請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99604完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李家岩 | zh_TW |
| dc.contributor.advisor | Chia-Yen Lee | en |
| dc.contributor.author | 許智堯 | zh_TW |
| dc.contributor.author | Chih-Yao Hsu | en |
| dc.date.accessioned | 2025-09-17T16:07:01Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734-749.
Ai, Q., Azizi, V., Chen, X., & Zhang, Y. (2018). Learning Heterogeneous Knowledge Base Embeddings for Explainable Recommendation. Algorithms, 11(9), 137. Belluf, T., Xavier, L., & Giglio, R. (2012, September). Case study on the business value impact of personalized recommendations on a large online retailer. In Proceedings of the sixth ACM conference on Recommender systems (pp. 277-280). Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12(4), 331-370. Chen, J., Song, L., Wainwright, M. J., & Jordan, M. I. (2018). Learning to explain: An information-theoretic perspective on model interpretation. In Proceedings of the 2018 Conference on Learning Theory. Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., Anil, R., Haque, Z., Hong, L., Jain, V., Liu, X., & Shah, H. (2016). Wide & Deep Learning for Recommender Systems. arXiv:1606.07792. Covington, P., Adams, J., & Sargin, E. (2016). Deep Neural Networks for YouTube Recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems. Fayyaz, Z., Ebrahimian, M., Nawara, D., Ibrahim, A., & Kashef, R. (2020). Recommendation Systems: Algorithms, Challenges, Metrics, and Business Opportunities. Applied Sciences. Geng, S., Fu, Z., Tan, J., Ge, Y., de Melo, G., & Zhang, Y. (2022). Path Language Modeling over Knowledge Graphs for Explainable Recommendation. In Proceedings of the ACM Web Conference 2022 (WWW '22). Association for Computing Machinery, New York, NY, USA, 946–955. Goodman, B., & Flaxman, S. (2017). European Union regulations on algorithmic decision-making and a “right to explanation”. AI Magazine, 38(3), 50-57. Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive Representation Learning on Large Graphs. NeurIPS 2017. He, X. & Chua, T.-S. (2017). Neural Factorization Machines for Sparse Predictive Analytics. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '17) (pp. 355–364). Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907. Kipf, T. N., & Welling, M. (2016). Variational Graph Auto-Encoders. NIPS Workshop on Bayesian Deep Learning 2016. Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, (8), 30-37.Ai, Q.; Azizi, V.; Chen, X.; & Zhang, Y. (2018). Learning Heterogeneous Knowledge Base Embeddings for Explainable Recommendation. Algorithms Lao, N., Mitchell, T., & Cohen, W. W. (2011). Random Walk Inference and Learning in A Large Scale Knowledge Base. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, 529–539, Edinburgh, Scotland, UK. Lin, X. V., Socher, R., & Xiong, C. (2018). Multi-Hop Knowledge Graph Reasoning with Reward Shaping. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (pp. 3243–3253), Brussels, Belgium. Lops, P., de Gemmis, M., & Semeraro, G. (2011). Content-based recommender systems: State of the art and trends. In Recommender Systems Handbook (pp. 73-105). Springer, Boston, MA. Pei, C., Zhang, Y., Zhang, Y., Sun, F., Lin, X., Sun, H., ... & Pei, D. (2019, September). Personalized re-ranking for recommendation. In Proceedings of the 13th ACM conference on recommender systems (pp. 3-11). Qian, K., Jain S. (2024) Digital Content Creation: An Analysis of the Impact of Recommendation Systems. Management Science 0(0). Rendle, S. (2010). Factorization Machines. 2010 IEEE International Conference on Data Mining (pp. 995-1000). Salian, P., Murthy, A., & Salian, S. (2022, December). Analysis of telecom churn using machine learning techniques. In 2022 International Conference on Artificial Intelligence and Data Engineering (AIDE) (pp. 58-63). IEEE. Sato, M., Singh, J., Takemori, S., Sonoda, T., Zhang, Q., & Ohkuma, T. (2019, September). Uplift-based evaluation and optimization of recommenders. In Proceedings of the 13th ACM Conference on Recommender Systems (pp. 296-304). Satopaa, V., Albrecht, J., Irwin, D., & Raghavan, B. (2011, June). Finding a" kneedle" in a haystack: Detecting knee points in system behavior. In 2011 31st international conference on distributed computing systems workshops (pp. 166-171). IEEE. Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R., Titov, I., & Welling, M. (2018). Modeling relational data with graph convolutional networks. In The Semantic Web: 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, Proceedings 15 (pp. 593-607). Springer International Publishing. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y. (2018). Graph Attention Networks. ICLR 2018. Wang, X., He, X., Cao, Y., Liu, M., & Chua, T. S. (2019a). Kgat: Knowledge graph attention network for recommendation. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 950-958). Wang, X., Wang, D., Xu, C., He, X., Cao, Y., & Chua, T. S. (2019b). Explainable reasoning over knowledge graphs for recommendation. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence (AAAI'19/IAAI'19/EAAI'19). AAAI Press, Article 653, 5329–5336. Wang, X., He, X., & Chua, T. S. (2019c). Neural graph collaborative filtering. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 195-204). Wu, Y., DuBois, C., Zheng, A. X., & Ester, M. (2016). Collaborative denoising auto-encoders for top-n recommender systems. In Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. Xian, Y.; Fu, Z.; Zhao, H.; Ge, Y.; Chen, X.; Huang, Q.; Geng, S.; Qin, Z.; de Melo, G.; Muthukrishnan, S.; & Zhang, Y. (2020). CAFE: Coarse-to-Fine Neural Symbolic Reasoning for Explainable Recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (CIKM '20). Association for Computing Machinery, New York, NY, USA, 1645–1654. Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How Powerful are Graph Neural Networks? ICLR 2019. Yang, B., Yih, W.-T., He, X., Gao, J., & Deng, L. (2015). Embedding Entities and Relations for Learning and Inference in Knowledge Bases. arXiv preprint arXiv:1412.6575. Yang, Z., Cohen, W. W., & Salakhutdinov, R. (2016). Revisiting Semi-Supervised Learning with Graph Embeddings. ICML 2016. Ying, R., You, J., Morris, C., Ren, X., Hamilton, W., & Leskovec, J. (2018). Hierarchical Graph Representation Learning with Differentiable Pooling. NeurIPS 2018. Yu, J., Yin, H., Xia, X., Chen, T., Li, J., & Huang, Z. (2023). Self-supervised learning for recommender systems: A survey. IEEE Transactions on Knowledge and Data Engineering. Zhang, F., Yuan, N. J., Lian, D., Xie, X., & Ma, W. (2016). Collaborative knowledge base embedding for recommender systems. In SIGKDD, 353–362. Zhang, M., & Chen, Y. (2018). Link prediction based on graph neural networks. Advances in neural information processing systems, 31. Zhang, Q., & Wang, Y. (2020). A survey on neural network-based explainable recommendation. arXiv preprint arXiv:2010.10061. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99604 | - |
| dc.description.abstract | 本研究提出一套混合式圖推薦模型,結合了嵌入式方法與路徑式方法,以彌補兩者各自的限制。嵌入式方法擅長透過鄰近聚合捕捉語意擴散,但缺乏可解釋性;路徑式方法則能執行多跳推理,然而易受到路徑爆炸與訓練與推論分布不一致的影響。為整合兩者優勢,本研究採用關聯圖卷積網路(R-GCN),產生具語境化的實體與關係嵌入,並用以引導路徑選擇與序列建模。此外,設計一組自訂損失函數,透過全域關係率(Global Relationship Rate)平衡任務導向與語意擴散的學習需求。為解決路徑過載問題並對齊訓練與推論分布,本研究提出一套以嵌入為基礎的可信度評分機制作為路徑選擇模組。實驗結果顯示,在 MovieLens 與 Amazon Musical Instruments 資料集上,本模型於 precision@10 與 NDCG@10 指標皆穩定優於各項基線方法,且在弱勢使用者的推薦品質(CVAR@10)上也有顯著改善。此外,由於路徑序列直接參與預測過程,本模型天生具備可解釋性,有助於提升推薦透明度與使用者信任。 | zh_TW |
| dc.description.abstract | This study proposes a hybrid model for graph-based recommendation that integrates embedding-based and path-based approaches to address their respective limitations. While the former captures diffusive semantics via neighborhood aggregation but lacks interpretability, the latter enables multi-hop reasoning yet suffers from path explosion and train-inference distribution mismatch. To bridge these gaps, we incorporate a Relational Graph Convolutional Network (R-GCN) to generate contextualized entity and relation embeddings, which guide both path selection and sequential modeling. A custom loss function balances task-specific and global relationship learning through the Global Relationship Rate. To mitigate the path overload and align path distributions between training and inference, we design a path selection module based on embedding-informed credibility scores. Experiments on MovieLens and Amazon Musical Instruments datasets show that our model consistently outperforms baselines in precision@10 and NDCG@10, while also improving fairness for the worst-served users as measured by CVAR@10. Furthermore, as path sequences are used directly in prediction, the model inherently provides interpretable recommendations, enhancing transparency and trust. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:07:01Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:07:01Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
Abstract ii 摘要 iii Table of content iv List of figures vii List of tables viii Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Research Objective 4 1.4 Thesis Architecture 6 Chapter 2 Literature Review 7 2.1 Traditional Recommendation System 7 2.2 Knowledge Graph-based Recommendation System 10 2.3 Graph Neural Networks 17 Chapter 3 Methodologies 21 3.1 Problem Description 21 3.2 Model Architecture 23 3.3 Training/Inference Framework 25 3.4 Relational Graph Convolution Layer 27 3.5 Path sequence construction 31 3.6 Knowledge-aware Recurrent Network 32 Chapter 4 Experiments 36 4.1 Experiment Setup 36 4.1.1 Dataset Description 36 4.1.2 Evaluation Metrics 37 4.2 Experiment Result 39 4.2.1 Performance comparison (RQ1) 39 4.2.2 Impact of Global Relationship Rate (γ) (RQ2) 44 4.2.3 Case Study (RQ3) 46 4.2.4 Management Implications 48 Chapter 5 Conclusion and Future Works 51 5.1 Conclusion 51 5.2 Future Works 52 References 54 | - |
| dc.language.iso | en | - |
| dc.subject | 圖結構推薦 | zh_TW |
| dc.subject | 可解釋推薦 | zh_TW |
| dc.subject | 圖神經網路 | zh_TW |
| dc.subject | 知識圖譜 | zh_TW |
| dc.subject | 路徑推理 | zh_TW |
| dc.subject | 混合圖結構模型 | zh_TW |
| dc.subject | Graph-based Recommendation | en |
| dc.subject | Hybrid Graph-based Model | en |
| dc.subject | Path Reasoning | en |
| dc.subject | Knowledge Graph | en |
| dc.subject | Graph Neural Networks | en |
| dc.subject | Explainable Recommendation | en |
| dc.title | 以關聯圖卷積機制建構可解釋知識感知循環網絡於推薦系統 | zh_TW |
| dc.title | Explainable Knowledge-aware Recurrent Networks with Relational Graph Convolution Mechanism for Recommendation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 莊皓鈞;周彥君;盧信銘 | zh_TW |
| dc.contributor.oralexamcommittee | Howard Hao-Chun Chuang;Yen-Chun Chou;Hsin-Min Lu | en |
| dc.subject.keyword | 圖結構推薦,可解釋推薦,圖神經網路,知識圖譜,路徑推理,混合圖結構模型, | zh_TW |
| dc.subject.keyword | Graph-based Recommendation,Explainable Recommendation,Graph Neural Networks,Knowledge Graph,Path Reasoning,Hybrid Graph-based Model, | en |
| dc.relation.page | 60 | - |
| dc.identifier.doi | 10.6342/NTU202503326 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 資訊管理學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 1.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
