請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99591完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林家齊 | zh_TW |
| dc.contributor.advisor | Chia-Chi Lin | en |
| dc.contributor.author | 賴力蘭 | zh_TW |
| dc.contributor.author | Li-Lan Lai | en |
| dc.date.accessioned | 2025-09-16T16:12:53Z | - |
| dc.date.available | 2025-09-17 | - |
| dc.date.copyright | 2025-09-16 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | References
1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. May-Jun 2024;74(3):229-263. doi:10.3322/caac.21834 2. Ministry of Health and Welfare T. Cause of Death Statistics. 2024. https://dep.mohw.gov.tw/DOS/lp-5069-113.html 3. Ha SY, Choi SJ, Cho JH, et al. Lung cancer in never-smoker Asian females is driven by oncogenic mutations, most often involving EGFR. Oncotarget. Mar 10 2015;6(7):5465-74. doi:10.18632/oncotarget.2925 4. Shi Y, Au JS, Thongprasert S, et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol. Feb 2014;9(2):154-62. doi:10.1097/jto.0000000000000033 5. Yatabe Y, Kerr KM, Utomo A, et al. EGFR mutation testing practices within the Asia Pacific region: results of a multicenter diagnostic survey. J Thorac Oncol. Mar 2015;10(3):438-45. doi:10.1097/jto.0000000000000422 6. Harrison PT, Vyse S, Huang PH. Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Semin Cancer Biol. Apr 2020;61:167-179. doi:10.1016/j.semcancer.2019.09.015 7. Mitsudomi T, Yatabe Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci. Dec 2007;98(12):1817-24. doi:10.1111/j.1349-7006.2007.00607.x 8. Tan WL, Lim DW. Is There a Unicorn Among the Uncommon EGFR Mutations? J Thorac Oncol. Feb 2023;18(2):129-132. doi:10.1016/j.jtho.2022.11.009 9. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. Jan 24 2018;553(7689):446-454. doi:10.1038/nature25183 10. Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. Sep 3 2009;361(10):947-57. doi:10.1056/NEJMoa0810699 11. Soria JC, Ohe Y, Vansteenkiste J, et al. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N Engl J Med. Jan 11 2018;378(2):113-125. doi:10.1056/NEJMoa1713137 12. Ramalingam SS, Vansteenkiste J, Planchard D, et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N Engl J Med. Jan 2 2020;382(1):41-50. doi:10.1056/NEJMoa1913662 13. Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E, Tiseo M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer. Oct 2019;121(9):725-737. doi:10.1038/s41416-019-0573-8 14. Sequist LV, Waltman BA, Dias-Santagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. Mar 23 2011;3(75):75ra26. doi:10.1126/scitranslmed.3002003 15. Wu YL, Tsuboi M, He J, et al. Osimertinib in Resected EGFR-Mutated Non-Small-Cell Lung Cancer. N Engl J Med. Oct 29 2020;383(18):1711-1723. doi:10.1056/NEJMoa2027071 16. Yu HA, Arcila ME, Rekhtman N, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. Apr 15 2013;19(8):2240-7. doi:10.1158/1078-0432.Ccr-12-2246 17. Attili I, Corvaja C, Spitaleri G, et al. Post-Progression Analysis of EGFR-Mutant NSCLC Following Osimertinib Therapy in Real-World Settings. Cancers (Basel). Jul 19 2024;16(14)doi:10.3390/cancers16142589 18. Gainor JF, Shaw AT, Sequist LV, et al. EGFR Mutations and ALK Rearrangements Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non-Small Cell Lung Cancer: A Retrospective Analysis. Clin Cancer Res. Sep 15 2016;22(18):4585-93. doi:10.1158/1078-0432.Ccr-15-3101 19. Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. May 21 2015;372(21):2018-28. doi:10.1056/NEJMoa1501824 20. Herbst RS, Giaccone G, de Marinis F, et al. Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC. N Engl J Med. Oct 1 2020;383(14):1328-1339. doi:10.1056/NEJMoa1917346 21. Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N Engl J Med. May 31 2018;378(22):2078-2092. doi:10.1056/NEJMoa1801005 22. Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N Engl J Med. Jun 14 2018;378(24):2288-2301. doi:10.1056/NEJMoa1716948 23. Goel S, Duda DG, Xu L, et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. Jul 2011;91(3):1071-121. doi:10.1152/physrev.00038.2010 24. Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. May 2018;15(5):325-340. doi:10.1038/nrclinonc.2018.29 25. Network NCC. Non-Small Cell Lung Cancer (Version 4.2025). NCCN Clinical Practice Guidelines in Oncology. 2025. https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf 26. Mok TS, Wu YL, Ahn MJ, et al. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N Engl J Med. Feb 16 2017;376(7):629-640. doi:10.1056/NEJMoa1612674 27. Reck M, Mok TSK, Nishio M, et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med. May 2019;7(5):387-401. doi:10.1016/s2213-2600(19)30084-0 28. Lee ATM, Nagasaka M. CheckMate-722: The Rise and Fall of Nivolumab with Chemotherapy in TKI-Refractory EGFR-Mutant NSCLC. Lung Cancer (Auckl). 2023;14:41-46. doi:10.2147/lctt.S408886 29. Planchard D, Popat S, Kerr K, et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. Oct 1 2018;29(Suppl 4):iv192-iv237. doi:10.1093/annonc/mdy275 30. Abughanimeh O, Kaur A, El Osta B, Ganti AK. Novel targeted therapies for advanced non-small lung cancer. Semin Oncol. Jun 2022;49(3-4):326-336. doi:10.1053/j.seminoncol.2022.03.003 31. Besse B, Goto K, Wang Y, et al. Amivantamab Plus Lazertinib in Patients With EGFR-Mutant NSCLC After Progression on Osimertinib and Platinum-Based Chemotherapy: Results From CHRYSALIS-2 Cohort A. J Thorac Oncol. May 2025;20(5):651-664. doi:10.1016/j.jtho.2024.12.029 32. Yu HA, Goto Y, Hayashi H, et al. HERTHENA-Lung01, a Phase II Trial of Patritumab Deruxtecan (HER3-DXd) in Epidermal Growth Factor Receptor-Mutated Non-Small-Cell Lung Cancer After Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Therapy and Platinum-Based Chemotherapy. J Clin Oncol. Dec 10 2023;41(35):5363-5375. doi:10.1200/jco.23.01476 33. Socinski MA, Nishio M, Jotte RM, et al. IMpower150 Final Overall Survival Analyses for Atezolizumab Plus Bevacizumab and Chemotherapy in First-Line Metastatic Nonsquamous NSCLC. J Thorac Oncol. Nov 2021;16(11):1909-1924. doi:10.1016/j.jtho.2021.07.009 34. Nogami N, Barlesi F, Socinski MA, et al. IMpower150 Final Exploratory Analyses for Atezolizumab Plus Bevacizumab and Chemotherapy in Key NSCLC Patient Subgroups With EGFR Mutations or Metastases in the Liver or Brain. J Thorac Oncol. Feb 2022;17(2):309-323. doi:10.1016/j.jtho.2021.09.014 35. Mok T, Nakagawa K, Park K, et al. Nivolumab Plus Chemotherapy in Epidermal Growth Factor Receptor-Mutated Metastatic Non-Small-Cell Lung Cancer After Disease Progression on Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors: Final Results of CheckMate 722. J Clin Oncol. Apr 10 2024;42(11):1252-1264. doi:10.1200/jco.23.01017 36. Yang JC, Lee DH, Lee JS, et al. Phase III KEYNOTE-789 Study of Pemetrexed and Platinum With or Without Pembrolizumab for Tyrosine Kinase Inhibitor‒Resistant, EGFR-Mutant, Metastatic Nonsquamous Non-Small Cell Lung Cancer. J Clin Oncol. Dec 2024;42(34):4029-4039. doi:10.1200/jco.23.02747 37. Lu S, Wu L, Jian H, et al. Sintilimab plus bevacizumab biosimilar IBI305 and chemotherapy for patients with EGFR-mutated non-squamous non-small-cell lung cancer who progressed on EGFR tyrosine-kinase inhibitor therapy (ORIENT-31): first interim results from a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. Sep 2022;23(9):1167-1179. doi:10.1016/s1470-2045(22)00382-5 38. Lu S, Wu L, Jian H, et al. Sintilimab plus chemotherapy for patients with EGFR-mutated non-squamous non-small-cell lung cancer with disease progression after EGFR tyrosine-kinase inhibitor therapy (ORIENT-31): second interim analysis from a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Respir Med. Jul 2023;11(7):624-636. doi:10.1016/s2213-2600(23)00135-2 39. Park S, Kim TM, Han JY, et al. Phase III, Randomized Study of Atezolizumab Plus Bevacizumab and Chemotherapy in Patients With EGFR- or ALK-Mutated Non-Small-Cell Lung Cancer (ATTLAS, KCSG-LU19-04). J Clin Oncol. Apr 10 2024;42(11):1241-1251. doi:10.1200/jco.23.01891 40. Zhou C, Dong X, Chen G, et al. OA09.06 IMpower151: Phase III Study of Atezolizumab + Bevacizumab + Chemotherapy in 1L Metastatic Nonsquamous NSCLC. Journal of Thoracic Oncology. 2023/11/01/ 2023;18(11, Supplement):S64-S65. doi:https://doi.org/10.1016/j.jtho.2023.09.059 41. C Z. IMpower151: Atezo + Bev + Chemo in 1L NSCLC. presented at: IASLC World Conference on Lung Cancer (WCLC); 2023; https://medically.roche.com/global/en/medical-material.d96e337e-6441-4cb5-b01c-227455cc5643.qr.html?cid=slprwclc20232309xxonlc Singapore 42. Zhou C, Dong X, Chen G, et al. Atezolizumab plus bevacizumab and chemotherapy in metastatic nonsquamous NSCLC: the randomized double-blind phase 3 IMpower151 trial. Nat Med. May 16 2025;doi:10.1038/s41591-025-03658-y 43. Yu HA, Suzawa K, Jordan E, et al. Concurrent Alterations in EGFR-Mutant Lung Cancers Associated with Resistance to EGFR Kinase Inhibitors and Characterization of MTOR as a Mediator of Resistance. Clin Cancer Res. Jul 1 2018;24(13):3108-3118. doi:10.1158/1078-0432.Ccr-17-2961 44. Hendriks LEL, Henon C, Auclin E, et al. Outcome of Patients with Non-Small Cell Lung Cancer and Brain Metastases Treated with Checkpoint Inhibitors. J Thorac Oncol. Jul 2019;14(7):1244-1254. doi:10.1016/j.jtho.2019.02.009 45. Planchard D, Feng PH, Karaseva N, et al. Osimertinib plus platinum-pemetrexed in newly diagnosed epidermal growth factor receptor mutation-positive advanced/metastatic non-small-cell lung cancer: safety run-in results from the FLAURA2 study. ESMO Open. Oct 2021;6(5):100271. doi:10.1016/j.esmoop.2021.100271 46. Planchard D, Jänne PA, Cheng Y, et al. Osimertinib with or without Chemotherapy in EGFR-Mutated Advanced NSCLC. N Engl J Med. Nov 23 2023;389(21):1935-1948. doi:10.1056/NEJMoa2306434 47. Zhao Y, He Y, Wang W, et al. Efficacy and safety of immune checkpoint inhibitors for individuals with advanced EGFR-mutated non-small-cell lung cancer who progressed on EGFR tyrosine-kinase inhibitors: a systematic review, meta-analysis, and network meta-analysis. Lancet Oncol. Oct 2024;25(10):1347-1356. doi:10.1016/s1470-2045(24)00379-6 48. Piotrowska Z, Yeap BY, Gainor JF. Chemotherapy and programmed cell death protein 1/programmed death-ligand 1 inhibitor combinations for tyrosine kinase inhibitor-resistant, epidermal growth factor receptor-mutated non-small-cell lung cancer: a meta-analysis. ESMO Open. Sep 2024;9(9):103660. doi:10.1016/j.esmoop.2024.103660 49. Qin BD, Jiao XD, Yuan LY, Wu Y, Ling Y, Zang YS. Immunotherapy-based regimens for patients with EGFR-mutated non-small cell lung cancer who progressed on EGFR-TKI therapy. J Immunother Cancer. Apr 16 2024;12(4)doi:10.1136/jitc-2024-008818 50. Refae AA, Abu Shakra RI, Ibrahim EM. Immunotherapy plus Chemotherapy for Patients with EGFR-Mutated Non-Squamous Cell Lung Cancer for Disease Progression after EGFR Tyrosine-Kinase Inhibitor: A Meta-Analysis of Randomized Controlled Trials. Oncology. 2025;103(5):400-412. doi:10.1159/000541415 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99591 | - |
| dc.description.abstract | 1. 研究背景
表皮生長因子受體(EGFR)突變為非小細胞肺癌(NSCLC)中常見且重要的致癌驅動因子,特別常見於不吸菸的亞洲族群。雖然EGFR酪胺酸激酶抑制劑(TKI)為第一線標準治療,但幾乎無可避免地會出現後續抗藥性導致疾病進展。目前疾病進展後的主要治療方式為化學治療,然而免疫檢查點抑制劑合併化療或抗血管新生療法的效益仍未明確。鑒於過去研究顯示免疫合併化療於EGFR突變患者中的效果有限,本研究進行系統性回顧與統合分析,以探討免疫合併治療在此族群中的療效與安全性,並進一步分析不同次族群患者是否可能從中獲益。 2. 研究方法 本研究依循PRISMA 2020指引進行,系統性搜尋PubMed、Embase、Cochrane Library及ClinicalTrials.gov等資料庫中截至2024年12月31日前發表之隨機對照試驗,納入對象為接受表皮生長因子受體突變且標靶藥物治療後發生疾病進展之非小細胞肺癌患者,評估免疫檢查點抑制劑為基礎之合併治療(免疫治療+化療±抗血管新生療法)對照化療的隨機對照試驗。主要觀察指標為無惡化存活期(PFS),次要臨床指標包括整體存活期(OS)、治療相關不良事件(AEs)、次族群分析、出版偏倚。本研究使用 RoB 2.0 工具進行偏倚風險評估,並以漏斗圖進行發表偏倚之視覺化檢視。資料統整與統計分析皆使用 RStudio 軟體(版本 2024.12.1+563)進行。 鑑於各治療比較組中納入研究數量有限,本研究以漏斗圖作為探索性工具,評估潛在的出版偏倚。針對無惡化生存期與整體生存期所繪製的漏斗圖經視覺檢查後,未見明顯不對稱,顯示出版偏倚風險較低。此外,本研究亦繪製網絡結構圖,呈現四種不同治療之比較關係,共納入六項隨機對照試驗,其中兩項為三臂設計並共用對照組,最終納入八組治療效果估計值。考量各比較組資料有限,且間接比較證據迴路受限,本研究未進行 Egger’s 迴歸檢定、節點分裂分析與迴圈不一致性檢定等統計評估,以避免產生統計不穩定或誤導性結果。然而,根據整體網絡結構與治療效益趨勢,整體一致性仍具可接受程度。 3. 研究結果 本研究納入六篇符合條件的第三期隨機對照試驗,共計1,777名非小細胞肺癌患者,免疫治療相關合併療法在疾病無惡化存活期方面顯示具臨床意義之改善效果。IO合併化療相較於單獨化療,其合併HR為0.77(95% CI: 0.67–0.88);三合一治療(免疫治療+化療+抗血管新生)效果最佳,HR為0.54(95% CI: 0.44–0.67)。不同治療策略(免疫治療+化療與免疫治療+化療+抗血管新生)之間的分層比較顯示PFS療效存在統計學上顯著差異(p = 0.0080)。整體存活期方面,免疫治療+化療組與化療組相比雖呈改善趨勢(HR = 0.86;95% CI: 0.75–1.00),但未達統計顯著性。三合一組合則未展現明顯存活效益(HR = 0.98;95% CI: 0.77–1.25)。與抗血管新生合併療法相比,免疫治療合併組亦未顯現統計上優勢。在安全性方面,免疫合併療法整體與化療相比,任何等級不良事件相對風險比為1.03(95% CI: 0.96–1.10);而三合一組合的Grade ≥3不良事件風險最高(RR = 1.55;95% CI: 0.01–161.03),但異質性較高,解釋上需謹慎。但整體安全仍具可接受性。 次族群分析顯示,免疫治療合併方案在多項臨床與分子特徵中皆展現相對化療更一致的無疾病惡化存活期改善效果。在年齡方面,無論是 <65 歲(HR = 0.76,95% CI: 0.64–0.91)或 ≥65 歲族群(HR = 0.81,95% CI: 0.65–1.02),皆觀察到療效趨勢,且無顯著異質性(交互作用 p = 0.63)。性別方面,男性(HR = 0.76,95% CI: 0.61–0.95)與女性(HR = 0.80,95% CI: 0.66–0.98)同樣展現PFS改善,差異無統計顯著交互作用。亞洲族群具統計顯著的療效改善(HR = 0.80,95% CI: 0.68–0.94),而非亞洲族群則無一致趨勢(HR = 1.13,95% CI: 0.52–2.47),具明顯異質性。功能狀態分析中,ECOG PS為1的患者顯示明確療效(HR = 0.75,95% CI: 0.63–0.88),而ECOG 0患者雖呈現改善趨勢但未達統計顯著(HR = 0.84,95% CI: 0.65–1.09)。吸菸史方面,不論是現/曾吸菸者(HR = 0.75,95% CI: 0.60–0.95)或未吸菸者(HR = 0.81,95% CI: 0.66–0.99)皆有益處,無顯著交互作用。值得注意的是,在有腦轉移患者中,三合一治療(免疫治療+抗血管新生 + 化療)展現顯著療效(HR = 0.32,95% CI: 0.19–0.53),而免疫治療+化療則未顯著(HR = 0.92,95% CI: 0.71–1.19;次族群交互作用 p = 0.0029)。分子標誌方面,無T790M突變者(HR = 0.69,95% CI: 0.52–0.92)與 PD-L1表現 ≥1%者(HR = 0.79,95% CI: 0.63–0.99)明顯獲益;反之,T790M陽性患者(HR = 0.97,95% CI: 0.74–1.27)與 PD-L1表現<1%者(HR = 0.84,95% CI: 0.66–1.07)則未達統計顯著。此結果支持臨床上依據患者特徵進行個別化治療選擇之重要性。 4. 研究結論 統合分析結果顯示,對於EGFR突變且TKI治療失效之非小細胞肺癌患者,免疫合併化學治療,特別是同時合併抗血管新生藥物者,能在特定族群(如L858R突變、T790M陰性與合併腦轉移)中提供明顯的PFS益處。此結果支持個別化治療策略的重要性,亦突顯未來需進行具生物標記分層設計的前瞻性臨床試驗,以驗證此類療法於不同患者族群中的適用性與安全性。 | zh_TW |
| dc.description.abstract | Background
Epidermal growth factor receptor (EGFR) mutations are key oncogenic drivers in non-small cell lung cancer (NSCLC), especially among never-smoking Asians population. While EGFR tyrosine kinase inhibitors (TKIs) are standard first-line therapy, resistance inevitably emerges. Following progression, chemotherapy remains the mainstay; however, the efficacy of immunotherapy-based regimens with or without anti-angiogenic agents remains uncertain. We aim to conduct a systematic review and meta-analysis to evaluate the efficacy and safety of immunotherapy-based regimens compared with chemotherapy alone in EGFR TKI resistant NSCLC, with subgroup analyses to identify potential beneficiaries of combination therapy, alongside evaluations of publication bias and network consistency. Methods A systematic literature review and meta-analysis were conducted in accordance with PRISMA 2020 guidelines. PubMed, Embase, Cochrane Library, and ClinicalTrials.gov were searched up to December 31, 2024, for randomized controlled trials (RCTs) evaluating immunotherapy-based combinations (IO + chemotherapy ± anti-angiogenesis) versus chemotherapy in patients with EGFR-mutant NSCLC following TKI progression. The primary outcome was progression-free survival (PFS); secondary outcomes included overall survival (OS), grade ≥3 treatment-related adverse events (AEs), subgroup analyses, publication bias. Risk of bias was assessed using the RoB 2.0 tool. Publication bias was evaluated using funnel plots inspection. Data synthesis was performed using RStudio (version 2024.12.1+563). Due to the limited number of studies per treatment comparison, funnel plots were employed as an exploratory tool to assess potential publication bias. Visual inspection of funnel plots for both PFS and OS revealed no obvious asymmetry, suggesting a low risk of publication bias. Additionally, a network plot was generated to illustrate the treatment comparisons, including a total of four distinct therapeutic comparisons across six randomized controlled trials, two of which included three-arm designs with shared control arms, resulting in eight treatment effect estimates. Given the sparsity of data within each comparison and the limited indirect evidence loops, formal statistical assessments such as Egger’s regression test, node-splitting analysis, and loop-specific inconsistency testing were not conducted, in order to avoid generating unstable or potentially misleading results. Nonetheless, the consistency of treatment effects appeared acceptable based on the structure and coherence of the network plot. Results In this meta-analysis of six phase III RCTs involving 1,777 patients met the inclusion criteria were included. For PFS, the pooled HR favored immunotherapy plus chemotherapy (IO+Chemo) over chemotherapy alone (HR = 0.77; 95% CI: 0.67–0.88), and triplet regimens combining immunotherapy, chemotherapy, and anti-angiogenic agents (IO+Chemo+Anti-angiogenic) demonstrated the greatest PFS benefit (HR = 0.54; 95% CI: 0.44–0.67). Stratified analysis by treatment regimen (IO+Chemo vs. IO+Chemo+Anti-angiogenic) demonstrated significant differences in PFS benefits (p = 0.0080). For OS, the benefit was less pronounced. IO+Chemo showed a trend toward improved OS versus chemotherapy (HR = 0.86; 95% CI: 0.75–1.00), while the triplet regimen did not significantly improve OS (HR = 0.98; 95% CI: 0.77–1.25). No significant differences were observed when comparing immunotherapy-based strategies to anti-angiogenesis-based combinations. In terms of safety, immunotherapy-based combinations were associated with a mild increase in any-grade adverse events (RR = 1.03; 95% CI: 0.96–1.10), and triplet regimens showed the highest risk increase in grade ≥3 adverse events (RR = 1.55; 95% CI: 0.01–161.03), though with substantial heterogeneity. However, across comparisons, most differences were not statistically significant, and toxicity profiles remained within a clinically manageable range. Subgroup analyses revealed consistent PFS benefits favoring immunotherapy-based combinations over chemotherapy across multiple clinical and molecular characteristics. Statistically significant improvements in PFS were observed in both age groups (<65 years: HR 0.76, 95% CI 0.64–0.91; ≥65 years: HR 0.81, 95% CI 0.65–1.02), with no evidence of heterogeneity (p for interaction = 0.63). Similarly, both males (HR 0.76, 95% CI 0.61–0.95) and females (HR 0.80, 95% CI 0.66–0.98) derived comparable benefit, with no significant interaction effect. Among geographic subgroups, Asian patients experienced a significant PFS benefit (HR 0.80, 95% CI 0.68–0.94), while non-Asian populations did not show a consistent trend (HR 1.13, 95% CI 0.52–2.47), with notable heterogeneity. Patients with ECOG performance status 1 showed significant improvement (HR 0.75, 95% CI 0.63–0.88), whereas ECOG 0 patients demonstrated a numerically favorable but nonsignificant trend (HR 0.84, 95% CI 0.65–1.09). With respect to smoking history, both current/former smokers (HR 0.75, 95% CI 0.60–0.95) and never-smokers (HR 0.81, 95% CI 0.66–0.99) benefited from immunotherapy combinations, though no interaction was found. Particularly, in patients with brain metastases, IO + anti-angiogenic combinations yielded substantial benefit (HR 0.32, 95% CI 0.19–0.53), whereas IO + chemo alone did not (HR 0.92, 95% CI 0.71–1.19; p for subgroup interaction = 0.0029).Finally, patients without T790M mutations (HR 0.69, 95% CI 0.52–0.92) and those with PD-L1 ≥1% expression (HR 0.79, 95% CI 0.63–0.99) exhibited improved PFS, while those with T790M-positive status (HR 0.97, 95% CI 0.74–1.27) or PD-L1 <1% (HR 0.84, 95% CI 0.66–1.07) did not derive statistically significant benefit. These finding underscore the clinical value of stratified treatment selection based on demographic and molecular profiles. Conclusion Compared with chemotherapy, immunotherapy-based combinations, particularly with anti-angiogenic agents, provide meaningful PFS benefit in EGFR-mutant NSCLC after TKI resistance. While OS benefits were not statistically significant, favorable trends in selected subgroups with EGFR L858R mutations and absence of T790M, highlighting the potential role of immunotherapy-based strategies. These findings warrant prospective validation in biomarker-stratified clinical trials. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:12:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-16T16:12:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Table of Contents
MASTER’S THESIS ACCEPTANCE CERTIFICATE I ACKNOWLEDGEMENTS II CHINESE ABSTRACT III ENGLISH ABSTRACT V SYSTEMATIC REVIEW & META-ANALYSIS 1 1. INTRODUCTION 1 2. METHODS 3 2.1 Literature Search Strategy and Selection Criteria 3 2.2 Study inclusion and exclusion criteria 3 2.3 Data Extraction and Outcomes 4 2.4 Quality Assessment 4 2.5 Statistical Analysis 4 3. RESULTS 5 3.1 Study Selection and Eligible Studies 5 3.2 Primary Outcomes 6 3.3 Subgroup Analysis of PFS 11 3.3.1 Demographic Characteristics 12 3.3.2 Disease Characteristics 16 3.3.3 Treatment History 26 3.4 Publication Bias Assessment 30 4. DISCUSSIONS 33 5. CONCLUSION 36 REFERENCES 38 TABLES AND FIGURES 43 TABLE 1. PICO FRAMEWORK FOR STUDY INCLUSION 43 TABLE 2. CHARACTERISTICS OF INCLUDED STUDIES 44 TABLE 3. SUMMARY OF PROGRESSION-FREE AND OVERALL SURVIVAL OUTCOMES IN EGFR-MUTANT NSCLC PATIENTS TREATED WITH IMMUNOTHERAPY-BASED COMBINATIONS POST-EGFR TKI THERAPY 46 TABLE 4. HAZARD RATIOS FOR PROGRESSION-FREE SURVIVAL (PFS) IN KEY SUBGROUPS 48 FIGURE 1. PRISMA FLOWCHART FOR SYSTEMATIC REVIEW AND META-ANALYSIS 51 FIGURE 2. TRAFFIC LIGHT PLOT OF RISK OF BIAS ASSESSMENT FOR INCLUDED RCTS 52 FIGURE 3. SUMMARY PLOT OF RISK OF BIAS ASSESSMENT FOR INCLUDES RCTS (ROB 2.0) 52 FIGURE 4A. NETWORK PLOT OF ALL INCLUDED 2 ARM TREATMENT COMPARISONS 53 FIGURE 4B. NETWORK PLOT OF ALL INCLUDED 3 ARM TREATMENT COMPARISON (NUMBER OF DIRECT COMPARISONS) 54 FIGURE 4C. NETWORK PLOT OF ALL INCLUDED 3 ARM TREATMENT COMPARISON (NUMBER OF STUDIES) 55 FIGURE 5A. FOREST PLOT OF PFS (CHEMOTHERAPY ALONE SERVED AS THE REFERENCE) 56 FIGURE 5B. FOREST PLOT OF PFS (CHEMO + ANTI-ANGIOGENESIS SERVED AS THE REFERENCE) 56 FIGURE 5C. FOREST PLOT OF TREATMENT EFFECTS ON PFS FOR IO-BASED REGIMENS VERSUS CHEMOTHERAPY (REFERENCE GROUP) 57 FIGURE 6A: FOREST PLOT OF OS (CHEMOTHERAPY ALONE SERVED AS THE REFERENCE) 57 FIGURE 6B: FOREST PLOT OF OS (CHEMO + ANTI-ANGIOGENESIS SERVED AS THE REFERENCE) 58 FIGURE 6C. FOREST PLOT OF TREATMENT EFFECTS ON OS FOR IO-BASED REGIMENS VERSUS CHEMOTHERAPY (REFERENCE GROUP) 58 FIGURE 7A. FOREST PLOT OF ANY-GRADE TREATMENT-RELATED ADVERSE EVENTS (CHEMOTHERAPY ALONE SERVED AS THE REFERENCE) 58 FIGURE 7B. FOREST PLOT OF ANY-GRADE TREATMENT-RELATED ADVERSE EVENTS (CHEMO + ANTI-ANGIOGENESIS SERVED AS THE REFERENCE) 59 FIGURE 7C. FOREST PLOT OF GRADE ≥3 TREATMENT-RELATED ADVERSE EVENTS (CHEMOTHERAPY ALONE SERVED AS THE REFERENCE) 59 FIGURE 7D. FOREST PLOT OF GRADE ≥3 TREATMENT-RELATED ADVERSE EVENTS (CHEMO + ANTI-ANGIOGENESIS SERVED AS THE REFERENCE) 59 FIGURE 8. SUBGROUP ANALYSIS OF PFS BY AGE 60 FIGURE 9. SUBGROUP ANALYSIS OF PFS BY SEX 60 FIGURE 10. SUBGROUP ANALYSIS OF PFS BY GEOGRAPHIC REGION 61 FIGURE 11. SUBGROUP ANALYSIS OF PFS BY ECOG PERFORMANCE STATUS 61 FIGURE 12. SUBGROUP ANALYSIS OF PFS BY SMOKING HISTORY 62 FIGURE 13. SUBGROUP ANALYSIS OF PFS BY BRAIN METASTASIS 62 FIGURE 14A. SUBGROUP ANALYSIS OF PFS BY SENSITIZING EGFR MUTATIONS (CHEMO SERVED AS THE REFERENCE ARM) 63 FIGURE 14B. SUBGROUP ANALYSIS OF PFS BY SENSITIZING EGFR MUTATIONS (CHEMO + ANTI-ANGIOGENESIS SERVED AS THE REFERENCE ARM) 63 FIGURE 15. SUBGROUP ANALYSIS OF PFS BY EGFR EXON 19 DELETION 63 FIGURE 16. SUBGROUP ANALYSIS OF PFS BY EGFR L858R MUTATION 64 FIGURE 17. SUBGROUP ANALYSIS OF PFS BY T790M STATUS 64 FIGURE 18. SUBGROUP ANALYSIS OF PFS BY PD-L1 EXPRESSION 65 FIGURE 19A. SUBGROUP ANALYSIS OF PFS BY PREVIOUS EGFR TKI TREATMENT (CHEMO AS CONTROL) 65 FIGURE 19B. SUBGROUP ANALYSIS OF PFS BY PREVIOUS EGFR TKI TREATMENT (CHEMO + ANTI-ANGIOGENESIS AS CONTROL) 66 FIGURE 20. SUBGROUP ANALYSIS OF PFS BY CHECKPOINT INHIBITOR 66 FIGURE 21A. FUNNEL PLOT OF PFS (2-ARM TRIALS) ASSESSING PUBLICATION BIAS 67 FIGURE 21B. FUNNEL PLOT OF PFS (3-ARM TRIALS) ASSESSING PUBLICATION BIAS 67 FIGURE 22A. FUNNEL PLOT OF OS (2-ARM TRIALS) ASSESSING PUBLICATION BIAS 68 FIGURE 22A. FUNNEL PLOT OF OS (3-ARM TRIALS) ASSESSING PUBLICATION BIAS 68 PROPOSED CLINICAL TRIAL PROTOCOL 69 1. BACKGROUND 79 2. STUDY RATIONALE 79 2.1 RISK / BENEFIT ASSESSMENT 80 3. STUDY OBJECTIVES 80 3.1 PRIMARY OBJECTIVE 80 3.2 SECONDARY OBJECTIVES 80 3.3 EXPLORATORY OBJECTIVES 81 4. STUDY DESIGN 81 4.1 STUDY OVERVIEW 81 4.2 STUDY TIMELINE 82 5. CRITERIA FOR EVALUATION 82 5.1 PRIMARY EFFICACY ENDPOINT 82 5.2 SECONDARY EFFICACY ENDPOINTS 82 5.3 EXPLORATORY ENDPOINTS 83 5.4 SAFETY EVALUATIONS 84 5.5 DOSE MODIFICATION CRITERIA FOR ADVERSE EVENTS 84 Table 1. Immune Checkpoint Inhibitors (Pembrolizumab) 85 Table 2. Bevacizumab 85 Table 3. Chemotherapy (Pemetrexed + Carboplatin) 85 5.6 SAFETY STOPPING RULES 86 6. SUBJECT SELECTION 86 6.1 STUDY POPULATION 86 6.2 INCLUSION CRITERIA 86 6.3 EXCLUSION CRITERIA 87 7. CONCURRENT MEDICATIONS 88 7.1 ALLOWED MEDICATIONS 88 7.2 RESTRICTED OR PROHIBITED MEDICATIONS 89 8. STUDY TREATMENTS 89 8.1 METHOD OF ASSIGNING SUBJECTS TO TREATMENT GROUPS 89 8.2 BLINDING 90 8.3 FORMULATION OF TEST AND CONTROL PRODUCTS 90 8.4 FORMULATION OF TEST PRODUCT 91 Table 4. Formulation and Measured pH of Study Drugs and Comparator 91 8.5 FORMULATION OF CONTROL PRODUCT 92 8.6 PACKAGING AND LABELING 92 8.7 SUPPLY OF STUDY DRUG AT THE SITE 92 8.8 DOSAGE/DOSAGE REGIMEN 93 8.9 DISPENSING, ADMINISTRATION AND ACCOUNTABILITY 93 Dispensing Requirements 94 Administration Instructions 94 Study Drug Storage 95 Study Drug Accountability 95 Measures of Treatment Compliance 95 9. STUDY PROCEDURES AND GUIDELINES 96 9.1 CLINICAL ASSESSMENTS 96 Informed Consent and Regulatory Requirements 96 Demographics and Medical History 96 Concomitant Medications 96 Physical Examination and ECOG Performance Status 97 Vital Signs and Oximetry 97 Other Clinical Procedures 97 Adverse Events 97 9.2 CLINICAL LABORATORY MEASUREMENTS 98 Hematology 98 Blood Chemistry Profile 98 Pregnancy Test 98 Urinalysis 98 10. EVALUATIONS BY VISIT 99 10.1 SCREENING (DAY -28 TO DAY 1) 99 10.2 BASELINE / CYCLE 1 DAY 1 99 10.3 TREATMENT VISITS (CYCLE 1 DAY 21, CYCLE 2 DAY 1, ETC.) 99 10.4 TUMOR ASSESSMENT VISITS (EVERY 6 WEEKS ± 7 DAYS) 99 10.5 END-OF-TREATMENT (EOT) 100 10.6 FOLLOW-UP (EVERY 12 WEEKS POST-EOT UNTIL DISEASE PROGRESSION) 100 10.7 EARLY TERMINATION 100 11. ADVERSE EXPERIENCE REPORTING AND DOCUMENTATION 100 11.1 ADVERSE EVENTS 100 11.2 SERIOUS ADVERSE EXPERIENCES (SAE) 101 Serious Adverse Experience Reporting 101 11.3 PROTOCOL DEFINED IMPORTANT MEDICAL EVENTS 102 11.4 MEDICAL MONITORING 102 11.5 SAFETY MANAGEMENT PLAN (SMP) 102 12. DISCONTINUATION AND REPLACEMENT 102 12.1 EARLY DISCONTINUATION OF STUDY DRUG 102 12.2 WITHDRAWAL FROM STUDY PARTICIPATION 103 12.3 REPLACEMENT OF SUBJECTS 103 13. PROTOCOL VIOLATIONS 103 14. DATA SAFETY MONITORING 104 14.1 OVERSIGHT RESPONSIBILITIES 104 14.2 COMPOSITION AND CHARTER 104 14.3 INTERIM ANALYSES 104 14.4 COMMUNICATION OF FINDINGS 104 15. STATISTICAL METHODS AND CONSIDERATIONS 104 15.1 STATISTICAL ANALYSIS PLAN (SAP) 105 15.2 ANALYSIS POPULATIONS 105 15.3 DEMOGRAPHIC AND BASELINE CHARACTERISTICS 105 15.4 PRIMARY ENDPOINT: PROGRESSION-FREE SURVIVAL (PFS) 105 15.5 SECONDARY ENDPOINTS 105 15.6 EXPLORATORY ANALYSIS 106 15.7 INTERIM ANALYSIS 106 15.8 SAMPLE SIZE ESTIMATION 106 15.9 HANDLING OF MISSING AND CENSORED DATA 108 16. DATA COLLECTION, RETENTION AND MONITORING 109 16.1 DATA COLLECTION INSTRUMENTS 109 16.2 DATA MANAGEMENT PROCEDURES 109 16.3 DATA QUALITY CONTROL AND REPORTING 109 16.4 ARCHIVAL OF DATA 109 16.5 AVAILABILITY AND RETENTION OF INVESTIGATIONAL RECORDS 109 16.6 MONITORING 109 16.7 SUBJECT CONFIDENTIALITY 110 17. ADMINISTRATIVE, ETHICAL, REGULATORY CONSIDERATIONS 110 17.1 REGULATORY AND ETHICAL COMPLIANCE 110 17.2 PROTOCOL AMENDMENTS 110 17.3 INFORMED CONSENT 110 17.4 IRB/IEC RESPONSIBILITIES 111 17.5 INVESTIGATOR RESPONSIBILITIES 111 17.6 PUBLICATIONS AND DATA SHARING 111 18. REFERENCES 111 | - |
| dc.language.iso | en | - |
| dc.subject | EGFR突變 | zh_TW |
| dc.subject | 酪胺酸激酶抑制劑 | zh_TW |
| dc.subject | 抗藥性 | zh_TW |
| dc.subject | 免疫檢查點抑制劑 | zh_TW |
| dc.subject | 化學治療 | zh_TW |
| dc.subject | 抗血管新生療法 | zh_TW |
| dc.subject | 非小細胞肺癌 | zh_TW |
| dc.subject | 統合分析 | zh_TW |
| dc.subject | non-small cell lung cancer | en |
| dc.subject | EGFR mutation | en |
| dc.subject | anti-angiogenesis | en |
| dc.subject | tyrosine kinase inhibitor | en |
| dc.subject | resistance | en |
| dc.subject | immune checkpoint inhibitor | en |
| dc.subject | chemotherapy | en |
| dc.subject | meta-analysis | en |
| dc.title | 表皮生長因子受體酪胺酸酶抑制劑產生抗藥性的非小細胞肺癌患者使用免疫治療合併化學治療加上有無抗血管新生抑制劑與單獨化學治療之療效比較:系統性文獻回顧及統合分析 | zh_TW |
| dc.title | Immunotherapy combined with chemotherapy with or without anti-angiogenic agents versus chemotherapy in patients with EGFR-mutant non-small cell lung cancer after resistance to EGFR tyrosine kinase inhibitors: A systematic review and meta-analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 邵文逸;何肇基 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Yi Shao;Chao-Chi Ho | en |
| dc.subject.keyword | EGFR突變,酪胺酸激酶抑制劑,抗藥性,免疫檢查點抑制劑,化學治療,抗血管新生療法,非小細胞肺癌,統合分析, | zh_TW |
| dc.subject.keyword | EGFR mutation,tyrosine kinase inhibitor,resistance,immune checkpoint inhibitor,chemotherapy,anti-angiogenesis,non-small cell lung cancer,meta-analysis, | en |
| dc.relation.page | 116 | - |
| dc.identifier.doi | 10.6342/NTU202502224 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床醫學研究所 | - |
| dc.date.embargo-lift | 2025-09-17 | - |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
