請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99619完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張雅珮 | zh_TW |
| dc.contributor.advisor | Ya-Pei Chang | en |
| dc.contributor.author | 陳緯 | zh_TW |
| dc.contributor.author | Wei Chen | en |
| dc.date.accessioned | 2025-09-17T16:09:45Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-12 | - |
| dc.identifier.citation | 1. Landsberg GM, Nichol J, Araujo JA: Cognitive dysfunction syndrome: a disease of canine and feline brain aging. Veterinary Clinics of North America: Small Animal Practice 42:749-768, 2012.
2. Thomson CE, Hahn C: Veterinary neuroanatomy: a clinical approach, Elsevier Health Sciences, 2012. 3. De Lahunta A, Glass EN, Kent M: de Lahunta’s veterinary neuroanatomy and clinical neurology, Elsevier Health Sciences, 2020. 4. Dewey CW, Da Costa RC: Practical guide to canine and feline neurology, John Wiley & Sons, 2015. 5. Platt SR, Olby NJ: BSAVA manual of canine and feline neurology, British Small Animal Veterinary Association, 2014. 6. Nagendran A, José López R, Suñol A, et al: The value of a head turn in neurolocalization. Journal of veterinary internal medicine 38:268-276, 2024. 7. Rusbridge C, Greitz D, Iskandar BJ: Syringomyelia: current concepts in pathogenesis, diagnosis, and treatment. Journal of Veterinary Internal Medicine 20:469-479, 2006. 8. Fukushima K, Fukushima J, Terashima T: The pathways responsible for the characteristic head posture produced by lesions of the interstitial nucleus of Cajal in the cat. Experimental brain research 68:88-102, 1987. 9. Prpar Mihevc S, Majdic G: Canine Cognitive Dysfunction and Alzheimer's Disease - Two Facets of the Same Disease? Front Neurosci 13:604, 2019. 10. Neilson JC, Hart BL, Cliff KD, et al: Prevalence of behavioral changes associated with age-related cognitive impairment in dogs. Journal of the American Veterinary Medical Association 218:1787-1791, 2001. 11. Azkona G, García‐Belenguer S, Chacón G, et al: Prevalence and risk factors of behavioural changes associated with age‐related cognitive impairment in geriatric dogs. Journal of Small Animal Practice 50:87-91, 2009. 12. Osella MC, Re G, Odore R, et al: Canine cognitive dysfunction syndrome: prevalence, clinical signs and treatment with a neuroprotective nutraceutical. Applied Animal Behaviour Science 105:297-310, 2007. 13. Katina S, Farbakova J, Madari A, et al: Risk factors for canine cognitive dysfunction syndrome in Slovakia. Acta Veterinaria Scandinavica 58:1-7, 2015. 14. Salvin HE, McGreevy PD, Sachdev PS, et al: Under diagnosis of canine cognitive dysfunction: a cross-sectional survey of older companion dogs. The veterinary journal 184:277-281, 2010. 15. Madari A, Farbakova J, Katina S, et al: Assessment of severity and progression of canine cognitive dysfunction syndrome using the CAnine DEmentia Scale (CADES). Applied Animal Behaviour Science 171:138-145, 2015. 16. Dewey CW, Davies ES, Xie H, et al: Canine Cognitive Dysfunction: Pathophysiology, Diagnosis, and Treatment. Vet Clin North Am Small Anim Pract 49:477-499, 2019. 17. Tapp PD, Siwak CT, Gao FQ, et al: Frontal lobe volume, function, and β -amyloid pathology in a canine model of aging. Journal of Neuroscience 24:8205 -8213, 2004. 18. Su M-Y, Tapp PD, Vu L, et al: A longitudinal study of brain morphometrics using serial magnetic resonance imaging analysis in a canine model of aging. Progress in Neuro-Psychopharmacology and Biological Psychiatry 29:389-397, 2005. 19. Noh D, Choi S, Choi H, et al: Evaluation of interthalamic adhesion size as an indicator of brain atrophy in dogs with and without cognitive dysfunction. Veterinary radiology & ultrasound 58:581-587, 2017. 20. Hasegawa D, Yayoshi N, Fujita Y, et al: Measurement of interthalamic adhesion thickness as a criteria for brain atrophy in dogs with and without cognitive dysfunction (dementia). Veterinary Radiology & Ultrasound 46:452-457, 2005. 21. Grueter BE, Schulz UG: Age-related cerebral white matter disease (leukoaraiosis): a review. Postgraduate medical journal 88:79-87, 2012. 22. Scarpante E, Cherubini GB, de Stefani A, et al: Magnetic resonance imaging features of leukoaraiosis in elderly dogs. Veterinary Radiology & Ultrasound 58:389-398, 2017. 23. Salvin HE, McGreevy PD, Sachdev PS, et al: The canine cognitive dysfunction rating scale (CCDR): a data-driven and ecologically relevant assessment tool. Vet J 188:331-336, 2011. 24. Prpar Mihevc S, Majdič G: Canine cognitive dysfunction and Alzheimer’s disease–two facets of the same disease? Frontiers in neuroscience 13:604, 2019. 25. González-Martínez Á, Rosado B, Pesini P, et al: Plasma β-amyloid peptides in canine aging and cognitive dysfunction as a model of Alzheimer's disease. Experimental Gerontology 46:590-596, 2011. 26. Panek WK, Murdoch DM, Gruen ME, et al: Plasma amyloid beta concentrations in aged and cognitively impaired pet dogs. Molecular neurobiology 58:483-489, 2021. 27. Vikartovska Z, Farbakova J, Smolek T, et al: Novel diagnostic tools for identifying cognitive impairment in dogs: behavior, biomarkers, and pathology. Frontiers in veterinary science 7:551895, 2021. 28. Schwartz M, Lamb C, Brodbelt D, et al: Canine intracranial neoplasia: clinical risk factors for development of epileptic seizures. Journal of Small Animal Practice 52:632-637, 2011. 29. Redondo JI, Otero PE, Martínez‐Taboada F, et al: Anaesthetic mortality in dogs: a worldwide analysis and risk assessment. Veterinary Record 195:no-no, 2024. 30. Portier K, Ida K: The ASA physical status classification: what is the evidence for recommending its use in veterinary anesthesia?-a systematic review. Front Vet Sci. 2018; 5: 204, in, Vol, 2018. 31. Choksi EJ, Mukherjee K, Sadigh G, et al: Out-of-pocket expenditures for imaging examinations: perspectives from national patient surveys over two decades. Journal of the American College of Radiology 20:18-28, 2023. 32. Crescitelli MED, Ghirotto L, Artioli G, et al: Opening the horizons of clinical reasoning to qualitative research. Acta Bio Medica: Atenei Parmensis 90:8, 2019. 33. Vinten CE, Cobb KA, Mossop LH: The use of contextualized standardized client simulation to develop clinical reasoning in final-year veterinary students. Journal of Veterinary Medical Education 47:56-68, 2020. 34. Maddison JE, Volk HA, Church DB: Clinical reasoning in small animal practice, John Wiley & Sons, 2015. 35. Armasu M, Packer RM, Cook S, et al: An exploratory study using a statistical approach as a platform for clinical reasoning in canine epilepsy. Vet J 202:292-296, 2014. 36. Cardy TJ, De Decker S, Kenny PJ, et al: Clinical reasoning in canine spinal disease: what combination of clinical information is useful? Vet Rec 177:171, 2015. 37. Grapes NJ, Packer RMA, De Decker S: Clinical reasoning in canine cervical hyperaesthesia: which presenting features are important? Vet Rec 187:448, 2020. 38. Grapes NJ, Taylor-Brown FE, Volk HA, et al: Clinical reasoning in feline vestibular syndrome: which presenting features are the most important? Journal of feline medicine and surgery 23:669-678, 2021. 39. Harrison E, Grapes NJ, Volk HA, et al: Clinical reasoning in canine vestibular syndrome: Which presenting factors are important? Vet Rec 188:e61, 2021. 40. Mella SL, Cardy TJ, Volk HA, et al: Clinical reasoning in feline spinal disease: which combination of clinical information is useful? Journal of feline medicine and surgery 22:521-530, 2020. 41. Scalia B, Freeman P: Outcome of the use of clinical reasoning alone in dogs with acute thoracolumbar myelopathy and/or pain. Animals 14:1017, 2024. 42. Studzinski CM, Christie L-A, Araujo JA, et al: Visuospatial function in the beagle dog: an early marker of cognitive decline in a model of human aging and dementia. Neurobiology of learning and memory 86:197-204, 2006. 43. De Risio L, Bhatti S, Muñana K, et al: International veterinary epilepsy task force consensus proposal: diagnostic approach to epilepsy in dogs. BMC veterinary research 11:1-11, 2015. 44. Dewey CW, Rishniw M, Johnson PJ, et al: Interthalamic adhesion size in aging dogs with presumptive spontaneous brain microhemorrhages: a comparative retrospective MRI study of dogs with and without evidence of canine cognitive dysfunction. PeerJ 8:e9012, 2020. 45. Granger N, Smith PM, Jeffery ND: Clinical findings and treatment of non-infectious meningoencephalomyelitis in dogs: a systematic review of 457 published cases from 1962 to 2008. The Veterinary Journal 184:290-297, 2010. 46. Cornelis I, Van Ham L, Gielen I, et al: Clinical presentation, diagnostic findings, prognostic factors, treatment and outcome in dogs with meningoencephalomyelitis of unknown origin: a review. The Veterinary Journal 244:37-44, 2019. 47. Windsor R, Sturges B, Vernau K, et al: Cerebrospinal fluid eosinophilia in dogs. Journal of veterinary internal medicine 23:275-281, 2009. 48. Sykes J, Sturges B, Cannon M, et al: Clinical signs, imaging features, neuropathology, and outcome in cats and dogs with central nervous system cryptococcosis from California. Journal of veterinary internal medicine 24:1427-1438, 2010. 49. Sturges B, Dickinson P, Bollen A, et al: Magnetic resonance imaging and histological classification of intracranial meningiomas in 112 dogs. Journal of Veterinary Internal Medicine 22:586-595, 2008. 50. Miller AD, Miller CR, Rossmeisl JH: Canine primary intracranial cancer: a clinicopathologic and comparative review of glioma, meningioma, and choroid plexus tumors. Frontiers in oncology 9:1151, 2019. 51. José‐López R, Gutierrez‐Quintana R, de la Fuente C, et al: Clinical features, diagnosis, and survival analysis of dogs with glioma. Journal of Veterinary Internal Medicine 35:1902-1917, 2021. 52. Tamura S, Tamura Y, Nakamoto Y, et al: MR imaging of histiocytic sarcoma of the canine brain. Veterinary Radiology & Ultrasound 50:178-181, 2009. 53. Palus V, Volk HA, Lamb CR, et al: MRI features of CNS lymphoma in dogs and cats. Veterinary Radiology & Ultrasound 53:44-49, 2012. 54. Mallol C, Gutierrez‐Quintana R, Hammond G, et al: MRI features of canine hemangiosarcoma affecting the central nervous system. Veterinary Radiology & Ultrasound 63:185-196, 2022. 55. Arnold SA, Platt SR, Gendron KP, et al: Imaging ischemic and hemorrhagic disease of the brain in dogs. Frontiers in veterinary science 7:279, 2020. 56. Schwartz M, Muñana KR, Nettifee-Osborne J: Assessment of the prevalence and clinical features of cryptogenic epilepsy in dogs: 45 cases (2003–2011). Journal of the American Veterinary Medical Association 242:651-657, 2013. 57. Moon S-J, Kim J-W, Kang B-T, et al: Magnetic resonance imaging findings of hepatic encephalopathy in a dog with a portosystemic shunt. Journal of Veterinary Medical Science 74:361-366, 2012. 58. Mortera‐Balsa V, Penderis J, Wessmann A, et al: Magnetic resonance imaging of the lentiform nuclei in dogs with portosystemic shunts. Journal of Small Animal Practice 56:307-311, 2015. 59. Mishra P, Pandey CM, Singh U, et al: Descriptive statistics and normality tests for statistical data. Annals of cardiac anaesthesia 22:67-72, 2019. 60. Snyder JM, Shofer FS, Van Winkle TJ, et al: Canine intracranial primary neoplasia:173 cases (1986–2003). Journal of veterinary internal medicine 20:669-675, 2006. 61. Song R, Vite C, Bradley C, et al: Postmortem evaluation of 435 cases of intracranial neoplasia in dogs and relationship of neoplasm with breed, age, and body weight. Journal of veterinary internal medicine 27:1143-1152, 2013. 62. Foster ES, Carrillo JM, Patnaik AK: Clinical signs of tumors affecting the rostral cerebrum in 43 dogs. Journal of Veterinary Internal Medicine 2:71-74, 1988. 63. Karen RM: Encephalitis and meningitis. Veterinary clinics of north america: small animal practice 26:857-874, 1996. 64. Talarico LR, Schatzberg SJ: Idiopathic granulomatous and necrotising inflammatory disorders of the canine central nervous system: a review and future perspectives. Journal of Small Animal Practice 51:138-149, 2010. 65. Bagley RS, Gavin PR: Seizures as a complication of brain tumors in dogs. Clinical Techniques in Small Animal Practice 13:179-184, 1998. 66. Tombini M, Boscarino M, Di Lazzaro V: Tackling seizures in patients with Alzheimer’s disease. Expert Review of Neurotherapeutics 23:1131-1145, 2023. 67. Palop JJ, Chin J, Roberson ED, et al: Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. Neuron 55:697-711, 2007. 68. Putcha D, Brickhouse M, O'Keefe K, et al: Hippocampal hyperactivation associated with cortical thinning in Alzheimer's disease signature regions in non-demented elderly adults. Journal of Neuroscience 31:17680-17688, 2011. 69. Rodney SB: Pathophysiologic sequelae of intracranial disease. Veterinary Clinics of North America: Small Animal Practice 26:711-733, 1996. 70. Walmsley G, Herrtage M, Dennis R, et al: The relationship between clinical signs and brain herniation associated with rostrotentorial mass lesions in the dog. The Veterinary Journal 172:258-264, 2006. 71. Lewis M, Olby N, Early P, et al: Clinical and diagnostic imaging features of brain herniation in dogs and cats. Journal of Veterinary Internal Medicine 30:1672-1680, 2016. 72. Minato S, Cherubini GB, Della Santa D, et al: Incidence and type of brain herniation associated with intracranial meningioma in dogs and cats. Journal of Veterinary Medical Science 83:267-273, 2021. 73. Frank L, Burigk L, Lehmbecker A, et al: Meningioma and associated cerebral infarction in three dogs. BMC veterinary research 16:1-9, 2020. 74. Kreisl TN, Toothaker T, Karimi S, et al: Ischemic stroke in patients with primary brain tumors. Neurology 70:2314-2320, 2008. 75. Carcaillon L, Pérès K, Péré J-J, et al: Fast cognitive decline at the time of dementia diagnosis: a major prognostic factor for survival in the community. Dementia and geriatric cognitive disorders 23:439-445, 2007. 76. Loeffler DA: Modifiable, non-modifiable, and clinical factors associated with progression of Alzheimer’s disease. Journal of Alzheimer’s Disease 80:1-27, 2021. 77. Fast R, Schütt T, Toft N, et al: An observational study with long‐term follow‐up of canine cognitive dysfunction: Clinical characteristics, survival, and risk factors. Journal of Veterinary Internal Medicine 27:822-829, 2013. 78. Kim S-S, Choi D, Yu H, et al: Prevalence and risk factors of canine cognitive dysfunction syndrome in South Korea. Applied Animal Behaviour Science 268:106066, 2023. 79. Wei EX, Oh ES, Harun A, et al: Increased prevalence of vestibular loss in mild cognitive impairment and Alzheimer’s disease. Current Alzheimer Research 16:1143-1150, 2019. 80. Bosmans J, Jorissen C, Gilles A, et al: Vestibular function in older adults with cognitive impairment: a systematic review. Ear and Hearing 42:1119-1126, 2021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99619 | - |
| dc.description.abstract | 犬認知障礙症候群(Canine Cognitive Dysfunction Syndrome, CCDS)是好發於 老年犬隻的神經退化性疾病,由於其特徵性臨床症狀“行為改變”亦可能發生於 其他影響前腦之疾病,臨床診斷常需依賴高階影像診斷工具來排除其他疾病。然 而臨床實務中,可能受到飼主財務負擔、老年犬麻醉風險及飼主之主觀認知等因 素影響,而無法進行完整的診斷流程。本研究旨在評估是否有特定的臨床特徵與 CCDS 或其他影響前腦之疾病相關,進而找出預測因子,以協助計畫診斷流程時之 臨床推理和輔助飼主溝通。
本研究回朔分析 2019 年 11 月至 2024 年 1 月期間,在國立臺灣大學附設動物 醫院接受磁振造影腦部檢查、年紀大於七歲以上,且表現前腦相關神經症狀之 263 隻犬隻之醫療紀錄,研究內容包含病患基本資料、症狀進程表現、神經學檢查相 關發現及其臨床診斷。罹患 CCDS 之犬隻分別與其他非 CCDS 犬隻、具有進展性 病程之犬隻、診斷為腦瘤之犬隻,及診斷為腦炎之犬隻,進行統計比較分析。所 有臨床變因首先進行單變量分析,並保留相關性達統計意義趨勢(p < 0.3)之因子, 進一步納入多變項邏輯斯迴歸分析,以識別出與 CCDS 顯著相關之臨床因子。 統計結果顯示,相較於其他前腦疾病,年齡較大(OR = 2.114, 95% CI = 1.47 – 3.04)、無癲癇發作(OR = 10.98, 95% CI = 2.32 – 52.63)及無神經功能缺損偏向性之犬隻(OR = 7.46, 95% CI = 1.32 – 41.66),更可能被診斷為犬認知障礙症候群;近一步與具進展性病程的非 CCDS 組比較時,發現慢性病程中出現急性惡化(OR = 0.019, 95% CI = 0.001 – 0.27)、神經功能缺損具偏向性(OR = 0.079, 95% CI = 0.009 – 0.724)以及病灶定位為前腦合併腦幹(OR = 0.013, 95% CI = 0.0 – 0.41)等特徵,皆與具進展性病程但非 CCDS 之其他腦病較為相關。與個別疾病進行比較 後發現,癲癇發作(OR = 0.083 95% CI = 0.013 – 0.541)、在慢性病程中出現急性惡化(OR = 0.123, 95% CI = 0.020 – 0.763)較常與腦部腫瘤有關;若出現神經功能缺損偏向性(OR = 0.032, 95% CI = 0.002 – 0.629)則較與發炎性疾病相關。本研究結果顯示,特定的臨床表現與神經學檢查特徵,有助於臨床獸醫師在面對前腦症狀之中老年犬隻時,進行更精確的鑑別診斷與臨床決策。 | zh_TW |
| dc.description.abstract | Canine cognitive dysfunction syndrome (CCDS) is a common neurodegenerative disease in aging dogs, as its characteristic clinical sign “behavioral changes” can also occur in other diseases affecting the forebrain, advanced diagnostic tools are often required to establish the clinical diagnosis. However, factors such as financial constraints, anesthetic risks in geriatric dogs, and owner assumptions about CCDS often hinder a complete diagnostic workup. The purpose of the study was to evaluate whether specific clinical features are associated with CCDS or other forebrain diseases, aiming to identify predictors that can aid clinical reasoning and facilitate communication with pet owners.
This retrospective study reviewed the medical records of 263 dogs over seven years of age that underwent magnetic resonance imaging (MRI) for forebrain-related neurological signs at the National Taiwan University Veterinary Hospital between November 2019 and January 2024. Clinical data including signalment, disease presentation, neurological examination findings, and final diagnosis were collected and analyzed. Dogs diagnosed with canine cognitive dysfunction syndrome (CCDS) were statistically compared with non-CCDS dogs, non-CCDS dogs with progressive disease course, dogs diagnosed with brain neoplasia, and dogs with encephalitis. All clinical variables were initially assessed using univariate analysis, and variables loosely associated (p < 0.3) were included in a multivariable logistic regression model to identify factors significantly associated with CCDS (p < 0.05). The results showed that dogs with older age (OR = 2.114, 95% CI = 1.47–3.04), absence of seizures (OR = 10.98, 95% CI = 2.32–52.63), and absence of lateralized neurological deficits (OR = 7.46, 95% CI = 1.32–41.66) were more likely to be diagnosed with CCDS than with other forebrain diseases. When compared specifically with non-CCDS dogs with a progressive disease course, features such as a recent deterioration in chronic disease course (OR = 0.019, 95% CI = 0.001–0.27), lateralized neurological deficits (OR = 0.079, 95% CI = 0.009–0.724), and a forebrain together with brainstem lesion localization (OR = 0.013, 95% CI = 0.0–0.41) were significantly associated with non-CCDS conditions. When specific diagnoses were compared with CCDS, the presence of seizure (OR = 0.083, 95% CI = 0.013–0.541) and a recent deterioration in chronic disease course (OR = 0.123, 95% CI = 0.020–0.763) were more commonly associated with brain neoplasia, while lateralized neurological deficits (OR = 0.032, 95% CI = 0.002–0.629) were indicative of encephalitis. These findings suggest that distinct clinical and neurological features may assist veterinary clinicians in making a more accurate differential diagnosis and clinical decision when managing aging dogs presenting with forebrain signs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:09:45Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:09:45Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 ....................................................................................................................................i
中文摘要 .......................................................................................................................... ii ABSTRACT .....................................................................................................................iv CONTENTS .....................................................................................................................vi LIST OF FIGURES ....................................................................................................... viii LIST OF TABLES ............................................................................................................ix Chapter 1 Introduction .............................................................................................. 1 Chapter 2 Literature review......................................................................................3 2.1 Forebrain .........................................................................................................3 2.1.1 Functional neuroanatomy ......................................................................3 2.1.2 Neurological signs of forebrain dysfunction .........................................5 2.2 Canine Cognitive dysfunction syndrome (CCDS) .........................................7 2.2.1 Overview of CCDS ...............................................................................7 2.2.2 Diagnosis of CCDS ...............................................................................8 2.3 Clinical challenges in diagnosing neurological disease in senior dogs ........ 11 2.4 Clinical reasoning in neurological diseases ..................................................13 Chapter 3 Aim of study............................................................................................ 16 Chapter 4 Material and methods ............................................................................17 4.1 Case selection ............................................................................................... 17 4.2 Diagnostic investigations ..............................................................................18 4.3 Evaluated clinical features ............................................................................20 4.3.1 Signalment........................................................................................... 20 4.3.2 Duration of clinical signs, disease onset, and disease progression .....20 4.3.3 Mental status ....................................................................................... 21 4.3.4 Findings from neurological examinations ...........................................21 4.4 Statistical analysis......................................................................................... 23 Chapter 5 Results .....................................................................................................24 5.1 Canine Cognitive dysfunction syndrome (CCDS) vs non-CCDS dogs........27 5.2 CCDS vs non-CCDS with progressive disease nature .................................28 5.3 CCDS vs brain neoplasm ..............................................................................29 5.4 CCDS vs Inflammatory disease ....................................................................30 Chapter 6 Discussion................................................................................................ 49 6.1 Age................................................................................................................49 6.2 Seizure ..........................................................................................................51 6.3 The recent deterioration in a chronic disease nature ....................................52 6.4 Other clinical features ...................................................................................55 6.5 Limitations ....................................................................................................56 Chapter 7 Conclusion .............................................................................................. 58 REFERENCE ..................................................................................................................59 Appendix – raw data .....................................................................................................64 | - |
| dc.language.iso | en | - |
| dc.subject | 犬 | zh_TW |
| dc.subject | 臨床推理 | zh_TW |
| dc.subject | 認知障礙症候群 | zh_TW |
| dc.subject | 前腦疾病 | zh_TW |
| dc.subject | forebrain diseases | en |
| dc.subject | CCDS | en |
| dc.subject | canine | en |
| dc.subject | clinical reasoning | en |
| dc.title | 臨床推理應用於中老年犬隻以區分犬認知障礙症候群與其他前腦疾病 | zh_TW |
| dc.title | Clinical reasoning in differentiating canine cognitive dysfunction syndrome from other forebrain diseases in senior dogs | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃威翔;王尚麟 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Hsiang Huang;Shang-Lin Wang | en |
| dc.subject.keyword | 臨床推理,犬,前腦疾病,認知障礙症候群, | zh_TW |
| dc.subject.keyword | clinical reasoning,canine,forebrain diseases,CCDS, | en |
| dc.relation.page | 69 | - |
| dc.identifier.doi | 10.6342/NTU202504126 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 臨床動物醫學研究所 | - |
| dc.date.embargo-lift | 2030-07-30 | - |
| 顯示於系所單位: | 臨床動物醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 780.13 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
