Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99622
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林乃君zh_TW
dc.contributor.advisorNai-Chun Linen
dc.contributor.author陳品樺zh_TW
dc.contributor.authorPing-Hua Chenen
dc.date.accessioned2025-09-17T16:10:16Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-09-
dc.identifier.citation王梓傑。2017。施用內生細菌增加番茄生長及抗生物性逆境之探討。國立臺灣大學植物醫學碩士學位學程碩士論文。臺北,臺灣。
陳佳翰。2019。提昇番茄抗生物及非生物逆境之內生菌特性分析研究。國立臺灣大學植物醫學碩士學位學程碩士論文。臺北,臺灣。
黃培真。2020。內生細菌應用於番茄青枯病與熱逆境管理之效果評估。國立臺灣大學植物醫學碩士學位學程碩士論文。臺北,臺灣。
侯庭凱。2023。Pseudomonas kribbensis XP1-6第六型分泌系統於細菌間競爭及番茄根部定殖上之功能分析。國立臺灣大學生物資源暨農學院農業化學系碩士學位論文。臺北,臺灣。
蔡志濃、林筑蘋、安寶貞。2021。綜合管理實務案例-蔬果類-番茄篇。農業試驗所特刊。235: 195-208.
Aschtgen, M. S., Bernard, C. S., De Bentzmann, S., Lloubès, R., & Cascales, E. (2008). SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. Journal of Bacteriology, 190, 7523-7531.
Aschtgen, M. S., Zoued, A., Lloubès, R., Journet, L., & Cascales, E. (2012). The C-tail anchored TssL subunit, an essential protein of the enteroaggregative Escherichia coli Sci-1 Type VI secretion system, is inserted by YidC. MicrobiologyOpen, 1, 71-82.
Allsopp, L. P., Collins, A. C. Z., Hawkins, E., Wood, T. E., & Filloux, A. (2022). RpoN/Sfa2-dependent activation of the Pseudomonas aeruginosa H2-T6SS and its cognate arsenal of antibacterial toxins. Nucleic Acids Research, 50, 227-243.
Alves, J. A., Leal, F. C., Previato-Mello, M., & da Silva Neto, J. F. (2022). A Quorum Sensing-Regulated Type VI secretion system containing multiple nonredundant VgrG proteins is required for interbacterial competition in Chromobacterium violaceum. Microbiology Spectrum, 10, e0157622.
Ballister, E. R., Lai, A. H., Zuckermann, R. N., Cheng, Y., & Mougous, J. D. (2008). In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proceedings of the National Academy of Sciences of the United States of America, 105, 3733-3738.
Basler, M., Ho, B. T., & Mekalanos, J. J. (2013). Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell, 152, 884-894.
Bingle, L. E., Bailey, C. M., & Pallen, M. J. (2008). Type VI secretion: a beginner's guide. Current Opinion in Microbiology, 11, 3-8.
Boak, E. N., Kirolos, S., Pan, H., Pierson, L. S., 3rd, & Pierson, E. A. (2022). The type VI secretion systems in plant-beneficial bacteria modulate prokaryotic and eukaryotic interactions in the rhizosphere. Frontiers in Microbiology, 13, 843092.
Bönemann, G., Pietrosiuk, A., Diemand, A., Zentgraf, H., & Mogk, A. (2009). Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. The EMBO Journal, 28, 315-325.
Bondage, D. D., Lin, J. S., Ma, L. S., Kuo, C. H., & Lai, E. M. (2016). VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proceedings of the National Academy of Sciences of the United States of America, 113, E3931-E3940.
Boyer, F., Fichant, G., Berthod, J., Vandenbrouck, Y., & Attree, I. (2009). Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics, 10, 104.
Bröms, J. E., Ishikawa, T., Wai, S. N., & Sjöstedt, A. (2013). A functional VipA-VipB interaction is required for the type VI secretion system activity of Vibrio cholerae O1 strain A1552. BMC Microbiology, 13, 96.
Brunet, Y. R., Hénin, J., Celia, H., & Cascales, E. (2014). Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Reports, 15, 315-321.
Brunet, Y. R., Zoued, A., Boyer, F., Douzi, B., & Cascales, E. (2015). The type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization. PLoS Genetics, 11, e1005545.
Cherrak, Y., Flaugnatti, N., Durand, E., Journet, L., & Cascales, E. (2019). Structure and activity of the type VI secretion system. Microbiology Spectrum, 7, 10.1128/microbiolspec.psib-0031-2019.
Cherrak, Y., Rapisarda, C., Pellarin, R., Bouvier, G., Bardiaux, B., Allain, F., Malosse, C., Rey, M., Chamot-Rooke, J., Cascales, E., Fronzes, R., & Durand, E. (2018). Biogenesis and structure of a type VI secretion baseplate. Nature microbiology, 3, 1404-1416.
Chien, C. F., Liu, C. Y., Lu, Y. Y., Sung, Y. H., Chen, K. Y., & Lin, N. C. (2020). HSI-II gene cluster of Pseudomonas syringae pv. tomato DC3000 encodes a functional type VI secretion system required for interbacterial competition. Frontiers in Microbiology, 11, 1118.
Costa, T. R., Felisberto-Rodrigues, C., Meir, A., Prevost, M. S., Redzej, A., Trokter, M., & Waksman, G. (2015). Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nature Reviews Microbiology, 13, 343-359.
Coulthurst S. (2019). The Type VI secretion system: a versatile bacterial weapon. Microbiology Society, 165, 503-515.
Dong, T. G., Ho, B. T., Yoder-Himes, D. R., & Mekalanos, J. J. (2013). Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proceedings of the National Academy of Sciences of the United States of America, 110, 2623-2628.
Douzi, B., Brunet, Y. R., Spinelli, S., Lensi, V., Legrand, P., Blangy, S., Kumar, A., Journet, L., Cascales, E., & Cambillau, C. (2016). Structure and specificity of the Type VI secretion system ClpV-TssC interaction in enteroaggregative Escherichia coli. Scientific Reports, 6, 34405.
Durand, E., Zoued, A., Spinelli, S., Watson, P. J., Aschtgen, M. S., Journet, L., Cambillau, C., & Cascales, E. (2012). Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems. The Journal of Biological Chemistry, 287, 14157-14168.
Durand, E., Cambillau, C., Cascales, E., & Journet, L. (2014). VgrG, Tae, Tle, and beyond: the versatile arsenal of type VI secretion effectors. Trends in Microbiology, 22, 498-507.
Durand, E., Nguyen, V. S., Zoued, A., Logger, L., Péhau-Arnaudet, G., Aschtgen, M. S., Spinelli, S., Desmyter, A., Bardiaux, B., Dujeancourt, A., Roussel, A., Cambillau, C., Cascales, E., & Fronzes, R. (2015). Biogenesis and structure of a type VI secretion membrane core complex. Nature, 523, 555-560.
English, G., Byron, O., Cianfanelli, F. R., Prescott, A. R., & Coulthurst, S. J. (2014). Biochemical analysis of TssK, a core component of the bacterial type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG subcomplex. The Biochemical Journal, 461, 291-304.
Felisberto-Rodrigues, C., Durand, E., Aschtgen, M. S., Blangy, S., Ortiz-Lombardia, M., Douzi, B., Cambillau, C., & Cascales, E. (2011). Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. PLoS Pathogens, 7, e1002386.
Gallique, M., Decoin, V., Barbey, C., Rosay, T., Feuilloley, M. G., Orange, N., & Merieau, A. (2017). Contribution of the Pseudomonas fluorescens MFE01 type VI secretion system to biofilm formation. PLoS One, 12, e0170770.
De Geyter, J., Smets, D., Karamanou, S., & Economou, A. (2019). Inner membrane translocases and insertases. Subcellular Biochemistry, 92, 337-366.
Glick, B. R., & Nascimento, F. X. (2021). Pseudomonas 1-aminocyclopropane-1-carboxylate (ACC) deaminase and its role in beneficial plant-microbe interactions. Microorganisms, 9, 2467.
Huynh, T. V., Dahlbeck, D., & Staskawicz, B. J. (1989). Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science, 245, 1374-1377.
Kapitein, N., Bönemann, G., Pietrosiuk, A., Seyffer, F., Hausser, I., Locker, J. K., & Mogk, A. (2013). ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion. Molecular Microbiology, 87, 1013-1028.
Kawasaki, H., Nakayama, S., & Kretsinger, R. H. (1998). Classification and evolution of EF-hand proteins. Biometals, 11, 277-295.
Koskiniemi, S., Lamoureux, J. G., Nikolakakis, K. C., t'Kint de Roodenbeke, C., Kaplan, M. D., Low, D. A., & Hayes, C. S. (2013). Rhs proteins from diverse bacteria mediate intercellular competition. Proceedings of the National Academy of Sciences of the United States of America, 110, 7032-7037.
Leiman, P. G., Basler, M., Ramagopal, U. A., Bonanno, J. B., Sauder, J. M., Pukatzki, S., Burley, S. K., Almo, S. C., & Mekalanos, J. J. (2009). Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proceedings of the National Academy of Sciences of the United States of America, 106, 4154-4159.
Ma, L. S., Lin, J. S., & Lai, E. M. (2009). An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. Journal of Bacteriology, 191, 4316-4329.
Ma, L. S., Narberhaus, F., & Lai, E. M. (2012). IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion. The Journal of Biological Chemistry, 287, 15610-15621.
Miyata, S. T., Kitaoka, M., Brooks, T. M., McAuley, S. B., & Pukatzki, S. (2011). Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infection and Immunity, 79, 2941-2949.
Nguyen, V. S., Logger, L., Spinelli, S., Legrand, P., Huyen Pham, T. T., Nhung Trinh, T. T., Cherrak, Y., Zoued, A., Desmyter, A., Durand, E., Roussel, A., Kellenberger, C., Cascales, E., & Cambillau, C. (2017). Type VI secretion TssK baseplate protein exhibits structural similarity with phage receptor-binding proteins and evolved to bind the membrane complex. Nature Microbiology, 2, 17103.
Pei, T. T., Li, H., Liang, X., Wang, Z. H., Liu, G., Wu, L. L., Kim, H., Xie, Z., Yu, M., Lin, S., Xu, P., & Dong, T. G. (2020). Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system. Nature Communications, 11, 1865.
Rêgo, A. T., Chandran, V., & Waksman, G. (2010). Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the type IV secretion system and the chaperone-usher pathway of pilus biogenesis. The Biochemical Journal, 425, 475-488.
Renault, M. G., Zamarreno Beas, J., Douzi, B., Chabalier, M., Zoued, A., Brunet, Y. R., Cambillau, C., Journet, L., & Cascales, E. (2018). The gp27-like hub of VgrG serves as adaptor to promote Hcp tube assembly. Journal of Molecular Biology, 430, 3143-3156.
Robb, C. S., Nano, F. E., & Boraston, A. B. (2012). The structure of the conserved type six secretion protein TssL (DotU) from Francisella novicida. Journal of Molecular Biology, 419, 277-283.
Salomon, D., Kinch, L. N., Trudgian, D. C., Guo, X., Klimko, J. A., Grishin, N. V., Mirzaei, H., & Orth, K. (2014). Marker for type VI secretion system effectors. Proceedings of the National Academy of Sciences of the United States of America, 111, 9271-9276.
Sana, T. G., Soscia, C., Tonglet, C. M., Garvis, S., & Bleves, S. (2013). Divergent control of two type VI secretion systems by RpoN in Pseudomonas aeruginosa. PLoS One, 8, e76030.
Shneider, M. M., Buth, S. A., Ho, B. T., Basler, M., Mekalanos, J. J., & Leiman, P. G. (2013). PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature, 500, 350-353.
Stietz, M. S., Liang, X., Li, H., Zhang, X., & Dong, T. G. (2020). TssA-TssM-TagA interaction modulates type VI secretion system sheath-tube assembly in Vibrio cholerae. Nature Communications, 11, 5065.
Taylor, N. M., Prokhorov, N. S., Guerrero-Ferreira, R. C., Shneider, M. M., Browning, C., Goldie, K. N., Stahlberg, H., & Leiman, P. G. (2016). Structure of the T4 baseplate and its function in triggering sheath contraction. Nature, 533, 346-352.
Uchida, K., Leiman, P. G., Arisaka, F., & Kanamaru, S. (2014). Structure and properties of the C-terminal β-helical domain of VgrG protein from Escherichia coli O157. Journal of Biochemistry, 155, 173-182.
Wang, Y. D., Zhao, S., & Hill, C. W. (1998). Rhs elements comprise three subfamilies which diverged prior to acquisition by Escherichia coli. Journal of Bacteriology, 180, 4102-4110.
Whitney, J. C., Beck, C. M., Goo, Y. A., Russell, A. B., Harding, B. N., De Leon, J. A., Cunningham, D. A., Tran, B. Q., Low, D. A., Goodlett, D. R., Hayes, C. S., & Mougous, J. D. (2014). Genetically distinct pathways guide effector export through the type VI secretion system. Molecular Microbiology, 92, 529-542.
Wu, C. F., Lien, Y. W., Bondage, D., Lin, J. S., Pilhofer, M., Shih, Y. L., Chang, J. H., & Lai, E. M. (2020). Effector loading onto the VgrG carrier activates type VI secretion system assembly. EMBO Reports, 21, e47961.
Zoued, A., Cassaro, C. J., Durand, E., Douzi, B., España, A. P., Cambillau, C., Journet, L., & Cascales, E. (2016). Structure-function analysis of the TssL cytoplasmic domain reveals a new interaction between the type VI secretion baseplate and membrane complexes. Journal of Molecular Biology, 428, 4413-4423.
Zoued, A., Duneau, J. P., Durand, E., España, A. P., Journet, L., Guerlesquin, F., & Cascales, E. (2018). Tryptophan-mediated Dimerization of the TssL transmembrane anchor is required for type VI secretion system activity. Journal of Molecular Biology, 430, 987-1003.
Zoued, A., Durand, E., Bebeacua, C., Brunet, Y. R., Douzi, B., Cambillau, C., Cascales, E., & Journet, L. (2013). TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system. The Journal of Biological Chemistry, 288, 27031-27041.
Zhang, X. Y., Brunet, Y. R., Logger, L., Douzi, B., Cambillau, C., Journet, L., & Cascales, E. (2013). Dissection of the TssB-TssC interface during type VI secretion sheath complex formation. PLoS One, 8, e81074.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99622-
dc.description.abstractPseudomonas kribbensis XP1-6 為一株從番茄根部分離出的促進植物生長根棲細菌,其基因體中有兩套第六型分泌系統基因叢集,分別為 X1-T6SS 與 X2-T6SS,而 X2-T6SS 基因叢集參與 P. kribbensis XP1-6 與 Escherichia coli MG1655 與 Pseudomonas sp. TY108 之間的競爭能力上。為了更加了解 P. kribbensis XP1-6第六型分泌系統的作用機制,本研究進一步探討第六型分泌系統在 P. kribbensis XP1-6 各生長階段之表現情形,並透過生物資訊學及分泌體學的方式找尋第六型分泌系統的效應蛋白。搜尋 P. kribbensis XP1-6的基因體時,在兩套第六型分泌系統基因叢集的序列之外,還可找到 10 個包含 hcp 及/或 vgrG 同源基因的操作子,並推論出位於 X2-T6SS 基因叢集及這 10 個操作子內可能為第六型分泌系統效應蛋白的基因。利用半定量反轉錄聚合酶鏈鎖反應得知分別位於 vgrG1_3/hcpA1 操作子, vgrG1_4/hcpA2 操作子, vgrG1_5/hcpA3 操作子, vgrG1_6/hcpA4 操作子及 vgrG1_10/hcpA5 操作子的 PK_0660、PK_1102、PK_2134 (rhsC_4)、PK_2458 (rhsC_5) 及 PK_3762 (rhsC_7) 在營養充足的環境下有較高的表現量。後續發現刪除 tssM2 會降低 P. kribbensis XP1-6 毒殺 P. syringae pv. tomato (Pst) DC3000 以及抑制 Ralstonia solanacearum Pss4 生長的能力,顯示 X2-T6SS 基因叢集也會參與 P. kribbensis XP1-6 與番茄病原菌的競爭關係中。接著挑選其中表現量較高的 PK_1102 進行驗證,結果顯示其會參與毒殺 Pst DC3000 以及抑制 R. solanacearum Pss4 的生長。除此之外,蛋白質體學分析出會透過 X2-T6SS 分泌之蛋白質,除了 X2-T6SS 中的 PK_5712 及 VgrG1_11 外,還有推測的效應蛋白 RhsC_4、RhsC_5、RhsC_7。VgrG1_5、VgrG1_10 及 HcpA5 也會透過 X2-T6SS 分泌,而因為 HcpA2、HcpA3 及 HcpA4 具有相同的胺基酸序列,難以利用質譜分析得知分泌至胞外的 究竟是 HcpA2、HcpA3 或 HcpA4。未來可持續研究 vgrG1_5/hcpA3、vgrG1_10/hcpA5 操作子與 X2-T6SS 基因叢集之間的關係,以及 RhsC_4、RhsC_7、PK_5712 是否參與 X2-T6SS 所主導的抗菌能力,以對 P. kribbensis XP1-6 第六型分泌系統的作用機制及功能有更多了解。zh_TW
dc.description.abstractPseudomonas kribbensis XP1-6 is a plant growth-promoting rhizobacterium (PGPR) isolated from tomato roots. It possesses two type VI secretion system (T6SS) gene clusters, namely X1-T6SS and X2-T6SS, and X2-T6SS gene cluster contributes to its interbacterial competition ability with Escherichia coli MG1655 and Pseudomonas sp. TY108. In order to understand more about the mechanism of T6SS in P. kribbensis XP1-6, this study aimed to further investigate the gene expression pattern of X2-T6SS during vegetative growth and identify T6SS effector using bioinformatic and secretome approaches. In addition to two T6SS clusters, there are 10 operons containing hcp and/or vgrG homologous genes in the P. kribbensis XP1-6 genome, and putative T6SS effectors were identified within X2-T6SS gene cluster and these 10 operons in this study. Among them, PK_0660, PK_1102, PK_2134 (rhsC_4), PK_2458 (rhsC_5) and PK_3762 (rhsC_7) located in vgrG1_3/hcpA1 operon, vgrG1_4/hcpA2 operon, vgrG1_5/hcpA3 operon, vgrG1_6/hcpA4 operon and vgrG1_10/hcpA5 operon, respectively, exhibited higher expression levels under nutrient-rich conditions using semi-quantitative RT-PCR. Moreover, deletion of tssM2 reduced the ability of P. kribbensis XP1-6 to kill P. syringae pv. tomato (Pst) DC3000 and inhibit the growth of Ralstonia solanacearum Pss4, indicating that X2-T6SS was also involved in the competiton of P. kribbensis XP1-6 against tomato pathogens. PK_1102, which expresses at a higher level, was selected to verify the results of bioinformatic analysis, and the data indicated that it participates in the killing of Pst DC3000 and the inhibition of R. solanacearum Pss4. Furthermore, Hcps, VgrGs, and predicted effectors secreted by X2-T6SS were identified from proteomics analysis. PK_5712 and VgrG1_11 in X2-T6SS, along with the predicted effectors RhsC_4, RhsC_5, and RhsC_7, were found to be translocated by X2-T6SS. VgrG1_5, VgrG1_10, and HcpA5 were also secreted by X2-T6SS. However, due to identical amino acid sequences of HcpA2, HcpA3, and HcpA4, it was difficult to differentiate whether the secreted Hcps were HcpA2, HcpA3, or HcpA4. Further research can focus on the relationship between vgrG1_5/hcpA3, vgrG1_10/hcpA5 operons and X2-T6SS gene cluster, as well as the role of RhsC_4, RhsC_7, and PK_5712 in X2-T6SS-mediated interbacterial competition to increase our understanding of the mechanisms and functions of T6SS in P. kribbensis XP1-6.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:10:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:10:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目次 v
表次 viii
圖次 ix
附表次 x
附圖次 xi
壹、前人研究 1
一、細菌蛋白質分泌系統 1
二、第六型分泌系統 (Type VI secretion system, T6SS) 的組成 1
三、第六型分泌系統的效應蛋白 3
四、促進植物生長根棲細菌 (Plant growth-promoting rhizobacteria, PGPR) 3
五、促進植物生長根棲細菌 Pseudomonas kribbensis XP1-6 4
六、P. kribbensis XP1-6 的第六型分泌系統 5
貳、研究動機與目的 7
參、材料與方法 8
一、細菌菌株與培養條件 8
二、P. kribbensis XP1-6 在不同培養條件下基因表現分析樣本之製備 9
三、P. kribbensis XP1-6 培養不同時間點時基因表現分析樣本之製備 9
四、細菌 RNA 的萃取與 cDNA 的製備 10
五、半定量反轉錄聚合酶鏈鎖反應 (semi-quantitative reverse transcription and polymerase chain reaction, semi-quantitative RT-PCR) 10
六、細菌基因體 DNA (genomic DNA) 的萃取 11
七、小量質體 (plasmid) 萃取 11
八、勝任細胞 (competetent cells) 的製備 12
九、電穿孔轉型作用 (electrotransformation) 12
十、PK_1102 基因刪除突變株 (deletion mutant) (ΔPK_1102) 的製備 13
十一、細菌間競爭試驗 (Interbacterial competition assay) 14
十二、胞外及胞內蛋白質的收集 15
十三、胞外及胞內蛋白質的製備 16
十四、十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis, SDS-PAGE) 16
十五、西方墨點法 (Western blot analysis) 17
十六、胞外蛋白樣本的組成分析 17
十七、統計分析 18
肆、結果 19
一、不同培養條件下P. kribbensis XP1-6 中 tssM2 與 clpV2 的表現情形 19
二、P. kribbensis XP1-6 的 tssM2 在不同生長階段的表現量變化 20
三、不同培養條件下 P. kribbensis XP1-6 推測的第六型分泌系統效應蛋白基因表現量 20
四、P. kribbensis XP1-6 的 PK_2134、PK_2458、PK_3762、PK_0660 及 PK_1102 在不同生長階段的表現量變化 21
五、刪除 tssM2 會降低 P. kribbensis XP1-6 毒殺 Pst DC3000 的能力 22
六、刪除 tssM2 會降低 P. kribbensis XP1-6 抑制 R. solanacearum Pss4 生長的能力 22
七、刪除 PK_1102 會部分降低 P. kribbensis XP1-6 毒殺 Pst DC3000 的能力 23
八、刪除 PK_1102 亦部分降低 P. kribbensis XP1-6 抑制 R. solanacearum Pss4 生長的能力 24
九、以錐形瓶培養時 P. kribbensis XP1-6 的 tssM2 在不同生長階段的表現量變化 25
十、P. kribbensis XP1-6 Hcp 蛋白質的分泌情形 26
十一、P. kribbensis XP1-6 野生型、ΔtssM2與 ΔclpV2 胞外蛋白組成之初步分析 27
伍、討論 29
一、X2-T6SS 基因叢集的表現量可能不只受到菌數的影響 29
二、具有高表現量的可能效應蛋白基因之蛋白質分泌情形各有不同 30
三、P. kribbensis XP1-6 會利用第六型分泌系統與植物病原菌競爭 31
四、P. kribbensis XP1-6 中部分 VgrG1、Hcp 及推測的效應蛋白之分泌會透過 X2-T6SS 運送至胞外 31
五、X2-T6SS 中會透過 X2-T6SS 運送至胞外的蛋白之深入探討 33
陸、結論 35
柒、參考文獻 36
捌、表 44
玖、圖 52
拾、附表 72
拾壹、附圖 74
-
dc.language.isozh_TW-
dc.subject細菌間競爭zh_TW
dc.subject第六型分泌系統zh_TW
dc.subject蛋白質體學zh_TW
dc.subjectVgrGzh_TW
dc.subject效應蛋白zh_TW
dc.subjectproteomicsen
dc.subjecttype VI secretion systemen
dc.subjectinterbacterial competitionen
dc.subjectVgrGen
dc.subjecteffectoren
dc.titlePseudomonas kribbensis XP1-6 第六型分泌系統效應蛋白特性之初探zh_TW
dc.titlePilot study on the characterization of type VI secretion system effectors in Pseudomonas kribbensis XP1-6en
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳宜龍;鄭秋萍zh_TW
dc.contributor.oralexamcommitteeYi-Lung Chen;Chiu-Ping Chengen
dc.subject.keyword第六型分泌系統,細菌間競爭,效應蛋白,VgrG,蛋白質體學,zh_TW
dc.subject.keywordtype VI secretion system,interbacterial competition,effector,VgrG,proteomics,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202504285-
dc.rights.note未授權-
dc.date.accepted2025-08-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農業化學系-
dc.date.embargo-liftN/A-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved