants: lysine as an example. Frontiers in Plant Science 11, 928. Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. Omics: A Journal of Integrative Biology 16, 284-287. Yue, Z., Chen, Y., Chen, C., Ma, K., Tian, E., Wang, Y., Liu, H., and Sun, Z. (2021). Endophytic Bacillus altitudinis WR10 alleviates Cu toxicity in wheat by augmenting reactive oxygen species scavenging and phenylpropanoid biosynthesis. Journal of Hazardous Materials 405, 124272. Zhang, H., Kim, M.-S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., Farag, M. A., Ryu, C.-M., Allen, R., and Melo, I. S. (2007). Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226, 839-851. Zhang, H., Sun, Y., Xie, X., Kim, M. S., Dowd, S. E., and Paré, P. W. (2009). A soil bacterium regulates plant acquisition of iron via deficiency‐inducible mechanisms. The Plant Journal 58, 568-577. Zhang, H., Xie, X., Kim, M. S., Kornyeyev, D. A., Holaday, S., and Paré, P. W. (2008). Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. The Plant Journal 56, 264-273. Zhang, X., Xue, C., Wang, R., Shen, R., and Lan, P. (2022). Physiological and proteomic dissection of the rice roots in response to iron deficiency and excess. Journal of Proteomics 267, 104689. Zhao, D., Reddy, K. R., Kakani, V. G., and Reddy, V. (2005). Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy 22, 391-403. Zheng, D., Ren, F., Yin, R., Li, L., Cui, H., Shen, H., Chen, X., and Gao, N. (2025). Transcriptome analysis reveals impact of s-methyl thioacetate on tomato seedling growth. Journal of Plant Growth Regulation, 1-15. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99623 | - |
| dc.description.abstract | 長期過度施用化學施肥會破壞土壤化學與物理性質,導致土壤酸化與土壤鹽鹼化,嚴重影響作物生長與產量。因此,尋求環境友善且有益植物生長的生物肥料成為永續農業重要課題之一。植物生長促進細菌已廣泛應用於作物生產,除了直接施用,亦有研究顯示植物生長促進細菌釋放之揮發性有機化合物 (volatile organic compounds, VOC) 也能提升植物生長勢。目前不清楚養分的存無對促生效益的影響,對植物的訊號接收與下游的傳遞機制了解也有限,因此本研究欲探討氮和鐵影響Bacillus sp. Pp16和Pp20釋放之VOC對於水稻與阿拉伯芥幼苗生長促進效益之差異。比較在氮源充足和缺乏的環境中,水稻處理Pp16和Pp20釋放之VOC後,僅在缺氮的條件下可觀察到生長促進效果,轉錄體分析顯示缺氮下Pp16 VOC處理可能透過提升水稻光合作用與防禦反應促進水稻生長,而在缺鐵環境下,VOC處理沒有明顯的影響;在養分充足的條件下阿拉伯芥接受VOC處理顯著提升生長勢,缺氮或缺鐵則降低促進效果,且抑制生長素運輸降低VOC處理在缺鐵下對根長的影響,說明VOC處理可能透過調控生長素來改變阿拉伯芥的根系結構。綜合上述, Pp16和Pp20釋放之VOC對植物生長的促進效果受到養分和物種的影響,未來將持續探討VOC對於植物養分吸收效率、同化、分布之影響,及背後的調控機制。 | zh_TW |
| dc.description.abstract | Long-term overfertilization negatively influence soil chemical and physical properties, leading to soil acidity and salinity. In addition to judicious use of fertilizer, the environmentally friendly strategies are required to promote sustainable agriculture. The application of plant growth-promoting bacteria (PGPB) has become widely adopted in agriculture. In addition to direct application, volatile organic compounds (VOC) released by PGPB have been shown to enhance plant growth. The influence of nutrient availability on the growth-promoting effects of VOC treatment remains unclear, and our understanding of VOC perception and downstream signaling in the associated plants is still limited. Therefore, this study aimed to investigate how nitrogen and iron availability affect the growth-promoting effects of VOC released by Bacillus sp. Pp16 and Pp20 on rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) seedlings. In rice, VOC-mediated growth promotion was only observed under nitrogen-deficient conditions. The results of transcriptomic analysis showed that, under nitrogen-limited conditions, Pp 16 VOC treatment promotes rice growth by enhancing photosynthetic capacity and activating defense responses. In contrast, plant growth was not affected by VOC treatment under iron-deficient conditions. In Arabidopsis, the growth promotion mediated by bacterial VOC was able to be observed under nutrient-sufficient conditions, whereas nitrogen or iron deficiency reduced the growth-promoting effects. Furthermore, the inhibition of auxin transport attenuated the VOC-induced enhancement of root length under iron-deficient conditions, suggesting that VOC may modulate root architecture in Arabidopsis partially through the regulation of auxin transport. Taken together, these findings demonstrated that the growth-promoting effects of VOC released by Pp16 and Pp20 were influenced by both nutrient availability and plant species. Future research will focus on elucidating the roles of VOC in regulating plant nutrient uptake efficiency, assimilation, and distribution, as well as the underlying molecular mechanisms involved. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:10:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:10:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
誌謝 I 中文摘要 II ABSTRACT III 縮寫表 V 目次 VI 圖次 VIII 表次 IX 第一章 前言 1 1. 缺乏營養對於植物之影響 1 1.1 在氮源不足的情況下植物的生理反應 1 1.2 缺鐵時植物的生理反應 2 2. 植物生長促進細菌 4 2.1 PGPB釋放之揮發性有機化合物可促進植物生長 4 2.2 PGPB釋放之VOC引發植物荷爾蒙改變 5 2.3 PGPB釋放之VOC幫助植物吸收營養元素 6 3. 研究動機與目的 7 第二章 材料與方法 8 1. 水稻試驗 8 1.1 水稻材料 8 1.2 水稻種子消毒與催芽 8 1.3 菌株培養與製備 8 1.4 水耕液配製 8 1.5 VOC處理 9 1.6 水稻生理指標測定 9 1.7 水稻地上部RNA萃取 10 1.8 轉錄體定序及分析 11 2. 阿拉伯芥試驗 12 2.1 阿拉伯芥材料 13 2.2 阿拉伯芥種子消毒與生長 13 2.3 菌株製備 13 2.4 VOC處理 13 2.5 阿拉伯芥生理指標測定 14 3. 統計分析 14 第三章 結果 15 1. 在不同營養條件下菌株VOC處理對水稻之生長和轉錄體的影響 15 1.1 在不同營養條件下菌株VOC處理對水稻生長之影響 15 1.2 在缺乏氮源下Pp 16 VOC處理對水稻地上部轉錄體之影響 16 2. 在不同營養條件下VOC處理對阿拉伯芥之生長的影響 20 2.1 在不同營養條件下VOC處理對阿拉伯芥外表型態之影響 20 第四章 討論 23 1. 正常營養條件下VOC處理對水稻與阿拉伯芥生長之影響 23 2. 缺鐵下VOC處理對水稻與阿拉伯芥生長之影響 24 3. 缺氮下VOC處理對水稻與阿拉伯芥生長之影響 25 4. 缺氮下PP 16 VOC處理對水稻促進生長之機制探討 27 5. 缺氮下PP 16 VOC處理可能引發水稻防禦反應 30 6. 不同營養條件缺乏對於水稻與阿拉伯芥生長促進差異之探討 31 7. 結論 32 參考文獻 33 附錄 62 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 植物生長促進細菌 | zh_TW |
| dc.subject | 揮發性有機化合物 | zh_TW |
| dc.subject | 養分 | zh_TW |
| dc.subject | 水稻 | zh_TW |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | nutrient | en |
| dc.subject | plant growth-promoting bacteria | en |
| dc.subject | Arabidopsis | en |
| dc.subject | rice | en |
| dc.subject | volatile organic compounds | en |
| dc.title | 細菌釋放之揮發性有機化合物對水稻與阿拉伯芥於缺氮與缺鐵環境下生長之促進效應 | zh_TW |
| dc.title | The Growth Promoting Effects of Bacterial Volatiles in Rice and Arabidopsis under Nitrogen and Iron Deficient Conditions | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林乃君;林淑怡;許奕婷 | zh_TW |
| dc.contributor.oralexamcommittee | Nai-Chun Lin;Shu-I Lin;Yi-Ting Hsu | en |
| dc.subject.keyword | 植物生長促進細菌,揮發性有機化合物,養分,水稻,阿拉伯芥, | zh_TW |
| dc.subject.keyword | plant growth-promoting bacteria,volatile organic compounds,nutrient,rice,Arabidopsis, | en |
| dc.relation.page | 66 | - |
| dc.identifier.doi | 10.6342/NTU202503811 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-13 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農藝學系 | - |
| dc.date.embargo-lift | 2030-08-05 | - |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-08-05 | 11.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
