請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99599完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅凱尹 | zh_TW |
| dc.contributor.advisor | Kai-Yin Lo | en |
| dc.contributor.author | 張浩誠 | zh_TW |
| dc.contributor.author | Hao-Cheng Chang | en |
| dc.date.accessioned | 2025-09-17T16:06:06Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-14 | - |
| dc.identifier.citation | 第參章、參考文獻
. Acelas, N. Y., Martin, B. D., Lopez, D., & Jefferson, B. (2015). Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere, 119, 1353-1360. https://doi.org/10.1016/j.chemosphere.2014.02.024 Achat, D. L., Sperandio, M., Daumer, M.-L., Santellani, A.-C., Prud'Homme, L., Akhtar, M., & Morel, C. (2014). Plant-availability of phosphorus recycled from pig manures and dairy effluents as assessed by isotopic labeling techniques. Geoderma, 232-234, 24-33. https://doi.org/10.1016/j.geoderma.2014.04.028 Adnan, A., Mavinic, D. S., & Koch, F. A. (2003). Pilot-scale study of phosphorus recovery through struvite crystallization - examining the process feasibility. Journal of Environmental Engineering and Science, 2(5), 315-324. https://doi.org/10.1139/s03-040 Ahmed, N., Shim, S., Won, S., & Ra, C. (2018). Struvite recovered from various types of wastewaters: Characteristics, soil leaching behaviour, and plant growth. Land Degradation & Development, 29(9), 2864-2879. https://doi.org/10.1002/ldr.3010 Akuzawa, M., Hori, T., Haruta, S., Ueno, Y., Ishii, M., & Igarashi, Y. (2011). Distinctive responses of metabolically active microbiota to acidification in a thermophilic anaerobic digester. Microb Ecol, 61(3), 595-605. https://doi.org/10.1007/s00248-010-9788-1 Amann, T., Hartmann, J., Struyf, E., de Oliveira Garcia, W., Fischer, E. K., Janssens, I., Meire, P., & Schoelynck, J. (2020). Enhanced Weathering and related element fluxes – a cropland mesocosm approach. Biogeosciences, 17(1), 103-119. https://doi.org/10.5194/bg-17-103-2020 Anda, M., Shamshuddin, J., & Fauziah, C. I. (2013). Increasing negative charge and nutrient contents of a highly weathered soil using basalt and rice husk to promote cocoa growth under field conditions. Soil and Tillage Research, 132, 1-11. https://doi.org/10.1016/j.still.2013.04.005 Anda, M., Shamshuddin, J., & Fauziah, C. I. (2015). Improving chemical properties of a highly weathered soil using finely ground basalt rocks. Catena, 124, 147-161. https://doi.org/10.1016/j.catena.2014.09.012 Andersson, I., & Backlund, A. (2008). Structure and function of Rubisco. Plant Physiol Biochem, 46(3), 275-291. https://doi.org/10.1016/j.plaphy.2008.01.001 Antonini, S., Arias, M. A., Eichert, T., & Clemens, J. (2012). Greenhouse evaluation and environmental impact assessment of different urine-derived struvite fertilizers as phosphorus sources for plants. Chemosphere, 89(10), 1202-1210. https://doi.org/10.1016/j.chemosphere.2012.07.026 Aoshima, M., & Igarashi, Y. (2006). A novel oxalosuccinate-forming enzyme involved in the reductive carboxylation of 2-oxoglutarate in Hydrogenobacter thermophilus TK-6. Mol Microbiol, 62(3), 748-759. https://doi.org/10.1111/j.1365-2958.2006.05399.x Aoshima, M., & Igarashi, Y. (2008). Nondecarboxylating and decarboxylating isocitrate dehydrogenases: oxalosuccinate reductase as an ancestral form of isocitrate dehydrogenase. J Bacteriol, 190(6), 2050-2055. https://doi.org/10.1128/JB.01799-07 Arce-Cordero, J. A., Liu, T., Ravelo, A., Lobo, R. R., Agustinho, B. C., Monteiro, H. F., Jeong, K. C., & Faciola, A. P. (2022). Effects of calcium-magnesium carbonate and calcium-magnesium hydroxide as supplemental sources of magnesium on ruminal microbiome. Transl Anim Sci, 6(3), txac092. https://doi.org/10.1093/tas/txac092 Arellano-Jimenez, M. J., Garcia-Garcia, R., & Reyes-Gasga, J. (2009). Synthesis and hydrolysis of octacalcium phosphate and its characterization by electron microscopy and X-ray diffraction. Journal of Physics and Chemistry of Solids, 70(2), 390-395. https://doi.org/10.1016/j.jpcs.2008.11.001 Armour, K., Collins, W., Dufresne, J.-L., Frame, D., Lunt, D. J., Mauritsen, T., Palmer, M. D., Watanabe, M., Wild, M., & Hua, Z. (2023). The Earth’s Energy Budget, Climate Feedbacks and Climate Sensitivity. In Climate Change 2021 – The Physical Science Basis (pp. 923-1054). https://doi.org/10.1017/9781009157896.009 Badger, M. R., & Bek, E. J. (2008). Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. J Exp Bot, 59(7), 1525-1541. https://doi.org/10.1093/jxb/erm297 Badger, M. R., & Price, G. D. (2003). CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot, 54(383), 609-622. https://doi.org/10.1093/jxb/erg076 Bassham, J. A., Benson, A. A., & Calvin, M. (1950). THE PATH OF CARBON IN PHOTOSYNTHESIS: VIII. THE RÔLE OF MALIC ACID. Journal of Biological Chemistry, 185(2), 781-787. https://doi.org/https://doi.org/10.1016/S0021-9258(18)56368-7 Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. Proceedings of the international AAAI conference on web and social media, Beerling, D. J. (2017). Enhanced rock weathering: biological climate change mitigation with co-benefits for food security? Biol Lett, 13(4). https://doi.org/10.1098/rsbl.2017.0149 Beerling, D. J., Leake, J. R., Long, S. P., Scholes, J. D., Ton, J., Nelson, P. N., Bird, M., Kantzas, E., Taylor, L. L., Sarkar, B., Kelland, M., DeLucia, E., Kantola, I., Muller, C., Rau, G., & Hansen, J. (2018). Farming with crops and rocks to address global climate, food and soil security. Nat Plants, 4(3), 138-147. https://doi.org/10.1038/s41477-018-0108-y Bento, C. F., Marques, F., Fernandes, R., & Pereira, P. (2010). Methylglyoxal alters the function and stability of critical components of the protein quality control. Plos One, 5(9), e13007. https://doi.org/10.1371/journal.pone.0013007 Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol, 68(1), 1-13. https://doi.org/10.1111/j.1574-6941.2009.00654.x Berg, I. A. (2011). Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol, 77(6), 1925-1936. https://doi.org/10.1128/AEM.02473-10 Berg, I. A., Keppen, O. I., Krasil'nikova, E. N., Ugol'kova, N. V., & Ivanovskii, R. N. (2005). [Carbon metabolism of filamentous anoxygenic phototrophic bacteria of the family Oscillochloridaceae]. Mikrobiologiia, 74(3), 305-312. https://doi.org/https://doi.org/10.1007/s11021-005-0060-5 Berg, I. A., Kockelkorn, D., Buckel, W., & Fuchs, G. (2007). A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science, 318(5857), 1782-1786. https://doi.org/10.1126/science.1149976 Berg, I. A., Kockelkorn, D., Ramos-Vera, W. H., Say, R. F., Zarzycki, J., Hugler, M., Alber, B. E., & Fuchs, G. (2010). Autotrophic carbon fixation in archaea. Nat Rev Microbiol, 8(6), 447-460. https://doi.org/10.1038/nrmicro2365 Berg, I. A., Ramos-Vera, W. H., Petri, A., Huber, H., & Fuchs, G. (2010). Study of the distribution of autotrophic CO2 fixation cycles in Crenarchaeota. Microbiology (Reading), 156(Pt 1), 256-269. https://doi.org/10.1099/mic.0.034298-0 Biddle, A., Stewart, L., Blanchard, J., & Leschine, S. (2013). Untangling the Genetic Basis of Fibrolytic Specialization by Lachnospiraceae and Ruminococcaceae in Diverse Gut Communities. Diversity, 5(3), 627-640. https://doi.org/10.3390/d5030627 Biegel, E., & Muller, V. (2010). Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. Proc Natl Acad Sci U S A, 107(42), 18138-18142. https://doi.org/10.1073/pnas.1010318107 Blake, G. (1986). Bulk density. Methods of Soil Analysis. Part, 1. Blanc‐Betes, E., Kantola, I. B., Gomez‐Casanovas, N., Hartman, M. D., Parton, W. J., Lewis, A. L., Beerling, D. J., & DeLucia, E. H. (2020). In silico assessment of the potential of basalt amendments to reduce N2O emissions from bioenergy crops. GCB Bioenergy, 13(1), 224-241. https://doi.org/10.1111/gcbb.12757 Blochl, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H. W., & Stetter, K. O. (1997). Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles, 1(1), 14-21. https://doi.org/10.1007/s007920050010 Booker, N. A., Priestley, A. J., & Fraser, I. H. (1999). Struvite formation in wastewater treatment plants: Opportunities for nutrient recovery. Environmental Technology, 20(7), 777-782. https://doi.org/Doi 10.1080/09593332008616874 Borgerding, J. (1972). Phosphate Deposits in Digestion Systems. Journal Water Pollution Control Federation, 44(5), 813. <Go to ISI>://WOS:A1972M464300009 Borrel, G., Adam, P. S., & Gribaldo, S. (2016). Methanogenesis and the Wood-Ljungdahl Pathway: An Ancient, Versatile, and Fragile Association. Genome Biol Evol, 8(6), 1706-1711. https://doi.org/10.1093/gbe/evw114 Brown, K., Harrison, J., & Bowers, K. (2018). Struvite Precipitation from Anaerobically Digested Dairy Manure. Water, Air, & Soil Pollution, 229(7). https://doi.org/10.1007/s11270-018-3855-5 Bryant, D. A., & Frigaard, N. U. (2006). Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol, 14(11), 488-496. https://doi.org/10.1016/j.tim.2006.09.001 Burns, R. T., Moody, L. B., Celen, I., & Buchanan, J. R. (2003). Optimization of phosphorus precipitation from swine manure slurries to enhance recovery. Water Science and Technology, 48(1), 139-146. https://doi.org/DOI 10.2166/wst.2003.0037 Byloos, B., Maan, H., Van Houdt, R., Boon, N., & Leys, N. (2018). The Ability of Basalt to Leach Nutrients and Support Growth of Cupriavidus metallidurans CH34 Depends on Basalt Composition and Element Release. Geomicrobiology Journal, 35(5), 438-446. https://doi.org/10.1080/01490451.2017.1392650 Cabeza, R., Steingrobe, B., Römer, W., & Claassen, N. (2011). Effectiveness of recycled P products as P fertilizers, as evaluated in pot experiments. Nutrient Cycling in Agroecosystems, 91(2), 173-184. https://doi.org/10.1007/s10705-011-9454-0 Caldwell, P. E., MacLean, M. R., & Norris, P. R. (2007). Ribulose bisphosphate carboxylase activity and a Calvin cycle gene cluster in Sulfobacillus species. Microbiology (Reading), 153(Pt 7), 2231-2240. https://doi.org/10.1099/mic.0.2007/006262-0 Calvin, M. (1962). The path of carbon in photosynthesis. Science, 135(3507), 879-889. https://doi.org/10.1126/science.135.3507.879 Campanaro, S., Treu, L., Kougias, P. G., De Francisci, D., Valle, G., & Angelidaki, I. (2016). Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol Biofuels, 9, 26. https://doi.org/10.1186/s13068-016-0441-1 Capdevielle, A., Sykorova, E., Biscans, B., Beline, F., & Daumer, M. L. (2013). Optimization of struvite precipitation in synthetic biologically treated swine wastewater-Determination of the optimal process parameters. Journal of Hazardous Materials, 244, 357-369. https://doi.org/10.1016/j.jhazmat.2012.11.054 Carson, J. K., Campbell, L., Rooney, D., Clipson, N., & Gleeson, D. B. (2009). Minerals in soil select distinct bacterial communities in their microhabitats. FEMS Microbiol Ecol, 67(3), 381-388. https://doi.org/10.1111/j.1574-6941.2008.00645.x Carson, J. K., Rooney, D., Gleeson, D. B., & Clipson, N. (2007). Altering the mineral composition of soil causes a shift in microbial community structure. FEMS Microbiol Ecol, 61(3), 414-423. https://doi.org/10.1111/j.1574-6941.2007.00361.x Caspi, R., Billington, R., Ferrer, L., Foerster, H., Fulcher, C. A., Keseler, I. M., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L. A., Ong, Q., Paley, S., Subhraveti, P., Weaver, D. S., & Karp, P. D. (2016). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res, 44(D1), D471-480. https://doi.org/10.1093/nar/gkv1164 Cegelski, L., & Schaefer, J. (2006). NMR determination of photorespiration in intact leaves using in vivo 13CO2 labeling. J Magn Reson, 178(1), 1-10. https://doi.org/10.1016/j.jmr.2005.10.010 Che, J., Wu, Y., Yang, H., Chang, Y., Wu, W., Lyu, L., Wang, X., Cao, F., & Li, W. (2024). Metabolites of blueberry roots at different developmental stages strongly shape microbial community structure and intra-kingdom interactions at the root-soil interface. Sci Total Environ, 947, 174333. https://doi.org/10.1016/j.scitotenv.2024.174333 Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresour Technol, 99(10), 4044-4064. https://doi.org/10.1016/j.biortech.2007.01.057 Chou, P.-Y., Chang, H.-C., Lo, K.-Y., & Wang, S.-L. (2020). Development of a quick and specific method to remove calcium from anaerobic digestion system to increase the recovery of struvite precipitation. [poster paper]. The 58th General Assembly of the Taiwan Agricultural Chemical Society Symposium, Cieślik, B., & Konieczka, P. (2017). A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. Journal of Cleaner Production, 142, 1728-1740. https://doi.org/10.1016/j.jclepro.2016.11.116 Cockell, C. S., Kelly, L. C., & Marteinsson, V. (2013). Actinobacteria—An Ancient Phylum Active in Volcanic Rock Weathering. Geomicrobiology Journal, 30(8), 706-720. https://doi.org/10.1080/01490451.2012.758196 Cockell, C. S., Olsson, K., Knowles, F., Kelly, L., Herrera, A., Thorsteinsson, T., & Marteinsson, V. (2009). Bacteria in Weathered Basaltic Glass, Iceland. Geomicrobiology Journal, 26(7), 491-507. https://doi.org/10.1080/01490450903061101 Cordell, D., Rosemarin, A., Schroder, J. J., & Smit, A. L. (2011). Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere, 84(6), 747-758. https://doi.org/10.1016/j.chemosphere.2011.02.032 Crouch, S. R. (1967). A Mechanistic Investigation of Molybdenum Blue Method for Determination of Phosphate. Analytical Chemistry, 39(12), 1405-&. https://doi.org/DOI 10.1021/ac60256a052 Crutchik, D., & Garrido, J. M. (2011). Struvite crystallization versus amorphous magnesium and calcium phosphate precipitation during the treatment of a saline industrial wastewater. Water Science and Technology, 64(12), 2460-2467. https://doi.org/10.2166/wst.2011.836 Daughney, C. J., Rioux, J.-P., Fortin, D., & Pichler, T. (2004). Laboratory Investigation of the Role of Bacteria in the Weathering of Basalt Near Deep Sea Hydrothermal Vents. Geomicrobiology Journal, 21(1), 21-31. https://doi.org/10.1080/01490450490253437 de-Bashan, L. E., & Bashan, Y. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003). Water Research, 38(19), 4222-4246. https://doi.org/10.1016/j.watres.2004.07.014 Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van der Bruggen, B., Verstraete, W., Rabaey, K., & Meesschaert, B. (2015). Global Phosphorus Scarcity and Full-Scale P-Recovery Techniques: A Review. Critical Reviews in Environmental Science and Technology, 45(4), 336-384. https://doi.org/10.1080/10643389.2013.866531 Dessert, C., Dupré, B., Gaillardet, J., François, L. M., & Allègre, C. J. (2003). Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology, 202(3-4), 257-273. https://doi.org/10.1016/j.chemgeo.2002.10.001 Ding, S. Y., Rincon, M. T., Lamed, R., Martin, J. C., McCrae, S. I., Aurilia, V., Shoham, Y., Bayer, E. A., & Flint, H. J. (2001). Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens. J Bacteriol, 183(6), 1945-1953. https://doi.org/10.1128/JB.183.6.1945-1953.2001 Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., Huttenhower, C., & Langille, M. G. I. (2020). PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 38(6), 685-688. https://doi.org/10.1038/s41587-020-0548-6 Doyle, J. D., & Parsons, S. A. (2002). Struvite formation, control and recovery. Water Research, 36(16), 3925-3940. https://doi.org/Pii S0043-1354(02)00126-4 Doi 10.1016/S0043-1354(02)00126-4 Dragone, N. B., Hoffert, M., Strickland, M. S., & Fierer, N. (2024). Taxonomic and genomic attributes of oligotrophic soil bacteria. ISME Commun, 4(1), ycae081. https://doi.org/10.1093/ismeco/ycae081 Drake, H. L., Gossner, A. S., & Daniel, S. L. (2008). Old acetogens, new light. Ann N Y Acad Sci, 1125, 100-128. https://doi.org/10.1196/annals.1419.016 Dyksma, S., Jansen, L., & Gallert, C. (2020). Syntrophic acetate oxidation replaces acetoclastic methanogenesis during thermophilic digestion of biowaste. Microbiome, 8(1), 105. https://doi.org/10.1186/s40168-020-00862-5 Egle, L., Rechberger, H., Krampe, J., & Zessner, M. (2016). Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Science of the Total Environment, 571, 522-542. https://doi.org/10.1016/j.scitotenv.2016.07.019 Eisenhut, M., Ruth, W., Haimovich, M., Bauwe, H., Kaplan, A., & Hagemann, M. (2008). The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc Natl Acad Sci U S A, 105(44), 17199-17204. https://doi.org/10.1073/pnas.0807043105 Evans, M. C., Buchanan, B. B., & Arnon, D. I. (1966). A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proceedings of the National Academy of Sciences, 55(4), 928-934. https://doi.org/10.1073/pnas.55.4.928 Eveborn, D., Gustafsson, J. P., Hesterberg, D., & Hillier, S. (2009). XANES Speciation of P in Environmental Samples: An Assessment of Filter Media for on-Site Wastewater Treatment. Environmental Science & Technology, 43(17), 6515-6521. https://doi.org/10.1021/es901084z Fattah, K. P., Mavinic, D. S., Koch, F. A., & Jacob, C. (2008). Determining the feasibility of phosphorus recovery as struvite from filter press centrate in a secondary wastewater treatment plant. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 43(7), 756-764. https://doi.org/10.1080/10934520801960052 Feng, C., Yi, Z., Qian, W., Liu, H., & Jiang, X. (2023). Rotations improve the diversity of rhizosphere soil bacterial communities, enzyme activities and tomato yield. PLoS One, 18(1), e0270944. https://doi.org/10.1371/journal.pone.0270944 Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an ecological classification of soil bacteria. Ecology, 88(6), 1354-1364. Finley, B. K., Mau, R. L., Hayer, M., Stone, B. W., Morrissey, E. M., Koch, B. J., Rasmussen, C., Dijkstra, P., Schwartz, E., & Hungate, B. A. (2022). Soil minerals affect taxon-specific bacterial growth. ISME J, 16(5), 1318-1326. https://doi.org/10.1038/s41396-021-01162-y Frey, B., Rieder, S. R., Brunner, I., Plotze, M., Koetzsch, S., Lapanje, A., Brandl, H., & Furrer, G. (2010). Weathering-associated bacteria from the Damma glacier forefield: physiological capabilities and impact on granite dissolution. Appl Environ Microbiol, 76(14), 4788-4796. https://doi.org/10.1128/AEM.00657-10 Fuchs, G., Stupperich, E., & Eden, G. (1980). Autotrophic CO2 fixation in Chlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Archives of Microbiology, 128(1), 64-71. https://doi.org/10.1007/bf00422307 Gao, Y., & Wu, M. (2018). Free-living bacterial communities are mostly dominated by oligotrophs. bioRxiv, 350348. Gardner, W. H. (1986). Water content. Methods of soil analysis: Part 1 physical and mineralogical methods, 5, 493-544. Gauss, D., Schoenenberger, B., & Wohlgemuth, R. (2014). Chemical and enzymatic methodologies for the synthesis of enantiomerically pure glyceraldehyde 3-phosphates. Carbohydr Res, 389, 18-24. https://doi.org/10.1016/j.carres.2013.12.023 Gee, G. (1986). Particle size analysis. Methods of soil analysis/ASA and SSSA. Ghosh, S., Lobanov, S., & Lo, V. K. (2019). An overview of technologies to recover phosphorus as struvite from wastewater: advantages and shortcomings. Environmental Science and Pollution Research, 26(19), 19063-19077. https://doi.org/10.1007/s11356-019-05378-6 Giguet-Covex, C., Poulenard, J., Chalmin, E., Arnaud, F., Rivard, C., Jenny, J. P., & Dorioz, J. M. (2013). XANES spectroscopy as a tool to trace phosphorus transformation during soil genesis and mountain ecosystem development from lake sediments. Geochimica Et Cosmochimica Acta, 118, 129-147. https://doi.org/10.1016/j.gca.2013.04.017 Goltsman, D. S. A., Denef, V. J., Singer, S. W., VerBerkmoes, N. C., Lefsrud, M., Mueller, R. S., Dick, G. J., Sun, C. L., Wheeler, K. E., Zemla, A., Baker, B. J., Hauser, L., Land, M., Shah, M. B., Thelen, M. P., Hettich, R. L., & Banfield, J. F. (2009). Community Genomic and Proteomic Analyses of Chemoautotrophic Iron-Oxidizing“Leptospirillum rubarum” (Group II) and “Leptospirillum ferrodiazotrophum” (Group III) Bacteria in Acid Mine Drainage Biofilms. Applied and Environmental Microbiology, 75(13), 4599-4615. https://doi.org/10.1128/aem.02943-08 Gougoulias, C., Clark, J. M., & Shaw, L. J. (2014). The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric, 94(12), 2362-2371. https://doi.org/10.1002/jsfa.6577 Hallam, S. J., Mincer, T. J., Schleper, C., Preston, C. M., Roberts, K., Richardson, P. M., & DeLong, E. F. (2006). Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol, 4(4), e95. https://doi.org/10.1371/journal.pbio.0040095 Hao, L., Fan, L., Chapleur, O., Guenne, A., Bize, A., Bureau, C., Lu, F., He, P., Bouchez, T., & Mazeas, L. (2021). Gradual development of ammonia-induced syntrophic acetate-oxidizing activities under mesophilic and thermophilic conditions quantitatively tracked using multiple isotopic approaches. Water Research, 204, 117586. https://doi.org/10.1016/j.watres.2021.117586 Hao, X. D., Wang, C. C., Lan, L., & van Loosdrecht, M. C. (2008). Struvite formation, analytical methods and effects of pH and Ca2+. Water Science and Technology, 58(8), 1687-1692. https://doi.org/10.2166/wst.2008.557 Haque, F., Santos, R. M., Dutta, A., Thimmanagari, M., & Chiang, Y. W. (2019). Co-Benefits of Wollastonite Weathering in Agriculture: CO(2) Sequestration and Promoted Plant Growth. ACS Omega, 4(1), 1425-1433. https://doi.org/10.1021/acsomega.8b02477 Harirchi, S., Wainaina, S., Sar, T., Nojoumi, S. A., Parchami, M., Parchami, M., Varjani, S., Khanal, S. K., Wong, J., Awasthi, M. K., & Taherzadeh, M. J. (2022). Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): a review. Bioengineered, 13(3), 6521-6557. https://doi.org/10.1080/21655979.2022.2035986 Harris, W. G., Wilkie, A. C., Cao, X., & Sirengo, R. (2008). Bench-scale recovery of phosphorus from flushed dairy manure wastewater. Bioresour Technol, 99(8), 3036-3043. https://doi.org/10.1016/j.biortech.2007.06.065 Hartmann, J., West, A. J., Renforth, P., Köhler, P., De La Rocha, C. L., Wolf‐Gladrow, D. A., Dürr, H. H., & Scheffran, J. (2013). Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Reviews of Geophysics, 51(2), 113-149. https://doi.org/10.1002/rog.20004 Hashimoto, Y., Takamoto, A., Kikkawa, R., Murakami, K., & Yamaguchi, N. (2014). . Environmental Science & Technology, 48(10), 5486-5492. https://doi.org/10.1021/es404875j Hedley, M. J., Stewart, J. W. B., & Chauhan, B. S. (1982). Changes in Inorganic and Organic Soil-Phosphorus Fractions Induced by Cultivation Practices and by Laboratory Incubations. Soil Science Society of America Journal, 46(5), 970-976. https://doi.org/DOI 10.2136/sssaj1982.03615995004600050017x Hennig, S. E., Jeoung, J. H., Goetzl, S., & Dobbek, H. (2012). Redox-dependent complex formation by an ATP-dependent activator of the corrinoid/iron-sulfur protein. Proc Natl Acad Sci U S A, 109(14), 5235-5240. https://doi.org/10.1073/pnas.1117126109 Herter, S., Fuchs, G., Bacher, A., & Eisenreich, W. (2002). A bicyclic autotrophic CO2 fixation pathway in Chloroflexus aurantiacus. J Biol Chem, 277(23), 20277-20283. https://doi.org/10.1074/jbc.M201030200 Holo, H. (1989). Chloroflexus aurantiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO2 and acetate. Archives of Microbiology, 151(3), 252-256. https://doi.org/10.1007/bf00413138 Horwath, W. (2007). 12 - CARBON CYCLING AND FORMATION OF SOIL ORGANIC MATTER. In E. A. Paul (Ed.), Soil Microbiology, Ecology and Biochemistry (Third Edition) (pp. 303-339). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-08-047514-1.50016-0 Huber, H., Gallenberger, M., Jahn, U., Eylert, E., Berg, I. A., Kockelkorn, D., Eisenreich, W., & Fuchs, G. (2008). A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis. Proc Natl Acad Sci U S A, 105(22), 7851-7856. https://doi.org/10.1073/pnas.0801043105 Huchzermeier, M. P., & Tao, W. D. (2012). Overcoming Challenges to Struvite Recovery from Anaerobically Digested Dairy Manure. Water Environment Research, 84(1), 34-41. https://doi.org/10.2175/106143011x13183708018887 Hügler, M., Huber, H., Molyneaux, S. J., Vetriani, C., & Sievert, S. M. (2006). Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage. Environmental Microbiology, 9(1), 81-92. https://doi.org/10.1111/j.1462-2920.2006.01118.x Hügler, M., Wirsen, C. O., Fuchs, G., Taylor, C. D., & Sievert, S. M. (2005). Evidence for Autotrophic CO2Fixation via the Reductive Tricarboxylic Acid Cycle by Members of the ε Subdivision of Proteobacteria. Journal of Bacteriology, 187(9), 3020-3027. https://doi.org/10.1128/jb.187.9.3020-3027.2005 Íñiguez, C., Capó-Bauçà, S., Niinemets, Ü., Stoll, H., Aguiló-Nicolau, P., & Galmés, J. (2020). Evolutionary trends in RuBisCO kinetics and their co-evolution with CO(2) concentrating mechanisms. Plant J, 101(4), 897-918. https://doi.org/10.1111/tpj.14643 Ivanovsky, R. N., Fal, Y. I., Berg, I. A., Ugolkova, N. V., Krasilnikova, E. N., Keppen, O. I., Zakharchuc, L. M., & Zyakun, A. M. (1999). Evidence for the presence of the reductive pentose phosphate cycle in a filamentous anoxygenic photosynthetic bacterium, Oscillochloris trichoides strain DG-6. Microbiology (Reading), 145 ( Pt 7), 1743-1748. https://doi.org/10.1099/13500872-145-7-1743 Ivanovsky, R. N., Sintsov, N. V., & Kondratieva, E. N. (1980). ATP-linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum. Archives of Microbiology, 128(2), 239-241. https://doi.org/10.1007/bf00406165 Johnston, A. E., & Richards, I. R. (2003). Effectiveness of different precipitated phosphates as phosphorus sources for plants. Soil Use and Management, 19(1), 45-49. https://doi.org/10.1079/sum2002162 Jones, R. T., Robeson, M. S., Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J, 3(4), 442-453. https://doi.org/10.1038/ismej.2008.127 Joshi, G. S., Romagnoli, S., Verberkmoes, N. C., Hettich, R. L., Pelletier, D., & Tabita, F. R. (2009). Differential accumulation of form I RubisCO in Rhodopseudomonas palustris CGA010 under Photoheterotrophic growth conditions with reduced carbon sources. J Bacteriol, 191(13), 4243-4250. https://doi.org/10.1128/JB.01795-08 Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., & Morishima, K. (2017). KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res, 45(D1), D353-D361. https://doi.org/10.1093/nar/gkw1092 Kanehisa, M., & Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research, 28(1), 27-30. Kantzas, E. P., Val Martin, M., Lomas, M. R., Eufrasio, R. M., Renforth, P., Lewis, A. L., Taylor, L. L., Mecure, J.-F., Pollitt, H., Vercoulen, P. V., Vakilifard, N., Holden, P. B., Edwards, N. R., Koh, L., Pidgeon, N. F., Banwart, S. A., & Beerling, D. J. (2022). Substantial carbon drawdown potential from enhanced rock weathering in the United Kingdom. Nature Geoscience, 15(5), 382-389. https://doi.org/10.1038/s41561-022-00925-2 Kato, S., Nakawake, M., Ohkuma, M., & Yamagishi, A. (2012). Distribution and phylogenetic diversity of cbbM genes encoding RubisCO form II in a deep-sea hydrothermal field revealed by newly designed PCR primers. Extremophiles, 16(2), 277-283. https://doi.org/10.1007/s00792-011-0428-6 Kaur, C., Sharma, S., Singla-Pareek, S. L., & Sopory, S. K. (2015). Methylglyoxal, Triose Phosphate Isomerase, and Glyoxalase Pathway: Implications in Abiotic Stress and Signaling in Plants. In G. K. Pandey (Ed.), Elucidation of Abiotic Stress Signaling in Plants: Functional Genomics Perspectives, Volume 1 (pp. 347-366). Springer New York. https://doi.org/10.1007/978-1-4939-2211-6_13 Kaur, C., Sharma, S., Singla-Pareek, S. L., & Sopory, S. K. (2015). Methylglyoxal, Triose Phosphate Isomerase, and Glyoxalase Pathway: Implications in Abiotic Stress and Signaling in Plants. https://doi.org/https://doi.org/10.1007/978-1-4939-2211-6_13 Kauwenbergh, S. V. (2010). World phosphate rock reserves and resources. Kelland, M. E., Wade, P. W., Lewis, A. L., Taylor, L. L., Sarkar, B., Andrews, M. G., Lomas, M. R., Cotton, T. E. A., Kemp, S. J., James, R. H., Pearce, C. R., Hartley, S. E., Hodson, M. E., Leake, J. R., Banwart, S. A., & Beerling, D. J. (2020). Increased yield and CO(2) sequestration potential with the C(4) cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil. Glob Chang Biol, 26(6), 3658-3676. https://doi.org/10.1111/gcb.15089 Kempers, A. J., & Zweers, A. (1986). Ammonium Determination in Soil Extracts by the Salicylate Method. Communications in Soil Science and Plant Analysis, 17(7), 715-723. https://doi.org/Doi 10.1080/00103628609367745 Kerfeld, C. A., Sawaya, M. R., Tanaka, S., Nguyen, C. V., Phillips, M., Beeby, M., & Yeates, T. O. (2005). Protein structures forming the shell of primitive bacterial organelles. Science, 309(5736), 936-938. https://doi.org/10.1126/science.1113397 Kim, D., Min, K. J., Lee, K., Yu, M. S., & Park, K. Y. (2016). Effects of pH, molar ratios and pre-treatment on phosphorus recovery through struvite crystallization from effluent of anaerobically digested swine wastewater. Environmental Engineering Research, 22(1), 12-18. https://doi.org/10.4491/eer.2016.037 Kim, S. J., Ahn, J. H., Weon, H. Y., Hong, S. B., Seok, S. J., Kim, J. S., & Kwon, S. W. (2015). Chujaibacter soli gen. nov., sp. nov., isolated from soil. J Microbiol, 53(9), 592-597. https://doi.org/10.1007/s12275-015-5136-y Kjelleberg, S., Marshall, K. C., & Hermansson, M. (1985). Oligotrophic and copiotrophic marine bacteria—observations related to attachment. FEMS Microbiology Ecology, 1(2), 89-96. Klappenbach, J. A., Dunbar, J. M., & Schmidt, T. M. (2000). rRNA Operon Copy Number Reflects Ecological Strategies of Bacteria. Applied and Environmental Microbiology, 66(4), 1328-1333. https://doi.org/doi:10.1128/AEM.66.4.1328-1333.2000 Kockelkorn, D., & Fuchs, G. (2009). Malonic semialdehyde reductase, succinic semialdehyde reductase, and succinyl-coenzyme A reductase from Metallosphaera sedula: enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in Sulfolobales. J Bacteriol, 191(20), 6352-6362. https://doi.org/10.1128/JB.00794-09 Kok, D. J. D., Pande, S., van Lier, J. B., Ortigara, A. R. C., Savenije, H., & Uhlenbrook, S. (2018). Global phosphorus recovery from wastewater for agricultural reuse. Hydrology and Earth System Sciences, 22(11), 5781-5799. https://doi.org/10.5194/hess-22-5781-2018 Kong, W., Dolhi, J. M., Chiuchiolo, A., Priscu, J., & Morgan-Kiss, R. M. (2012). Evidence of form II RubisCO (cbbM) in a perennially ice-covered Antarctic lake. FEMS Microbiol Ecol, 82(2), 491-500. https://doi.org/10.1111/j.1574-6941.2012.01431.x Kouril, T., Eicher, J. J., Siebers, B., & Snoep, J. L. (2017). Phosphoglycerate kinase acts as a futile cycle at high temperature. Microbiology (Reading), 163(11), 1604-1612. https://doi.org/10.1099/mic.0.000542 Kouril, T., Esser, D., Kort, J., Westerhoff, H. V., Siebers, B., & Snoep, J. L. (2013). Intermediate instability at high temperature leads to low pathway efficiency for an in vitro reconstituted system of gluconeogenesis in Sulfolobus solfataricus. FEBS J, 280(18), 4666-4680. https://doi.org/10.1111/febs.12438 Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol, 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096 Kusian, B., & Bowien, B. (1997). Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria. FEMS Microbiol Rev, 21(2), 135-155. https://doi.org/10.1111/j.1574-6976.1997.tb00348.x Lackner, K. S., Wendt, C. H., Butt, D. P., Joyce, E. L., & Sharp, D. H. (1995). Carbon dioxide disposal in carbonate minerals. Energy, 20(11), 1153-1170. https://doi.org/https://doi.org/10.1016/0360-5442(95)00071-N Latifian, M., Liu, J., & Mattiasson, B. (2012). Struvite-based fertilizer and its physical and chemical properties. Environmental Technology, 33(24), 2691-2697. Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2005). Impact of calcium on struvite crystal size, shape and purity. Journal of Crystal Growth, 283(3-4), 514-522. https://doi.org/10.1016/j.jcrysgro.2005.06.012 Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review. Critical Reviews in Environmental Science and Technology, 39(6), 433-477. https://doi.org/Pii 911732404 10.1080/10643380701640573 Lee, H. J., Howell, S. K., Sanford, R. J., & Beisswenger, P. J. (2005). Methylglyoxal can modify GAPDH activity and structure. Ann N Y Acad Sci, 1043, 135-145. https://doi.org/10.1196/annals.1333.017 Lee, J. H., Park, D. O., Park, S. W., Hwang, E. H., Oh, J. I., & Kim, Y. M. (2009). Expression and regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase genes in Mycobacterium sp. strain JC1 DSM 3803. The Journal of Microbiology, 47(3), 297-307. https://doi.org/10.1007/s12275-008-0210-3 Lee, S.-H., Yoo, B.-H., Lim, S. J., Kim, T.-H., Kim, S.-K., & Kim, J. Y. (2013). Development and validation of an equilibrium model for struvite formation with calcium co-precipitation. Journal of Crystal Growth, 372, 129-137. https://doi.org/10.1016/j.jcrysgro.2013.03.010 Letunic, I., & Bork, P. (2024). Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res, 52(W1), W78-W82. https://doi.org/10.1093/nar/gkae268 Levicán, G., Ugalde, J. A., Ehrenfeld, N., Maass, A., & Parada, P. (2008). Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations. BMC Genomics, 9(1). https://doi.org/10.1186/1471-2164-9-581 Li, B., Boiarkina, I., Yu, W., Huang, H. M., Munir, T., Wang, G. Q., & Young, B. R. (2019). Phosphorous recovery through struvite crystallization: Challenges for future design. Science of the Total Environment, 648, 1244-1256. https://doi.org/10.1016/j.scitotenv.2018.07.166 Li, B., Huang, H. M., Boiarkina, I., Yu, W., Huang, Y. F., Wang, G. Q., & Young, B. R. (2019). Phosphorus recovery through struvite crystallisation: Recent developments in the understanding of operational factors. Journal of Environmental Management, 248. https://doi.org/ARTN 109254 10.1016/j.jenvman.2019.07.025 Li, H., Yang, S., Semenov, M. V., Yao, F., Ye, J., Bu, R., Ma, R., Lin, J., Kurganova, I., Wang, X., Deng, Y., Kravchenko, I., Jiang, Y., & Kuzyakov, Y. (2021). Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. Glob Chang Biol, 27(12), 2763-2779. https://doi.org/10.1111/gcb.15593 Li, J., Zou, Y., Yang, K., Zhu, Y., Zhou, Q., Shao, L., Gong, J., Peng, S., Peng, G., Qin, T., Tian, M., Tian, Y., Liu, Y., Wang, C., Hu, R., & Li, J. (2025). Well-developed root systems and a nitrogen-rich rhizosphere recruit key bacterial taxa to resist disease invasion of field crop. Agriculture, Ecosystems & Environment, 378. https://doi.org/10.1016/j.agee.2024.109279 Liu, J., Peng, Z., Tu, H., Qiu, Y., Liu, Y., Li, X., Gao, H., Pan, H., Chen, B., Liang, C., Chen, S., Qi, J., Wang, Y., Wei, G., & Jiao, S. (2024). Oligotrophic microbes are recruited to resist multiple global change factors in agricultural subsoils. Environ Int, 183, 108429. https://doi.org/10.1016/j.envint.2024.108429 Liu, T.-Y., Shih, H.-H., Tsai, J.-B., Chen, C.-H., & Wu, C.-C. (2023). Investigation of the soil microbiome of healthy and wilted Acacia trees in a plantation in Taiwan. Ljungdhal, L. G. (1986). The Autotrophic Pathway of Acetate Synthesis in Acetogenic Bacteria. Annual Review of Microbiology, 40(1), 415-450. https://doi.org/10.1146/annurev.mi.40.100186.002215 Lücker, S., Wagner, M., Maixner, F., Pelletier, E., Koch, H., Vacherie, B., Rattei, T., Damsté, J. S. S., Spieck, E., Le Paslier, D., & Daims, H. (2010). A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proceedings of the National Academy of Sciences, 107(30), 13479-13484. https://doi.org/10.1073/pnas.1003860107 Ma, S., Zhu, W., Wang, W., Li, X., & Sheng, Z. (2023). Microbial assemblies with distinct trophic strategies drive changes in soil microbial carbon use efficiency along vegetation primary succession in a glacier retreat area of the southeastern Tibetan Plateau. Science of The Total Environment, 867. https://doi.org/10.1016/j.scitotenv.2023.161587 Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540-555. https://doi.org/10.1016/j.rser.2015.02.032 Mao, X., Sun, T., Zhu, L., Wanek, W., Cheng, Q., Wang, X., Zhou, J., Liu, X., Ma, Q., Wu, L., & Jones, D. L. (2024). Microbial adaption to stoichiometric imbalances regulated the size of soil mineral-associated organic carbon pool under continuous organic amendments. Geoderma, 445. https://doi.org/10.1016/j.geoderma.2024.116883 Massey, M. S., Davis, J. G., Ippolito, J. A., & Sheffield, R. E. (2009). Effectiveness of Recovered Magnesium Phosphates as Fertilizers in Neutral and Slightly Alkaline Soils. Agronomy Journal, 101(2), 323-329. https://doi.org/10.2134/agronj2008.0144 Mehra, O. P., & Jackson, M. L. (1958). Iron Oxide Removal from Soils and Clays by a Dithionite-Citrate System Buffered with Sodium Bicarbonate. Clays and Clay Minerals, 7(1), 317-327. https://doi.org/10.1346/CCMN.1958.0070122 Mendes, P., Norris, N., Levine, N. M., Fernandez, V. I., & Stocker, R. (2021). Mechanistic model of nutrient uptake explains dichotomy between marine oligotrophic and copiotrophic bacteria. PLOS Computational Biology, 17(5). https://doi.org/10.1371/journal.pcbi.1009023 Moerman, W., Carballa, M., Vandekerckhove, A., Derycke, D., & Verstraete, W. (2009). Phosphate removal in agro-industry: pilot- and full-scale operational considerations of struvite crystallization. Water Research, 43(7), 1887-1892. https://doi.org/10.1016/j.watres.2009.02.007 Mohajit, Bhattarai, K. K., Taiganides, E. P., & Yap, B. C. (1989). Struvite Deposits in Pipes and Aerators. Biological Wastes, 30(2), 133-147. https://doi.org/Doi 10.1016/0269-7483(89)90067-0 Montero-Calasanz, M. D. C., Yaramis, A., Rohde, M., Schumann, P., Klenk, H. P., & Meier-Kolthoff, J. P. (2022). Genotype-phenotype correlations within the Geodermatophilaceae. Front Microbiol, 13, 975365. https://doi.org/10.3389/fmicb.2022.975365 Montes-Hernandez, G., & Renard, F. (2020). Nucleation of Brushite and Hydroxyapatite from Amorphous Calcium Phosphate Phases Revealed by Dynamic In Situ Raman Spectroscopy. Journal of Physical Chemistry C, 124(28), 15302-15311. https://doi.org/10.1021/acs.jpcc.0c04028 Morais, S., Winkler, S., Zorea, A., Levin, L., Nagies, F. S. P., Kapust, N., Lamed, E., Artan-Furman, A., Bolam, D. N., Yadav, M. P., Bayer, E. A., Martin, W. F., & Mizrahi, I. (2024). Cryptic diversity of cellulose-degrading gut bacteria in industrialized humans. Science, 383(6688), eadj9223. https://doi.org/10.1126/science.adj9223 Muhmood, A., Wu, S. B., Lu, J. X., Ajmal, Z., Luo, H. Z., & Dong, R. J. (2018). Nutrient recovery from anaerobically digested chicken slurry via struvite: Performance optimization and interactions with heavy metals and pathogens. Science of the Total Environment, 635, 1-9. https://doi.org/10.1016/j.scitotenv.2018.04.129 Müller, V. (2003). Energy conservation in acetogenic bacteria. Appl Environ Microbiol, 69(11), 6345-6353. https://doi.org/10.1128/AEM.69.11.6345-6353.2003 Muryanto, S., & Bayuseno, A. P. (2014). Influence of Cu2+ and Zn2+ as additives on crystallization kinetics and morphology of struvite. Powder Technology, 253, 602-607. https://doi.org/10.1016/j.powtec.2013.12.027 Muster, T. H., Douglas, G. B., Sherman, N., Seeber, A., Wright, N., & Guzukara, Y. (2013). Towards effective phosphorus recycling from wastewater: quantity and quality. Chemosphere, 91(5), 676-684. https://doi.org/10.1016/j.chemosphere.2013.01.057 Nallathambi Gunaseelan, V. (1997). Anaerobic digestion of biomass for methane production: A review. Biomass and Bioenergy, 13(1-2), 83-114. https://doi.org/10.1016/s0961-9534(97)00020-2 Nelson, D. W. (1983). Determination of Ammonium in Kcl Extracts of Soils by the Salicylate Method. Communications in Soil Science and Plant Analysis, 14(11), 1051-1062. https://doi.org/Doi 10.1080/00103628309367431 Nimonkar, Y. S., Godambe, T., Kulkarni, A., Patel, T., Paul, D., Paul, D., Rale, V., & Prakash, O. (2022). Oligotrophy vs. copiotrophy in an alkaline and saline habitat of Lonar Lake. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.939984 Nkoa, R. (2014). Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agronomy for Sustainable Development, 34(2), 473-492. https://doi.org/10.1007/s13593-013-0196-z Noell, S. E., Brennan, E., Washburn, Q., Davis, E. W., 2nd, Hellweger, F. L., & Giovannoni, S. J. (2023). Differences in the regulatory strategies of marine oligotrophs and copiotrophs reflect differences in motility. Environ Microbiol, 25(7), 1265-1280. https://doi.org/10.1111/1462-2920.16357 Olsson-Francis, K., R, V. A. N. H., Mergeay, M., Leys, N., & Cockell, C. S. (2010). Microarray analysis of a microbe-mineral interaction. Geobiology, 8(5), 446-456. https://doi.org/10.1111/j.1472-4669.2010.00253.x Orcutt, B. N., Sylvan, J. B., Rogers, D. R., Delaney, J., Lee, R. W., & Girguis, P. R. (2015). Carbon fixation by basalt-hosted microbial communities. Front Microbiol, 6, 904. https://doi.org/10.3389/fmicb.2015.00904 Orwin, K. H., Dickie, I. A., Holdaway, R., & Wood, J. R. (2018). A comparison of the ability of PLFA and 16S rRNA gene metabarcoding to resolve soil community change and predict ecosystem functions. Soil Biology and Biochemistry, 117, 27-35. https://doi.org/10.1016/j.soilbio.2017.10.036 Pan, J., Dong, Q., Wen, H., Liu, Y., Wang, X., Liu, Y., Zhang, X., Shi, C., Zhao, D., & Lu, X. (2024). Composition and Diversity of Endophytic Rhizosphere Microbiota in Apple Tree with Different Ages. Mol Biotechnol, 66(9), 2219-2229. https://doi.org/10.1007/s12033-023-00794-z Paoli, G. C., Morgan, N. S., Tabita, F. R., & Shively, J. M. (1995a). Expression of the cbbL cbbS and cbbM genes and distinct organization of the cbb Calvin cycle structural genes of Rhodobacter capsulatus. Archives of Microbiology, 164(6), 396-405. https://doi.org/10.1007/bf02529737 Paoli, G. C., Morgan, N. S., Tabita, F. R., & Shively, J. M. (1995b). Expression of thecbbLcbbS andcbbM genes and distinct organization of thecbb Calvin cycle structural genes ofRhodobacter capsulatus. Archives of Microbiology, 164(6), 396-405. https://doi.org/10.1007/bf02529737 Pastor, L., Mangin, D., Barat, R., & Seco, A. (2008). A pilot-scale study of struvite precipitation in a stirred tank reactor: conditions influencing the process. Bioresour Technol, 99(14), 6285-6291. https://doi.org/10.1016/j.biortech.2007.12.003 Peña-Ramírez, V. M., Vázquez-Selem, L., & Siebe, C. (2009). Soil organic carbon stocks and forest productivity in volcanic ash soils of different age (1835–30,500 years B.P.) in Mexico. Geoderma, 149(3-4), 224-234. https://doi.org/10.1016/j.geoderma.2008.11.038 Phillips, R., Hanchanale, V. S., Myatt, A., Somani, B., Nabi, G., & Biyani, C. S. (2015). Citrate salts for preventing and treating calcium containing kidney stones in adults. Cochrane Database of Systematic Reviews(10). https://doi.org/ARTN CD010057 10.1002/14651858.CD010057.pub2 Phillips, S. A., & Thornalley, P. J. (1993). The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. Eur J Biochem, 212(1), 101-105. https://doi.org/10.1111/j.1432-1033.1993.tb17638.x Price, G. D., Badger, M. R., Woodger, F. J., & Long, B. M. (2008). Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot, 59(7), 1441-1461. https://doi.org/10.1093/jxb/erm112 Ragsdale, S. W. (2008). Enzymology of the wood-Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci, 1125, 129-136. https://doi.org/10.1196/annals.1419.015 Ragsdale, S. W., & Kumar, M. (1996). Nickel-Containing Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase(,). Chem Rev, 96(7), 2515-2540. https://doi.org/10.1021/cr950058+ Ragsdale, S. W., & Pierce, E. (2008). Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. Biochim Biophys Acta, 1784(12), 1873-1898. https://doi.org/10.1016/j.bbapap.2008.08.012 Rahman, M. M., Liu, Y., Kwag, J. H., & Ra, C. (2011). Recovery of struvite from animal wastewater and its nutrient leaching loss in soil. Journal of Hazardous Materials, 186(2-3), 2026-2030. https://doi.org/10.1016/j.jhazmat.2010.12.103 Rahman, M. M., Salleh, M. A. M., Rashid, U., Ahsan, A., Hossain, M. M., & Ra, C. S. (2014). Production of slow release crystal fertilizer from wastewaters through struvite crystallization - A review. Arabian Journal of Chemistry, 7(1), 139-155. https://doi.org/10.1016/j.arabjc.2013.10.007 Ramirez, K. S., Craine, J. M., & Fierer, N. (2012). Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biology, 18(6), 1918-1927. https://doi.org/10.1111/j.1365-2486.2012.02639.x Ramos-Vera, W. H., Weiss, M., Strittmatter, E., Kockelkorn, D., & Fuchs, G. (2011). Identification of missing genes and enzymes for autotrophic carbon fixation in crenarchaeota. J Bacteriol, 193(5), 1201-1211. https://doi.org/10.1128/JB.01156-10 Ravel, B., & Newville, M. (2005). ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537-541. https://doi.org/10.1107/S0909049505012719 Reis, B. R., Vasconcelos, A. L. S., Silva, A. M. M., Andreote, F. D., & Azevedo, A. C. (2024). Changes in soil bacterial community structure in a short-term trial with different silicate rock powders. Chemical and Biological Technologies in Agriculture, 11(1). https://doi.org/10.1186/s40538-024-00586-w Richard, J. P. (1993). Mechanism for the formation of methylglyoxal from triosephosphates. Biochem Soc Trans, 21(2), 549-553. https://doi.org/10.1042/bst0210549 Rinder, T., & von Hagke, C. (2021). The influence of particle size on the potential of enhanced basalt weathering for carbon dioxide removal - Insights from a regional assessment. Journal of Cleaner Production, 315. https://doi.org/10.1016/j.jclepro.2021.128178 Rinke, C., Chuvochina, M., Mussig, A. J., Chaumeil, P. A., Davin, A. A., Waite, D. W., Whitman, W. B., Parks, D. H., & Hugenholtz, P. (2021). A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat Microbiol, 6(7), 946-959. https://doi.org/10.1038/s41564-021-00918-8 Roberts, J. R., Lu, W. P., & Ragsdale, S. W. (1992). Acetyl-coenzyme A synthesis from methyltetrahydrofolate, CO, and coenzyme A by enzymes purified from Clostridium thermoaceticum: attainment of in vivo rates and identification of rate-limiting steps. Journal of Bacteriology, 174(14), 4667-4676. https://doi.org/10.1128/jb.174.14.4667-4676.1992 Ronteltap, M., Maurer, M., & Gujer, W. (2007). The behaviour of pharmaceuticals and heavy metals during struvite precipitation in urine. Water Research, 41(9), 1859-1868. https://doi.org/10.1016/j.watres.2007.01.026 Sabbag, H., Brenner, A., Nikolski, A., & Borojovich, E. J. C. (2015). Prevention and control of struvite and calcium phosphate precipitation by chelating agents. Desalination and Water Treatment, 55(1), 61-69. https://doi.org/10.1080/19443994.2014.910840 Sarvajayakesavalu, S., Lu, Y. L., Withers, P. J. A., Pavinato, P. S., Pan, G., & Chareonsudjai, P. (2018). Phosphorus recovery: a need for an integrated approach. Ecosystem Health and Sustainability, 4(2), 48-57. https://doi.org/10.1080/20964129.2018.1460122 Say, R. F., & Fuchs, G. (2010). Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme. Nature, 464(7291), 1077-1081. https://doi.org/10.1038/nature08884 Schauder, R., Preuß, A., Jetten, M., & Fuchs, G. (1988). Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. Archives of Microbiology, 151(1), 84-89. https://doi.org/10.1007/bf00444674 Schauder, R., Widdel, F., & Fuchs, G. (1987). Carbon assimilation pathways in sulfate-reducing bacteria II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus. Archives of Microbiology, 148(3), 218-225. https://doi.org/10.1007/bf00414815 Schloss, P. D. (2009). A high-throughput DNA sequence aligner for microbial ecology studies. PLoS One, 4(12), e8230. https://doi.org/10.1371/journal.pone.0008230 Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., & Weber, C. F. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol, 75(23), 7537-7541. https://doi.org/10.1128/AEM.01541-09 Schuchmann, K., & Muller, V. (2014). Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol, 12(12), 809-821. https://doi.org/10.1038/nrmicro3365 Schuchmann, K., & Muller, V. (2016). Energetics and Application of Heterotrophy in Acetogenic Bacteria. Appl Environ Microbiol, 82(14), 4056-4069. https://doi.org/10.1128/AEM.00882-16 Schuiling, R. D., & Krijgsman, P. (2006). Enhanced Weathering: An Effective and Cheap Tool to Sequester Co2. Climatic Change, 74(1-3), 349-354. https://doi.org/10.1007/s10584-005-3485-y Seidler, N. W., & Yeargans, G. S. (2002). Effects of thermal denaturation on protein glycation. Life Sci, 70(15), 1789-1799. https://doi.org/10.1016/s0024-3205(02)01474-1 Seifritz, W. (1990). CO2 disposal by means of silicates. Nature, 345(6275), 486-486. https://doi.org/10.1038/345486b0 Senevirathna, S., Krishna, K. C. B., Mahinroosta, R., & Sathasivan, A. (2022). Comparative characterization of microbial communities that inhabit PFAS-rich contaminated sites: A case-control study. J Hazard Mater, 423(Pt A), 126941. https://doi.org/10.1016/j.jhazmat.2021.126941 Sengupta, A., Kushwaha, P., Jim, A., Troch, P. A., & Maier, R. (2020). New Soil, Old Plants, and Ubiquitous Microbes: Evaluating the Potential of Incipient Basaltic Soil to Support Native Plant Growth and Influence Belowground Soil Microbial Community Composition. Sustainability, 12(10). https://doi.org/10.3390/su12104209 Sghaier, H., Hezbri, K., Ghodhbane-Gtari, F., Pujic, P., Sen, A., Daffonchio, D., Boudabous, A., Tisa, L. S., Klenk, H. P., Armengaud, J., Normand, P., & Gtari, M. (2016). Stone-dwelling actinobacteria Blastococcus saxobsidens, Modestobacter marinus and Geodermatophilus obscurus proteogenomes. ISME J, 10(1), 21-29. https://doi.org/10.1038/ismej.2015.108 Shange, R. S., Ankumah, R. O., Ibekwe, A. M., Zabawa, R., & Dowd, S. E. (2012). Distinct soil bacterial communities revealed under a diversely managed agroecosystem. PLoS One, 7(7), e40338. https://doi.org/10.1371/journal.pone.0040338 Shen, J., Jin, W., & Chen, C. (2022). Metabolic minimap of anaerobic digestion for undergraduate biochemistry courses. Biochem Mol Biol Educ, 50(6), 641-648. https://doi.org/10.1002/bmb.21671 Shen, Y., Ogejo, J. A., & Bowers, K. E. (2011). Abating the Effects of Calcium on Struvite Precipitation in Liquid Dairy Manure. Transactions of the Asabe, 54(1), 325-336. <Go to ISI>://WOS:000288233600034 Shiau, Y.-J., Lin, Y.-T., Yam, R. S. W., Chang, E.-H., Wu, J.-M., Hsu, T.-H., & Chiu, C.-Y. (2021). Composition and Activity of N2-Fixing Microorganisms in Mangrove Forest Soils. Forests, 12(7). https://doi.org/10.3390/f12070822 Shiba, H., Kawasumi, T., Igarashi, Y., Kodama, T., & Minoda, Y. (1985). The CO2 assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic, aerobic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus. Archives of Microbiology, 141(3), 198-203. https://doi.org/10.1007/bf00408058 Shively, J. M., Ball, F., Brown, D. H., & Saunders, R. E. (1973). Functional organelles in prokaryotes: polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. Science, 182(4112), 584-586. https://doi.org/10.1126/science.182.4112.584 Shively, J. M., van Keulen, G., & Meijer, W. G. (1998). Something from almost nothing: carbon dioxide fixation in chemoautotrophs. Annu Rev Microbiol, 52, 191-230. https://doi.org/10.1146/annurev.micro.52.1.191 Smith, K. A., & Tabatabai, M. A. (2004). Automated instruments for the determination of total carbon, hydrogen, nitrogen, sulfur, and oxygen. Soil and Environmental analysis, Modern Instrumental Techniques’, eds. KA Smith and M. S. Cresser, Marcel Dekker Inc., New York, 235-282. Song, H. K., Song, W., Kim, M., Tripathi, B. M., Kim, H., Jablonski, P., & Adams, J. M. (2017). Bacterial strategies along nutrient and time gradients, revealed by metagenomic analysis of laboratory microcosms. FEMS Microbiol Ecol, 93(10). https://doi.org/10.1093/femsec/fix114 Song, R., Zhu, W. Z., Li, H., & Wang, H. (2024). Impact of wine-grape continuous cropping on soil enzyme activity and the composition and function of the soil microbial community in arid areas. Front Microbiol, 15, 1348259. https://doi.org/10.3389/fmicb.2024.1348259 Stams, A. J., & Plugge, C. M. (2009). Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol, 7(8), 568-577. https://doi.org/10.1038/nrmicro2166 Strauss, G., & Fuchs, G. (1993). Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. Eur J Biochem, 215(3), 633-643. https://doi.org/10.1111/j.1432-1033.1993.tb18074.x Strous, M., Pelletier, E., Mangenot, S., Rattei, T., Lehner, A., Taylor, M. W., Horn, M., Daims, H., Bartol-Mavel, D., Wincker, P., Barbe, V., Fonknechten, N., Vallenet, D., Segurens, B., Schenowitz-Truong, C., Médigue, C., Collingro, A., Snel, B., Dutilh, B. E.,…Le Paslier, D. (2006). Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature, 440(7085), 790-794. https://doi.org/10.1038/nature04647 Stupperich, E., & Krutler, B. (1988). Pseudo vitamin B12 or 5-hydroxybenzimidazolyl-cobamide are the corrinoids found in methanogenic bacteria. Archives of Microbiology, 149(3), 268-271. https://doi.org/10.1007/bf00422016 Suksong, W., Kongjan, P., Prasertsan, P., & S, O. T. (2019). Thermotolerant cellulolytic Clostridiaceae and Lachnospiraceae rich consortium enhanced biogas production from oil palm empty fruit bunches by solid-state anaerobic digestion. Bioresour Technol, 291, 121851. https://doi.org/10.1016/j.biortech.2019.121851 Sun, J., Zhang, L., & Loh, K. C. (2021). Review and perspectives of enhanced volatile fatty acids production from acidogenic fermentation of lignocellulosic biomass wastes. Bioresour Bioprocess, 8(1), 68. https://doi.org/10.1186/s40643-021-00420-3 Tabita, F. R., Hanson, T. E., Li, H., Satagopan, S., Singh, J., & Chan, S. (2007). Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol Mol Biol Rev, 71(4), 576-599. https://doi.org/10.1128/MMBR.00015-07 Takagi, D., Inoue, H., Odawara, M., Shimakawa, G., & Miyake, C. (2014). The Calvin cycle inevitably produces sugar-derived reactive carbonyl methylglyoxal during photosynthesis: a potential cause of plant diabetes. Plant Cell Physiol, 55(2), 333-340. https://doi.org/10.1093/pcp/pcu007 Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T., & Horikoshi, K. (2008). Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A, 105(31), 10949-10954. https://doi.org/10.1073/pnas.0712334105 Talboys, P. J., Heppell, J., Roose, T., Healey, J. R., Jones, D. L., & Withers, P. J. A. (2016). Struvite: a slow-release fertiliser for sustainable phosphorus management? Plant and Soil, 401(1-2), 109-123. https://doi.org/10.1007/s11104-015-2747-3 Tao, W. D., Fattah, K. P., & Huchzermeier, M. P. (2016). Struvite recovery from anaerobically digested dairy manure: A review of application potential and hindrances. Journal of Environmental Management, 169, 46-57. https://doi.org/10.1016/j.jenvman.2015.12.006 Templeton, A. S., Staudigel, H., & Tebo, B. M. (2005). Diverse Mn(II)-Oxidizing Bacteria Isolated from Submarine Basalts at Loihi Seamount. Geomicrobiology Journal, 22(3-4), 127-139. https://doi.org/10.1080/01490450590945951 Teullet, S., Tilak, M. K., Magdeleine, A., Schaub, R., Weyer, N. M., Panaino, W., Fuller, A., Loughry, W. J., Avenant, N. L., de Thoisy, B., Borrel, G., & Delsuc, F. (2023). Metagenomics uncovers dietary adaptations for chitin digestion in the gut microbiota of convergent myrmecophagous mammals. mSystems, 8(5), e0038823. https://doi.org/10.1128/msystems.00388-23 Thauer, R. K., Kaster, A. K., Seedorf, H., Buckel, W., & Hedderich, R. (2008). Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol, 6(8), 579-591. https://doi.org/10.1038/nrmicro1931 Thomas, G. W. (1996). Soil pH and soil acidity. Methods of soil analysis: part 3 chemical methods, 5, 475-490. Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M., & Hendricks, D. M. (1997). Mineral control of soil organic carbon storage and turnover. Nature, 389(6647), 170-173. https://doi.org/10.1038/38260 Toyoda, K., Ishii, M., & Arai, H. (2018). Function of three RuBisCO enzymes under different CO(2) conditions in Hydrogenovibrio marinus. J Biosci Bioeng, 126(6), 730-735. https://doi.org/10.1016/j.jbiosc.2018.06.005 Uroz, S., Kelly, L. C., Turpault, M. P., Lepleux, C., & Frey-Klett, P. (2015). The Mineralosphere Concept: Mineralogical Control of the Distribution and Function of Mineral-associated Bacterial Communities. Trends Microbiol, 23(12), 751-762. https://doi.org/10.1016/j.tim.2015.10.004 van der Meer, M. T., Schouten, S., de Leeuw, J. W., & Ward, D. M. (2000). Autotrophy of green non-sulphur bacteria in hot spring microbial mats: biological explanations for isotopically heavy organic carbon in the geological record. Environ Microbiol, 2(4), 428-435. https://doi.org/10.1046/j.1462-2920.2000.00124.x Verdouw, H., Vanechteld, C. J. A., & Dekkers, E. M. J. (1978). Ammonia Determination Based on Indophenol Formation with Sodium Salicylate. Water Research, 12(6), 399-402. https://doi.org/Doi 10.1016/0043-1354(78)90107-0 Walan, P., Davidsson, S., Johansson, S., & Hook, M. (2014). Phosphate rock production and depletion: Regional disaggregated modeling and global implications. Resources Conservation and Recycling, 93, 178-187. https://doi.org/10.1016/j.resconrec.2014.10.011 Wang, M., Xu, Z., Huang, Z., & Zhang, Y. (2022). Soil carbon accrual under harvest residue retention modulated by the copiotroph-oligotroph spectrum in bacterial community. Journal of Soils and Sediments, 22(9), 2459-2474. https://doi.org/10.1007/s11368-022-03289-7 Wang, X., Falcone, D. L., & Tabita, F. R. (1993). Reductive pentose phosphate-independent CO2 fixation in Rhodobacter sphaeroides and evidence that ribulose bisphosphate carboxylase/oxygenase activity serves to maintain the redox balance of the cell. J Bacteriol, 175(11), 3372-3379. https://doi.org/10.1128/jb.175.11.3372-3379.1993 Watanabe, F. S., & Olsen, S. R. (1965). Test of an Ascorbic Acid Method for Determining Phosphorus in Water and NaHCO3 Extracts from Soil. Soil Science Society of America Journal, 29(6), 677-678. https://doi.org/10.2136/sssaj1965.03615995002900060025x Westerholm, M., Calusinska, M., & Dolfing, J. (2022). Syntrophic propionate-oxidizing bacteria in methanogenic systems. FEMS Microbiol Rev, 46(2). https://doi.org/10.1093/femsre/fuab057 Westerholm, M., Moestedt, J., & Schnürer, A. (2016). Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance. Applied Energy, 179, 124-135. https://doi.org/10.1016/j.apenergy.2016.06.061 Wildman, S. G. (2002). Along the trail from Fraction I protein to Rubisco (ribulose bisphosphate carboxylase-oxygenase). Photosynth Res, 73(1-3), 243-250. https://doi.org/10.1023/A:1020467601966 Williams, T. J., Zhang, C. L., Scott, J. H., & Bazylinski, D. A. (2006). Evidence for Autotrophy via the Reverse Tricarboxylic Acid Cycle in the Marine Magnetotactic Coccus Strain MC-1. Applied and Environmental Microbiology, 72(2), 1322-1329. https://doi.org/10.1128/aem.72.2.1322-1329.2006 Wood, H. G. (1991). Life with CO or CO2 and H2 as a source of carbon and energy. The FASEB Journal, 5(2), 156-163. https://doi.org/10.1096/fasebj.5.2.1900793 Wu, L., Jacobson, A. D., Chen, H.-C., & Hausner, M. (2007). Characterization of elemental release during microbe–basalt interactions at T=28°C. Geochimica et Cosmochimica Acta, 71(9), 2224-2239. https://doi.org/10.1016/j.gca.2007.02.017 Wu, S. C., Chang, B. S., & Li, Y. Y. (2022). Effect of the coexistence of endosulfan on the lindane biodegradation by Novosphingobium barchaimii and microbial enrichment cultures. Chemosphere, 297, 134063. https://doi.org/10.1016/j.chemosphere.2022.134063 Yamamoto, M., Arai, H., Ishii, M., & Igarashi, Y. (2006). Role of two 2-oxoglutarate:ferredoxin oxidoreductases in Hydrogenobacter thermophilus under aerobic and anaerobic conditions. FEMS Microbiol Lett, 263(2), 189-193. https://doi.org/10.1111/j.1574-6968.2006.00415.x Yamamoto, M., Ikeda, T., Arai, H., Ishii, M., & Igarashi, Y. (2009). Carboxylation reaction catalyzed by 2-oxoglutarate:ferredoxin oxidoreductases from Hydrogenobacter thermophilus. Extremophiles, 14(1), 79-85. https://doi.org/10.1007/s00792-009-0289-4 Yan, H., & Shih, K. (2016). Effects of calcium and ferric ions on struvite precipitation: A new assessment based on quantitative X-ray diffraction analysis. Water Research, 95, 310-318. https://doi.org/10.1016/j.watres.2016.03.032 Yang, Y., Dou, Y., Wang, B., Xue, Z., Wang, Y., An, S., & Chang, S. X. (2023). Deciphering factors driving soil microbial life-history strategies in restored grasslands. Imeta, 2(1), e66. https://doi.org/10.1002/imt2.66 Yetilmezsoy, K., Ilhan, F., Kocak, E., & Akbin, H. M. (2017). Feasibility of struvite recovery process for fertilizer industry: A study of financial and economic analysis. Journal of Cleaner Production, 152, 88-102. https://doi.org/10.1016/j.jclepro.2017.03.106 Yetilmezsoy, K., & Sapci-Zengin, Z. (2009). Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. Journal of Hazardous Materials, 166(1), 260-269. https://doi.org/10.1016/j.jhazmat.2008.11.025 Zakharchuk, L. M., Egorova, M. A., Tsaplina, I. A., Bogdanova, T. I., Krasil'nikova, E. N., Melamud, V. S., & Karavaiko, G. I. (2003). Activity of the Enzymes of Carbon Metabolism in Sulfobacillus sibiricus under Various Conditions of Cultivation. Microbiology, 72(5), 553-557. https://doi.org/10.1023/A:1026039132408 Zangarini, S., Sciarria, T. P., Tambone, F., & Adani, F. (2020). Phosphorus removal from livestock effluents: recent technologies and new perspectives on low-cost strategies. Environmental Science and Pollution Research, 27(6), 5730-5743. https://doi.org/10.1007/s11356-019-07542-4 Zarzycki, J., Brecht, V., Muller, M., & Fuchs, G. (2009a). Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proc Natl Acad Sci U S A, 106(50), 21317-21322. https://doi.org/10.1073/pnas.0908356106 Zarzycki, J., Brecht, V., Muller, M., & Fuchs, G. (2009b). Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proc. Natl. Acad. Sci. U.S.A. , 106(50), 21317-21322. https://doi.org/10.1073/pnas.0908356106 Zhang, L., Chung, J., Jiang, Q., Sun, R., Zhang, J., Zhong, Y., & Ren, N. (2017). Characteristics of rumen microorganisms involved in anaerobic degradation of cellulose at various pH values. RSC Advances, 7(64), 40303-40310. https://doi.org/10.1039/c7ra06588d Zhang, M., Liang, G., Ren, S., Li, L., Li, C., Li, Y., Yu, X., Yin, Y., Liu, T., & Liu, X. (2023). Responses of soil microbial community structure, potential ecological functions, and soil physicochemical properties to different cultivation patterns in cucumber. Geoderma, 429. https://doi.org/10.1016/j.geoderma.2022.116237 Zhang, T. X., Bowers, K. E., Harrison, J. H., & Chen, S. L. (2010). Releasing Phosphorus from Calcium for Struvite Fertilizer Production from Anaerobically Digested Dairy Effluent. Water Environment Research, 82(1), 34-42. https://doi.org/10.2175/106143009x425924 Zhu, G., Zhang, H., Yuan, R., Huang, M., Liu, F., Li, M., Zhang, Y., & Rittmann, B. E. (2023). How Comamonas testosteroni and Rhodococcus ruber enhance nitrification in the presence of quinoline. Water Res, 229, 119455. https://doi.org/10.1016/j.watres.2022.119455 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99599 | - |
| dc.description.abstract | 隨著全球人口持續攀升,糧食需求與日俱增,高效農業倚重大量化肥。而全球逾95 %的商業磷肥依賴有限的磷礦石,磷肥的永續供應面臨嚴峻挑戰。家禽產業每日產出的高氮、高磷雞糞若處置不當,易造成環境汙染及水體優養化。如何在處理家禽廢棄物的同時,妥善再利用磷資源,是刻不容緩的課題。厭氧消化技術不僅能將有機質轉化為沼氣,作為再生能源的燃料,同時也為禽畜廢棄物的磷回收提供了可行途徑。
玄武岩粉末富含鈣、鎂、鉀及多種礦物養分,施用於土壤不僅可供給礦物質養分同時調節土壤酸鹼值改善地力,亦能透過加速風化過程捕獲二氧化碳將之再礦化固定。然而,玄武岩施用後對土壤微生態系統的影響迄今瞭解有限。 本研究聚焦「磷回收」與「土壤碳固定」兩大主軸,將研究分為兩部分:其一,透過厭氧共消化高鈣雞糞與稻草,探討磷的釋放與磷酸銨鎂(struvite)回收;其二,評估玄武岩粉末施用對土壤菌相與固碳效益的影響。 第一部分結果顯示,高鈣雞糞的磷溶釋效率偏低且過量 Ca²⁺ 會干擾 struvite 結晶。透過添加稻草調整碳氮比增加微生物活性,5 日內磷釋放量提高 2–3 倍,瘤胃球菌科(Ruminococcaceae)成為優勢菌群,厭氧消化系統中的生物酸化有效降低 pH從而促進雞糞中的磷溶出,消化液再以草酸脫鈣並優化 pH,大幅降低 Ca²⁺ 的干擾並提高回收磷酸銨鎂晶體的純度及效率。隨後以上流式流體化結晶床的實廠試驗確認了反應系統及規模放大的可行性,畜牧廢水中的磷回收率可達 90% ,並且經X光繞射(XRD, X-ray diffraction)圖譜鑑定為磷酸銨鎂晶體。 第二部分顯示,玄武岩粉末添加明顯提升寡營養菌Acidobacteriota比例與微生物多樣性指標 (npShannon、Sobs);相對地,有機質添加則促進富營養菌Bacillota、Actinomycetota、Pseudomonadota並提高 C/N 比。玄武岩可長期穩定土壤 pH,補充 Ca、Fe、Mg 等微量元素,強化土壤固碳潛力並降低環境風險。 綜上所述,本研究提出一套兼顧磷回收與礦物固碳的永續農業循環策略,既能減少化肥依賴、降低污染,又具經濟與生態雙重效益,為農業永續發展提供新的思路與實務指引。 | zh_TW |
| dc.description.abstract | With the continuous growth of the global population, the demand for food is steadily increasing, driving the reliance of intensive agriculture on large quantities of chemical fertilizers. However, more than 95% of commercial phosphate fertilizers worldwide are derived from finite phosphate rock resources, posing a significant challenge to the sustainability of phosphorus fertilizer supply. Simultaneously, the poultry industry's large volumes of nitrogen- and phosphorus-rich manure risk soil pollution and aquatic eutrophication if mismanaged. Anaerobic digestion offers a dual solution, converting organic matter to renewable biogas and enabling phosphorus recovery from livestock waste.
Basalt powder, rich in Ca, Mg, K, and other minerals, can supply soil nutrients, buffer pH, and capture atmospheric CO₂ via accelerated weathering, though its microbial and carbon sequestration influences are less understood. This study addressed two issues: (i) recovering phosphorus as high-purity magnesium ammonium phosphate (struvite) through anaerobic co-digestion of high-calcium poultry manure with rice straw, and (ii) evaluating the impact of basalt powder addition on soil bacterial communities and carbon sequestration. In the first part, co-digesting manure with rice straw optimized the C/N ratio and stimulated microbial metabolism, resulting in a two- to three-fold increase in phosphate release within five days and promoting the dominance of Ruminococcaceae. Microbial acidification lowered pH, facilitating phosphate dissolution. Subsequent oxalic acid decalcification and pH optimization significantly reduced Ca²⁺ interference, leading to the precipitation of struvite with high yield and purity. A subsequent field study using an upflow fluidized bed crystallizer confirmed both the feasibility and scalability of the reaction system. The phosphorus recovery rate from livestock wastewater reached up to 90%, and X-ray diffraction (XRD) analysis identified the recovered product as magnesium ammonium phosphate crystals. In the second part, basalt amendment markedly enriched oligotrophic Acidobacteriota, and elevated microbial diversity indices (npShannon, Sobs), while organic amendments favored copiotrophic Bacillota, Actinomycetota, and Pseudomonadota, and raised the soil C/N ratio. Basalt also stabilized soil pH long-term and supplied Ca, Fe, and Mg, enhancing carbon-sequestration potential and mitigating environmental risks. In summary, this study proposes a sustainable agricultural circular strategy that integrates phosphorus recovery with mineral carbon sequestration. This approach not only reduces dependence on chemical fertilizers and mitigates environmental pollution but also offers both economic and ecological benefits, providing new insights and practical guidance for sustainable agricultural development. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:06:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:06:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝誌 I
摘要 II Abstract III 目次 V 圖次 VII 表次 IX 第壹章、利用雞糞生產磷酸銨鎂 1 1.1. 文獻回顧 1 1.1.1. 從全球磷資源危機到磷回收技術需求 1 1.1.2. 鳥糞石結晶沉澱法:原理、工程應用、作為緩釋肥料的農業價值 1 1.1.3. 干擾鳥糞石結晶的關鍵因子:競爭陽離子、鈣抑制及脫鈣策略 2 1.1.4. 厭氧消化的代謝和生化途徑 3 1.2. 探討高鈣雞糞厭氧消化過程中磷的轉化及鳥糞石的回收 8 摘要 8 1.2.1. 研究動機 9 1.2.2. 材料與方法 10 1.2.3. 結果 15 1.2.5. 結論 23 1.2.6. 圖表 24 附錄 41 1.3. 上流式流體化磷酸銨鎂結晶床回收廢水中的磷 42 摘要 42 1.3.1. 研究動機 43 1.3.2. 材料與方法 44 1.3.3. 結果與討論 47 1.3.4. 結論 50 1.3.5. 圖表 51 第貳章、玄武岩添加對土壤菌相的影響 61 2.1. 文獻回顧 61 2.1.1. 增強岩石風化 ((Enhanced rock weathering, ERW) 61 2.1.2. 土壤施加玄武岩的好處 61 2.1.3. 微生物二氧化碳固定(Carbon dioxide fixation)的生化途徑 63 2.1.4. 玄武岩與環境固碳基因相關研究 77 2.1.5. 不穩定資源及穩定資源型態 77 摘要 79 2.2. 研究動機 80 2.3. 材料與方法 81 2.3.1. 場地描述、農作試驗設計、採樣及樣品前處理 81 2.3.2. 土壤化學分析 81 2.3.3. DNA萃取與定序 82 2.3.4. 統計及生物資訊分析 82 2.4. 結果 82 2.4.1. 不同處理間的微生物群落組成 82 2.4.2. 玄武岩粉末的添加可增加富營養型菌的比例 83 2.4.3. 不同處理條件下對土壤細菌群落多樣性的影響 84 2.4.4. 土壤化學因子與細菌群落的關係 85 2.4.5. 分析樣品中的前100 OTU(operational taxonomic units) 87 2.5. 討論 91 2.5.1. 玄武岩添加對微生物群落結構的影響 91 2.5.2. 微生物適應玄武岩之生理機制 92 2.6. 結論 96 2.7. 圖表 97 第參章、參考文獻 107 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 雞糞 | zh_TW |
| dc.subject | 厭氧共消化 | zh_TW |
| dc.subject | 磷酸銨鎂 | zh_TW |
| dc.subject | 鳥糞石 | zh_TW |
| dc.subject | 玄武岩 | zh_TW |
| dc.subject | 增強岩石風化 | zh_TW |
| dc.subject | 微生物群落 | zh_TW |
| dc.subject | struvite | en |
| dc.subject | anaerobic co-digestion | en |
| dc.subject | magnesium ammonium phosphate | en |
| dc.subject | microbial communities | en |
| dc.subject | enhanced rock weathering | en |
| dc.subject | basalt | en |
| dc.subject | Chicken manure | en |
| dc.title | 利用雞糞生產磷酸銨鎂之研究 | zh_TW |
| dc.title | A Study on the Production of Magnesium Ammonium Phosphate Using Chicken Manure | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 王尚禮 | zh_TW |
| dc.contributor.coadvisor | Shan-Li Wang | en |
| dc.contributor.oralexamcommittee | 李達源;許正一;林乃君;蕭友晉 | zh_TW |
| dc.contributor.oralexamcommittee | Dar-Yuan Lee;Zeng-Yei Hseu;Nai-Chun Lin;Yo-Jin Shiau | en |
| dc.subject.keyword | 雞糞,厭氧共消化,磷酸銨鎂,鳥糞石,玄武岩,增強岩石風化,微生物群落, | zh_TW |
| dc.subject.keyword | Chicken manure,anaerobic co-digestion,magnesium ammonium phosphate,struvite,basalt,enhanced rock weathering,microbial communities, | en |
| dc.relation.page | 133 | - |
| dc.identifier.doi | 10.6342/NTU202504344 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農業化學系 | - |
| dc.date.embargo-lift | 2030-08-08 | - |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 6.72 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
