Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99584
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor江伯倫zh_TW
dc.contributor.advisorBor-Luen Chiangen
dc.contributor.author陳恬萱zh_TW
dc.contributor.authorTien-Hsuan Chenen
dc.date.accessioned2025-09-16T16:11:36Z-
dc.date.available2025-09-17-
dc.date.copyright2025-09-16-
dc.date.issued2025-
dc.date.submitted2025-06-30-
dc.identifier.citation1. WHO. WHO global air quality guidelines: Particulate matter (‎PM2.5 and PM10)‎, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization Publishing; 2022.
2. 行政院環境保護署. 空氣品質監測網. https://airtw.moenv.gov.tw/
3. Falcon-Rodriguez CI, Osornio-Vargas AR, Sada-Ovalle I, Segura-Medina P. Aeroparticles, composition, and lung diseases. Front Immunol. 2016;7(3):1-9.
4. 中華民國空氣品質監測報告108年年報 (行政院環境保護署) (2020).
5. 中華民國空氣品質監測報告109年年報 (行政院環境保護署) (2021).
6. 中華民國空氣品質監測報告110年年報 (行政院環境保護署) (2022).
7. 中華民國空氣品質監測報告111年年報 (行政院環境保護署) (2023).
8. 中華民國空氣品質監測報告112年年報 (行政院環境保護署) (2024).
9. 中華民國空氣品質監測報告113年年報 (行政院環境保護署) (2025).
10. Falcon-Rodriguez CI, Osornio-Vargas AR, Sada-Ovalle I, Segura-Medina P. Aeroparticles, Composition, and Lung Diseases. Frontiers in immunology. 2016;7:3.
11. Feng S, Gao D, Liao F, Zhou F, Wang X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol Environ Saf. 2016;128:67-74.
12. Pota P, Suwannasom P, Chattipakorn SC, Chattipakorn N. From smog to scarred hearts: unmasking the detrimental impact of air pollution on myocardial ischemia-reperfusion injury. Cell Mol Life Sci. 2025;82(1):65.
13. Jones A, Ali MU, Mayhew A, et al. Environmental risk factors for all-cause dementia, Alzheimer's disease dementia, vascular dementia, and mild cognitive impairment: An umbrella review and meta-analysis. Environ Res. 2025;270:121007.
14. Lee BJ, Kim B, Lee K. Air pollution exposure and cardiovascular disease. Toxicol Res. 2014;30(2):71-75.
15. Morantes-Caballero JA, Fajardo Rodriguez HA. Effects of air pollution on acute exacerbation of chronic obstructive pulmonary disease: A descriptive retrospective study (pol-AECOPD). Int J Chron Obstruct Pulmon Dis. 2019;14:1549-1557.
16. Li MH, Fan LC, Mao B, et al. Short-term exposure to ambient fine particulate matter increases hospitalizations and mortality in COPD: A systematic review and meta-analysis. Chest. 2016;149(2):447-458.
17. Cheng MH, Chiu HF, Yang CY. Coarse particulate air pollution associated with increased risk of hospital admissions for respiratory diseases in a tropical city, Kaohsiung, Taiwan. Int J Environ Res Public Health. 2015;12(10):13053-13068.
18. Kim JS, Chen Z, Alderete TL, et al. Associations of air pollution, obesity and cardiometabolic health in young adults: The Meta-AIR study. Environ Int. 2019;133(Pt A):105180.
19. Croft DP, Zhang W, Lin S, et al. The association between respiratory infection and air pollution in the setting of air quality policy and economic change. Ann Am Thorac Soc. 2019;16(3):321-330.
20. McCreanor J, Cullinan P, Nieuwenhuijsen MJ, et al. Respiratory effects of exposure to diesel traffic in persons with asthma. N Engl J Med. 2007;357(23):2348-2358.
21. Turner MC, Krewski D, Pope CA, 3rd, Chen Y, Gapstur SM, Thun MJ. Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers. Am J Respir Crit Care Med. 2011;184(12):1374-1381.
22. Correia AW, Pope CA, 3rd, Dockery DW, Wang Y, Ezzati M, Dominici F. Effect of air pollution control on life expectancy in the United States: An analysis of 545 U.S. counties for the period from 2000 to 2007. Epidemiology. 2013;24(1):23-31.
23. Kim JB, Prunicki M, Haddad F, et al. Cumulative lifetime burden of cardiovascular disease from early exposure to air pollution. J Am Heart Assoc. 2020;9(6):e014944.
24. Riedl MA. The effect of air pollution on asthma and allergy. Curr Allergy Asthma Rep. 2008;8(2):139-146.
25. Huang KL, Liu SY, Chou CC, Lee YH, Cheng TJ. The effect of size-segregated ambient particulate matter on Th1/Th2-like immune responses in mice. PLoS One. 2017;12(2):e0173158.
26. Zhao C, Liao J, Chu W, et al. Involvement of TLR2 and TLR4 and Th1/Th2 shift in inflammatory responses induced by fine ambient particulate matter in mice. Inhal Toxicol. 2012;24(13):918-927.
27. Zhao Y, Zhang H, Yang X, Zhang Y, Feng S, Yan X. Fine particulate matter (PM2.5) enhances airway hyperresponsiveness (AHR) by inducing necroptosis in BALB/c mice. Environ Toxicol Pharmacol. 2019;68:155-163.
28. Xie Y, Zhang X, Tian Z, et al. Preexposure to PM2.5 exacerbates acute viral myocarditis associated with Th17 cell. Int J Cardiol. 2013;168(4):3837-3845.
29. Honda A, Fukushima W, Oishi M, et al. Effects of components of PM2.5 collected in Japan on the respiratory and immune systems. Int J Toxicol. 2017;36(2):153-164.
30. Herbert C, Siegle JS, Shadie AM, et al. Development of asthmatic inflammation in mice following early-life exposure to ambient environmental particulates and chronic allergen challenge. Dis Model Mech. 2013;6(2):479-488.
31. Williams MA, Cheadle C, Watkins T, et al. TLR2 and TLR4 as potential biomarkers of environmental particulate matter exposed human myeloid dendritic cells. Biomark Insights. 2007;2:226-240.
32. Porter M, Karp M, Killedar S, et al. Diesel-enriched particulate matter functionally activates human dendritic cells. Am J Respir Cell Mol Biol. 2007;37(6):706-719.
33. Ma QY, Huang DY, Zhang HJ, Wang S, Chen XF. Exposure to particulate matter 2.5 (PM2.5) induced macrophage-dependent inflammation, characterized by increased Th1/Th17 cytokine secretion and cytotoxicity. Int Immunopharmacol. 2017;50:139-145.
34. Zhao Q, Chen H, Yang T, et al. Direct effects of airborne PM2.5 exposure on macrophage polarizations. Biochim Biophys Acta. 2016;1860(12):2835-2843.
35. Sun L, Fu J, Lin SH, et al. Particulate matter of 2.5 μm or less in diameter disturbs the balance of Th17/regulatory T cells by targeting glutamate oxaloacetate transaminase 1 and hypoxia-inducible factor 1α in an asthma model. J Allergy Clin Immunol. 2020;145(1):402-414.
36. Zhou J, Geng F, Xu J, et al. PM2.5 exposure and cold stress exacerbates asthma in mice by increasing histone acetylation in IL-4 gene promoter in CD4+T cells. Toxicol Lett. 2019;316:147-153.
37. Li Y, Zhou J, Rui X, Zhou L, Mo X. PM2.5 exposure exacerbates allergic rhinitis in mice by increasing DNA methylation in the IFN-γ gene promoter in CD4+T cells via the ERK-DNMT pathway. Toxicol Lett. 2019;301:98-107.
38. Fahy JV. Type 2 inflammation in asthma--present in most, absent in many. Nat Rev Immunol. 2015;15(1):57-65.
39. GINA. 2024 Summary guide for asthma management and prevention: For adults, adolescents and children 6–11 year. Global Initiative for Asthma; 2024.
40. GINA. 2024 GINA Difficult-to-treat and severe asthma in adolescent and adult patients. Global Initiative for Asthma; 2024.
41. Lambrecht BN, Hammad H, Fahy JV. The cytokines of asthma. Immunity. 2019;50(4):975-991.
42. Plantinga M, Guilliams M, Vanheerswynghels M, et al. Conventional and monocyte-derived CD11b+ dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity. 2013;38(2):322-335.
43. Demenais F, Margaritte-Jeannin P, Barnes KC, et al. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nat Genet. 2018;50(1):42-53.
44. Halim TY, Hwang YY, Scanlon ST, et al. Group 2 innate lymphoid cells license dendritic cells to potentiate memory Th2 cell responses. Nat Immunol. 2016;17(1):57-64.
45. Hammad H, Lambrecht BN. Barrier epithelial cells and the control of type 2 immunity. Immunity. 2015;43(1):29-40.
46. de Kleer IM, Kool M, de Bruijn MJ, et al. Perinatal activation of the interleukin-33 pathway promotes type 2 immunity in the developing lung. Immunity. 2016;45(6):1285-1298.
47. Li DQ, Zhang L, Pflugfelder SC, et al. Short ragweed pollen triggers allergic inflammation through Toll-like receptor 4-dependent thymic stromal lymphopoietin/OX40 ligand/OX40 signaling pathways. J Allergy Clin Immunol. 2011;128(6):1318-1325.e1312.
48. Halim TYF, Rana BMJ, Walker JA, et al. Tissue-restricted adaptive type 2 immunity is orchestrated by expression of the costimulatory molecule OX40L on group 2 innate lymphoid cells. Immunity. 2018;48(6):1195-1207.e1196.
49. Ordoñez CL, Shaughnessy TE, Matthay MA, Fahy JV. Increased neutrophil numbers and IL-8 levels in airway secretions in acute severe asthma: Clinical and biologic significance. Am J Respir Crit Care Med. 2000;161(4 Pt 1):1185-1190.
50. Ray A, Kolls JK. Neutrophilic inflammation in asthma and association with disease severity. Trends Immunol. 2017;38(12):942-954.
51. Choy DF, Hart KM, Borthwick LA, et al. Th2 and Th17 inflammatory pathways are reciprocally regulated in asthma. Sci Transl Med. 2015;7(301):301ra129.
52. Irvin C, Zafar I, Good J, et al. Increased frequency of dual-positive Th2/Th17 cells in bronchoalveolar lavage fluid characterizes a population of patients with severe asthma. J Allergy Clin Immunol. 2014;134(5):1175-1186.e1177.
53. Manni ML, Trudeau JB, Scheller EV, et al. The complex relationship between inflammation and lung function in severe asthma. Mucosal Immunol. 2014;7(5):1186-1198.
54. Schnyder-Candrian S, Togbe D, Couillin I, et al. Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med. 2006;203(12):2715-2725.
55. Wakashin H, Hirose K, Maezawa Y, et al. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med. 2008;178(10):1023-1032.
56. Busse WW, Holgate S, Kerwin E, et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med. 2013;188(11):1294-1302.
57. Chen BY, Chen CH, Chuang YC, Wu YH, Pan SC, Guo YL. Changes in the relationship between childhood asthma and ambient air pollution in Taiwan: Results from a nationwide survey repeated 5 years apart. Pediatr Allergy Immunol. 2019;30(2):188-194.
58. Chen WY, Lin CW, Lee J, Chen PS, Tsai HJ, Wang JY. Decreasing ten-year (2008-2018) trends of the prevalence of childhood asthma and air pollution in Southern Taiwan. World Allergy Organ J. 2021;14(5):100538.
59. Yang Y, Li X, An X, et al. Continuous exposure of PM2.5 exacerbates ovalbumin-induced asthma in mouse lung via a JAK-STAT6 signaling pathway. Adv Clin Exp Med. 2020;29(7):825-832.
60. Liu H, Fan X, Wang N, Zhang Y, Yu J. Exacerbating effects of PM2.5 in OVA-sensitized and challenged mice and the expression of TRPA1 and TRPV1 proteins in lungs. J Asthma. 2017;54(8):807-817.
61. He M, Ichinose T, Ren Y, et al. PM2.5-rich dust collected from the air in Fukuoka, Kyushu, Japan, can exacerbate murine lung eosinophilia. Inhal Toxicol. 2015;27(6):287-299.
62. Pang L, Zou S, Shi Y, Mao Q, Chen Y. Apigenin attenuates PM2.5-induced airway hyperresponsiveness and inflammation by down-regulating NF-κB in murine model of asthma. Int J Clin Exp Pathol. 2019;12(10):3700-3709.
63. Wang L, Xu J, Liu H, Li J, Hao H. PM2.5 inhibits SOD1 expression by up-regulating microRNA-206 and promotes ROS accumulation and disease progression in asthmatic mice. Int Immunopharmacol. 2019;76:105871.
64. He X, Zhang L, Xiong A, et al. PM2.5 aggravates NQO1-induced mucus hyper-secretion through release of neutrophil extracellular traps in an asthma model. Ecotoxicol Environ Saf. 2021;218:112272.
65. Li N, Buglak N. Convergence of air pollutant-induced redox-sensitive signals in the dendritic cells contributes to asthma pathogenesis. Toxicol Lett. 2015;237(1):55-60.
66. Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021;21(11):739-751.
67. Wang M, Tan G, Eljaszewicz A, et al. Laundry detergents and detergent residue after rinsing directly disrupt tight junction barrier integrity in human bronchial epithelial cells. J Allergy Clin Immunol. 2019;143(5):1892-1903.
68. Zhang L, He X, Xiong Y, et al. Transcriptome-wide profiling discover: PM2.5 aggravates airway dysfunction through epithelial barrier damage regulated by Stanniocalcin 2 in an OVA-induced model. Ecotoxicol Environ Saf. 2021;220:112408.
69. Michaudel C, Mackowiak C, Maillet I, et al. Ozone exposure induces respiratory barrier biphasic injury and inflammation controlled by IL-33. J Allergy Clin Immunol. 2018;142(3):942-958.
70. Mouries J, Brescia P, Silvestri A, et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J Hepatol. 2019;71(6):1216-1228.
71. Tajik N, Frech M, Schulz O, et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat Commun. 2020;11(1):1995.
72. Cortese A, Lova L, Comoli P, et al. Air pollution as a contributor to the inflammatory activity of multiple sclerosis. J Neuroinflammation. 2020;17(1):334.
73. Odoardi F, Sie C, Streyl K, et al. T cells become licensed in the lung to enter the central nervous system. Nature. 2012;488(7413):675-679.
74. Frati F, Salvatori C, Incorvaia C, et al. The role of the microbiome in asthma: The Gut⁻Lung Axis. Int J Mol Sci. 2018;20(1)
75. Song XL, Liang J, Lin SZ, et al. Gut-lung axis and asthma: A historical review on mechanism and future perspective. Clin Transl Allergy. 2024;14(5):e12356.
76. Earl CS, An SQ, Ryan RP. The changing face of asthma and its relation with microbes. Trends Microbiol. 2015;23(7):408-418.
77. McCoy KD, Ignacio A, Geuking MB. Microbiota and Type 2 immune responses. Curr Opin Immunol. 2018;54:20-27.
78. Wang J, Chai J, Zhang L, et al. Microbiota associations with inflammatory pathways in asthma. Clin Exp Allergy. 2022;52(5):697-705.
79. Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7(307):307ra152.
80. Arrieta MC, Arévalo A, Stiemsma L, et al. Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J Allergy Clin Immunol. 2018;142(2):424-434.e410.
81. Gollwitzer ES, Saglani S, Trompette A, et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med. 2014;20(6):642-647.
82. Spacova I, Ceuppens JL, Seys SF, Petrova MI, Lebeer S. Probiotics against airway allergy: host factors to consider. Dis Model Mech. 2018;11(7)
83. Fujimura KE, Demoor T, Rauch M, et al. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc Natl Acad Sci U S A. 2014;111(2):805-810.
84. Wang X, Hui Y, Zhao L, Hao Y, Guo H, Ren F. Oral administration of Lactobacillus paracasei L9 attenuates PM2.5-induced enhancement of airway hyperresponsiveness and allergic airway response in murine model of asthma. PLoS One. 2017;12(2):e0171721.
85. Goleva E, Jackson LP, Harris JK, et al. The effects of airway microbiome on corticosteroid responsiveness in asthma. Am J Respir Crit Care Med. 2013;188(10):1193-1201.
86. Durack J, Christian LS, Nariya S, et al. Distinct associations of sputum and oral microbiota with atopic, immunologic, and clinical features in mild asthma. J Allergy Clin Immunol. 2020;146(5):1016-1026.
87. Huang YJ, Nelson CE, Brodie EL, et al. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J Allergy Clin Immunol. 2011;127(2):372-381.e371-373.
88. Huang YJ, Nariya S, Harris JM, et al. The airway microbiome in patients with severe asthma: Associations with disease features and severity. J Allergy Clin Immunol. 2015;136(4):874-884.
89. Kish L, Hotte N, Kaplan GG, et al. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome. PLoS One. 2013;8(4):e62220.
90. Li R, Yang J, Saffari A, et al. Ambient ultrafine particle ingestion alters gut microbiota in association with increased atherogenic lipid metabolites. Sci Rep. 2017;7:42906.
91. Wang W, Zhou J, Chen M, et al. Exposure to concentrated ambient PM(2.5) alters the composition of gut microbiota in a murine model. Part Fibre Toxicol. 2018;15(1):17.
92. Zheng P, Zhang B, Zhang K, Lv X, Wang Q, Bai X. The impact of air pollution on intestinal microbiome of asthmatic children: A panel study. Biomed Res Int. 2020;2020:5753427.
93. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20(13)
94. Guo H, Callaway JB, Ting JP. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677-687.
95. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477-489.
96. Bruchard M, Rebé C, Derangère V, et al. The receptor NLRP3 is a transcriptional regulator of Th2 differentiation. Nat Immunol. 2015;16(8):859-870.
97. Antonopoulos C, Russo HM, El Sanadi C, et al. Caspase-8 as an effector and regulator of NLRP3 inflammasome signaling. J Biol Chem. 2015;290(33):20167-20184.
98. Antonopoulos C, El Sanadi C, Kaiser WJ, Mocarski ES, Dubyak GR. Proapoptotic chemotherapeutic drugs induce noncanonical processing and release of IL-1β via caspase-8 in dendritic cells. J Immunol. 2013;191(9):4789-4803.
99. Rossios C, Pavlidis S, Hoda U, et al. Sputum transcriptomics reveal upregulation of IL-1 receptor family members in patients with severe asthma. J Allergy Clin Immunol. 2018;141(2):560-570.
100. Simpson JL, Phipps S, Baines KJ, Oreo KM, Gunawardhana L, Gibson PG. Elevated expression of the NLRP3 inflammasome in neutrophilic asthma. Eur Respir J. 2014;43(4):1067-1076.
101. Besnard AG, Guillou N, Tschopp J, et al. NLRP3 inflammasome is required in murine asthma in the absence of aluminum adjuvant. Allergy. 2011;66(8):1047-1057.
102. Eisenbarth SC, Colegio OR, O'Connor W, Sutterwala FS, Flavell RA. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature. 2008;453(7198):1122-1126.
103. Tan HT, Hagner S, Ruchti F, et al. Tight junction, mucin, and inflammasome-related molecules are differentially expressed in eosinophilic, mixed, and neutrophilic experimental asthma in mice. Allergy. 2019;74(2):294-307.
104. Kim RY, Pinkerton JW, Essilfie AT, et al. Role for NLRP3 inflammasome-mediated, IL-1β-dependent responses in severe, steroid-resistant asthma. Am J Respir Crit Care Med. 2017;196(3):283-297.
105. Johnson VJ, Yucesoy B, Luster MI. Prevention of IL-1 signaling attenuates airway hyperresponsiveness and inflammation in a murine model of toluene diisocyanate-induced asthma. J Allergy Clin Immunol. 2005;116(4):851-858.
106. Lu X, Li R, Yan X. Airway hyperresponsiveness development and the toxicity of PM2.5. Environ Sci Pollut Res Int. 2021;28(6):6374-6391.
107. Tang Q, Huang K, Liu J, et al. Fine particulate matter from pig house induced immune response by activating TLR4/MAPK/NF-κB pathway and NLRP3 inflammasome in alveolar macrophages. Chemosphere. 2019;236:124373.
108. Dai MY, Chen FF, Wang Y, Wang MZ, Lv YX, Liu RY. Particulate matters induce acute exacerbation of allergic airway inflammation via the TLR2/NF-κB/NLRP3 signaling pathway. Toxicol Lett. 2020;321:146-154.
109. Jia H, Liu Y, Guo D, He W, Zhao L, Xia S. PM2.5-induced pulmonary inflammation via activating of the NLRP3/caspase-1 signaling pathway. Environ Toxicol. 2021;36(3):298-307.
110. Hirota JA, Gold MJ, Hiebert PR, et al. The nucleotide-binding domain, leucine-rich repeat protein 3 inflammasome/IL-1 receptor I axis mediates innate, but not adaptive, immune responses after exposure to particulate matter under 10 μm. Am J Respir Cell Mol Biol. 2015;52(1):96-105.
111. Provoost S, Maes T, Pauwels NS, et al. NLRP3/caspase-1-independent IL-1beta production mediates diesel exhaust particle-induced pulmonary inflammation. J Immunol. 2011;187(6):3331-3337.
112. Castaneda AR, Bein KJ, Smiley-Jewell S, Pinkerton KE. Fine particulate matter (PM2.5) enhances allergic sensitization in BALB/c mice. J Toxicol Environ Health A. 2017;80(4):197-207.
113. Zhang X, Zhong W, Meng Q, et al. Ambient PM2.5 exposure exacerbates severity of allergic asthma in previously sensitized mice. J Asthma. 2015;52(8):785-794.
114. Conrad ML, Yildirim AO, Sonar SS, et al. Comparison of adjuvant and adjuvant-free murine experimental asthma models. Clin Exp Allergy. 2009;39(8):1246-1254.
115. Stevens TL, Bossie A, Sanders VM, et al. Regulation of antibody isotype secretion by subsets of antigen-specific helper T cells. Nature. 1988;334(6179):255-258.
116. Snapper CM, Paul WE. Interferon-γ and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science. 1987;236(4804):944-947.
117. Enaud R, Prevel R, Ciarlo E, et al. The Gut-Lung axis in health and respiratory diseases: A place for inter-organ and inter-kingdom crosstalks. Front Cell Infect Microbiol. 2020;10:9.
118. Malainou C, Abdin SM, Lachmann N, Matt U, Herold S. Alveolar macrophages in tissue homeostasis, inflammation, and infection: Evolving concepts of therapeutic targeting. J Clin Invest. 2023;133(19):e170501.
119. Xiong R, Jiang W, Li N, et al. PM2.5-induced lung injury is attenuated in macrophage-specific NLRP3 deficient mice. Ecotoxicol Environ Saf. 2021;221:112433.
120. Hammad H, Lambrecht BN. The basic immunology of asthma. Cell. 2021;184(6):1469-1485.
121. Zhang X, Xu Z, Wen X, et al. The onset, development and pathogenesis of severe neutrophilic asthma. Immunol Cell Biol. 2022;100(3):144-159.
122. Fukui S, Fukui S, Van Bruggen S, et al. NLRP3 inflammasome activation in neutrophils directs early inflammatory response in murine peritonitis. Sci Rep. 2022;12(1):21313.
123. Clancy DM, Sullivan GP, Moran HBT, et al. Extracellular neutrophil proteases are efficient regulators of IL-1, IL-33, and IL-36 cytokine activity but poor effectors of microbial killing. Cell Rep. 2018;22(11):2937-2950.
124. Piao CH, Fan Y, Nguyen TV, Song CH, Kim HT, Chai OH. PM2.5 exposure regulates Th1/Th2/Th17 cytokine production through NF-κB signaling in combined allergic rhinitis and asthma syndrome. Int Immunopharmacol. 2023;119:110254.
125. Weidner J, Bartel S, Kılıç A, et al. Spotlight on microRNAs in allergy and asthma. Allergy. 2021;76(6):1661-1678.
126. Gomez JL. Epigenetics in asthma. Curr Allergy Asthma Rep. 2019;19(12):56.
127. Kuo CH, Hsieh CC, Lee MS, Chang KT, Kuo HF, Hung CH. Epigenetic regulation in allergic diseases and related studies. Asia Pac Allergy. 2014;4(1):14-18.
128. Bae DJ, Jun JA, Chang HS, Park JS, Park CS. Epigenetic changes in asthma: Role of DNA CpG methylation. Tuberc Respir Dis (Seoul). 2020;83(1):1-13.
129. Heßelbach K, Kim GJ, Flemming S, et al. Disease relevant modifications of the methylome and transcriptome by particulate matter (PM2.5) from biomass combustion. Epigenetics. 2017;12(9):779-792.
130. Li MY, Liu LZ, Li W, et al. Ambient fine particulate matter inhibits 15-lipoxygenases to promote lung carcinogenesis. J Exp Clin Cancer Res. 2019;38(1):359.
131. Li P, Wang J, Guo F, Zheng B, Zhang X. A novel inhibitory role of microRNA-224 in particulate matter 2.5-induced asthmatic mice by inhibiting TLR2. J Cell Mol Med. 2020;24(5):3040-3052.
132. Sachdeva K, Do DC, Zhang Y, Hu X, Chen J, Gao P. Environmental exposures and asthma development: autophagy, mitophagy, and cellular senescence. Front Immunol. 2019;10:2787.
133. Wang J. Neutrophils in tissue injury and repair. Cell Tissue Res. 2018;371(3):531-539.
134. Artis D, Spits H. The biology of innate lymphoid cells. Nature. 2015;517(7534):293-301.
135. Gorska MM. Natural killer cells in asthma. Curr Opin Allergy Clin Immunol. 2017;17(1):50-54.
136. Korsgren M, Persson CG, Sundler F, et al. Natural killer cells determine development of allergen-induced eosinophilic airway inflammation in mice. J Exp Med. 1999;189(3):553-562.
137. Mathias CB, Guernsey LA, Zammit D, et al. Pro-inflammatory role of natural killer cells in the development of allergic airway disease. Clin Exp Allergy. 2014;44(4):589-601.
138. Berkinbayeva M, Gu W, Chen Z, Gao P. Group 3 innate lymphoid cells: A potential therapeutic target for steroid resistant asthma. Clin Rev Allergy Immunol. 2024;68(1):1.
139. Gutiérrez-Vera C, García-Betancourt R, Palacios PA, et al. Natural killer T cells in allergic asthma: implications for the development of novel immunotherapeutical strategies. Front Immunol. 2024;15:1364774.
140. Thomas SY, Chyung YH, Luster AD. Natural killer T cells are not the predominant T cell in asthma and likely modulate, not cause, asthma. J Allergy Clin Immunol. 2010;125(5):980-984.
141. De Grove KC, Provoost S, Hendriks RW, et al. Dysregulation of type 2 innate lymphoid cells and Th2 cells impairs pollutant-induced allergic airway responses. J Allergy Clin Immunol. 2017;139(1):246-257.
142. Estrella B, Naumova EN, Cepeda M, Voortman T, Katsikis PD, Drexhage HA. Effects of air pollution on lung innate lymphoid cells: Review of in vitro and in vivo experimental studies. Int J Environ Res Public Health. 2019;16(13):2347.
143. Manners S, Alam R, Schwartz DA, Gorska MM. A mouse model links asthma susceptibility to prenatal exposure to diesel exhaust. J Allergy Clin Immunol. 2014;134(1):63-72.
144. Lenberg J, Qian Q, Sun Z, Alam R, Gorska MM. Pre-pregnancy exposure to diesel exhaust predisposes offspring to asthma through IL-1β and IL-17A. J Allergy Clin Immunol. 2018;141(3):1118-1122.
145. Qian Q, Chowdhury BP, Sun Z, et al. Maternal diesel particle exposure promotes offspring asthma through NK cell-derived granzyme B. J Clin Invest. 2020;130(8):4133-4151.
146. Thio CL, Lai AC, Wang JC, et al. Identification of a PD-L1+Tim-1+iNKT subset that protects against fine particulate matter-induced airway inflammation. JCI Insight. 2022;7(23):e164157.
147. Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17(4):223-237.
148. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121-141.
149. Dong Y, Yan H, Zhao X, et al. Gu-Ben-Fang-Xiao decoction ameliorated murine asthma in remission stage by modulating microbiota-acetate-Tregs axis. Front Pharmacol. 2020;11:549.
150. Arrieta MC, Finlay B. The intestinal microbiota and allergic asthma. J Infect. 2014;69 Suppl 1:S53-55.
151. Barcik W, Boutin RCT, Sokolowska M, Finlay BB. The role of lung and gut microbiota in the pathology of asthma. Immunity. 2020;52(2):241-255.
152. Björkstén B, Sepp E, Julge K, Voor T, Mikelsaar M. Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol. 2001;108(4):516-520.
153. Kalliomäki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol. 2001;107(1):129-134.
154. Durack J, Lynch SV, Nariya S, et al. Features of the bronchial bacterial microbiome associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment. J Allergy Clin Immunol. 2017;140(1):63-75.
155. Logoń K, Świrkosz G, Nowak M, Wrześniewska M, Szczygieł A, Gomułka K. The role of the microbiome in the pathogenesis and treatment of asthma. Biomedicines. 2023;11(6)
156. Wang JW, Kuo CH, Kuo FC, et al. Fecal microbiota transplantation: Review and update. J Formos Med Assoc. 2019;118 Suppl 1:S23-s31.
157. Dai Z, Ramesh V, Locasale JW. The evolving metabolic landscape of chromatin biology and epigenetics. Nat Rev Genet. 2020;21(12):737-753.
158. Zhu Y, Chen B, Zhang X, et al. Exploration of the Muribaculaceae family in the gut microbiota: diversity, metabolism, and function. Nutrients. 2024;16(16)
159. Beller A, Kruglov A, Durek P, et al. Specific microbiota enhances intestinal IgA levels by inducing TGF-β in T follicular helper cells of Peyer's patches in mice. Eur J Immunol. 2020;50(6):783-794.
160. Wang H, He Y, Dang D, Zhao Y, Zhao J, Lu W. Gut microbiota-derived tryptophan metabolites alleviate allergic asthma inflammation in ovalbumin-Induced mice. Foods. 2024;13(9)
161. van der Hee B, Wells JM. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol. 2021;29(8):700-712.
162. Grizotte-Lake M, Zhong G, Duncan K, et al. Commensals suppress intestinal epithelial cell retinoic acid synthesis to regulate interleukin-22 activity and prevent microbial dysbiosis. Immunity. 2018;49(6):1103-1115.e1106.
163. Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500(7461):232-236.
164. Provoost S, Maes T, Pauwels NS, et al. NLRP3/caspase-1-independent IL-1β production mediates diesel exhaust particle-induced pulmonary inflammation. J Immunol. 2011;187(6):3331-3337.
165. Hirota JA, Hirota SA, Warner SM, et al. The airway epithelium nucleotide-binding domain and leucine-rich repeat protein 3 inflammasome is activated by urban particulate matter. J Allergy Clin Immunol. 2012;129(4):1116-1125.
166. Zhu J, Zhao Y, Gao Y, et al. Effects of different components of PM(2.5) on the expression levels of NF-κB family gene mRNA and inflammatory molecules in human macrophage. Int J Environ Res Public Health. 2019;16(8)
167. Joshi N, Walter JM, Misharin AV. Alveolar Macrophages. Cell Immunol. 2018;330:86-90.
168. Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol. 2014;14(2):81-93.
169. Liu K, Hua S, Song L. PM2.5 exposure and asthma development: the key role of oxidative stress. Oxid Med Cell Longev. 2022;2022:3618806.
170. Netea MG, Simon A, van de Veerdonk F, Kullberg BJ, Van der Meer JW, Joosten LA. IL-1β processing in host defense: Beyond the inflammasomes. PLoS Pathog. 2010;6(2):e1000661.
171. Pyrillou K, Burzynski LC, Clarke MCH. Alternative pathways of IL-1 activation, and its role in health and disease. Front Immunol. 2020;11:613170.
172. Bal SM, Bernink JH, Nagasawa M, et al. IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat Immunol. 2016;17(6):636-645.
173. Ohne Y, Silver JS, Thompson-Snipes L, et al. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat Immunol. 2016;17(6):646-655.
174. Chan TY, Yen CL, Huang YF, et al. Increased ILC3s associated with higher levels of IL-1β aggravates inflammatory arthritis in mice lacking phagocytic NADPH oxidase. Eur J Immunol. 2019;49(11):2063-2073.
175. Yang D, Li Y, Liu T, et al. IL-1β promotes IL-17A production of ILC3s to aggravate neutrophilic airway inflammation in mice. Immunology. 2023:1-17.
176. Bezbradica JS, Joyce S. NKT cells join the two step for inflammasome-independent IL-1β release. Cell Rep. 2020;31(1):107481.
177. Mahmutovic Persson I, Menzel M, Ramu S, Cerps S, Akbarshahi H, Uller L. IL-1β mediates lung neutrophilia and IL-33 expression in a mouse model of viral-induced asthma exacerbation. Respir Res. 2018;19(1):16.
178. Chen S, Yao L, Huang P, et al. Blockade of the NLRP3/Caspase-1 axis ameliorates airway neutrophilic inflammation in a toluene diisocyanate-induced murine asthma model. Toxicol Sci. 2019;170(2):462-475.
179. Kardas G, Panek M, Kuna P, Damiański P, Kupczyk M. Monoclonal antibodies in the management of asthma: Dead ends, current status and future perspectives. Front Immunol. 2022;13:983852.
180. Zoccal KF, Ferreira GZ, Prado MKB, Gardinassi LG, Sampaio SV, Faccioli LH. LTB4 and PGE2 modulate the release of MIP-1α and IL-1β by cells stimulated with Bothrops snake venoms. Toxicon. 2018;150:289-296.
181. Charmoy M, Brunner-Agten S, Aebischer D, et al. Neutrophil-derived CCL3 is essential for the rapid recruitment of dendritic cells to the site of Leishmania major inoculation in resistant mice. PLoS Pathog. 2010;6(2):e1000755.
182. Lee HS, Park HW, Song WJ, et al. TNF-α enhance Th2 and Th17 immune responses regulating by IL23 during sensitization in asthma model. Cytokine. 2016;79:23-30.
183. Hardyman MA, Wilkinson E, Martin E, et al. TNF-α-mediated bronchial barrier disruption and regulation by src-family kinase activation. J Allergy Clin Immunol. 2013;132(3):665-675.e668.
184. Wang Y, Zhong Y, Liao J, Wang G. PM2.5-related cell death patterns. Int J Med Sci. 2021;18(4):1024-1029.
185. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134-147.
186. Tsai CH, Lai AC, Lin YC, et al. Neutrophil extracellular trap production and CCL4L2 expression influence corticosteroid response in asthma. Sci Transl Med. 2023;15(699):eadf3843.
187. Qiu SL, Zhang H, Tang QY, et al. Neutrophil extracellular traps induced by cigarette smoke activate plasmacytoid dendritic cells. Thorax. 2017;72(12):1084-1093.
188. Bokaba RP, Anderson R, Theron AJ, Tintinger GR. Cigarette smoke condensate attenuates phorbol ester-mediated neutrophil extracellular trap formation. Afr Health Sci. 2017;17(3):896-904.
189. Meher AK, Spinosa M, Davis JP, et al. Novel role of IL-1β in neutrophil extracellular trap formation and abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2018;38(4):843-853.
190. Mitroulis I, Kambas K, Chrysanthopoulou A, et al. Neutrophil extracellular trap formation is associated with IL-1β and autophagy-related signaling in gout. PLoS One. 2011;6(12):e29318.
191. Zhu XM, Wang Q, Xing WW, et al. PM2.5 induces autophagy-mediated cell death via NOS2 signaling in human bronchial epithelium cells. Int J Biol Sci. 2018;14(5):557-564.
192. Xu X, Wang H, Liu S, et al. TP53-dependent autophagy links the ATR-CHEK1 axis activation to proinflammatory VEGFA production in human bronchial epithelial cells exposed to fine particulate matter (PM2.5). Autophagy. 2016;12(10):1832-1848.
193. Deng X, Zhang F, Rui W, et al. PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicol In Vitro. 2013;27(6):1762-1770.
194. Wang Y, Lin Z, Huang H, et al. AMPK is required for PM2.5-induced autophagy in human lung epithelial A549 cells. Int J Clin Exp Med. 2015;8(1):58-72.
195. Lee J, Kim HS. The role of autophagy in eosinophilic airway inflammation. Immune Netw. 2019;19(1):e5.
196. Suzuki Y, Maazi H, Sankaranarayanan I, et al. Lack of autophagy induces steroid-resistant airway inflammation. J Allergy Clin Immunol. 2016;137(5):1382-1389.e1389.
197. Liu JN, Suh DH, Trinh HK, Chwae YJ, Park HS, Shin YS. The role of autophagy in allergic inflammation: A new target for severe asthma. Exp Mol Med. 2016;48(7):e243.
198. Iula L, Keitelman IA, Sabbione F, et al. Autophagy mediates interleukin-1β secretion in human neutrophils. Front Immunol. 2018;9:269.
199. Panganiban RA, Nadeau KC, Lu Q. Pyroptosis, gasdermins and allergic diseases. Allergy. 2024;79(9):2380-2395.
200. Moffatt MF, Kabesch M, Liang L, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature. 2007;448(7152):470-473.
201. Panganiban RA, Sun M, Dahlin A, et al. A functional splice variant associated with decreased asthma risk abolishes the ability of gasdermin B to induce epithelial cell pyroptosis. J Allergy Clin Immunol. 2018;142(5):1469-1478.e1462.
202. Das S, Miller M, Beppu AK, et al. GSDMB induces an asthma phenotype characterized by increased airway responsiveness and remodeling without lung inflammation. Proc Natl Acad Sci U S A. 2016;113(46):13132-13137.
203. Lv J, Zhou Y, Wang J, et al. Heme oxygenase-1 alleviates allergic airway inflammation by suppressing NF-κB-mediated pyroptosis of bronchial epithelial cells. Faseb j. 2024;38(3):e23472.
204. Chen KW, Monteleone M, Boucher D, et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci Immunol. 2018;3(26)
205. Sollberger G, Choidas A, Burn GL, et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci Immunol. 2018;3(26)
206. Oleszycka E, McCluskey S, Sharp FA, et al. The vaccine adjuvant alum promotes IL-10 production that suppresses Th1 responses. Eur J Immunol. 2018;48(4):705-715.
207. He P, Zou Y, Hu Z. Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum Vaccin Immunother. 2015;11(2):477-488.
208. Wang YS, Chang LC, Chang FJ. Explore regional PM2.5 features and compositions causing health effects in Taiwan. Environ Manage. 2021;67(1):176-191.
209. Soares M, Oliveira H, Alves C. Airborne particulate matter inhalation bioaccessibility: A review of methodological aspects. Chem Biol Interact. 2025;408:111403.
210. Tischer C, Kirjavainen P, Matterne U, et al. Interplay between natural environment, human microbiota and immune system: A scoping review of interventions and future perspectives towards allergy prevention. Sci Total Environ. 2022;821:153422.
211. Vatanen T, Kostic AD, d'Hennezel E, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell. 2016;165(4):842-853.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99584-
dc.description.abstract現今社會接觸汙染物的機率增加,令表皮屏障長期損傷造成共生菌相失調及持續的發炎反應,使整體過敏性發炎疾病盛行率升高。空氣懸浮微粒(particulate matter)PM2.5因其物理、化學特性及致病性引起公眾關注。已知PM2.5能夠藉由累積氧化壓力及引發偏向第二型發炎反應(type 2 inflammation)使過敏性呼吸道發炎症狀加劇。本研究將透過兩個面向來探討PM2.5在呼吸道過敏性發炎反應帶來的影響。第一部份,探討PM2.5造成的共生菌相失調。第二部份,探討PM2.5引起的氧化壓力是否活化細胞內的NLRP3發炎體(NLRP3 inflammasome),並探討該訊息傳遞如何影響呼吸道中第二型發炎反應啟動。
藉由在雞卵白蛋白(ovalbumin;OVA)激發的小鼠氣喘模式中加入鼻腔給予PM2.5的環節,我們建立了兩種不同的小鼠模式。兩種模式差異在於是否添加鋁明礬(alum)佐劑,避免PM2.5與鋁明礬功能上有未知重複性。第一部份,採集小鼠糞便做共生菌相分析,並將結果合併血清中OVA特異性免疫球蛋白含量進行相關性檢定。第二部份,使用MCC950抑制NLRP3發炎體訊息傳遞,觀察是否改善動物模式中的呼吸道發炎反應。並在細胞實驗中,測量肺泡巨噬細胞(alveolar macrophages)、呼吸道上皮細胞株A549及LA-4以及嗜中性球(neutrophil)經PM2.5刺激後發炎體相關訊息傳遞的反應。
在兩種模式中,OVA致敏小鼠經過PM2.5暴露後都產生更劇烈的呼吸道反應,肺中CD4+ T細胞活化狀態也更加提升。在未加入鋁明礬的模式中,PM2.5暴露加劇OVA致敏小鼠肺中嗜酸性發炎(eosinophilic inflammation)及TSLP提升,引發嗜中性發炎(neutrophilic inflammation)及IL-17表現。OVA致敏小鼠在經過PM2.5暴露後,原本血清中上升的OVA特異性G2a型免疫球蛋白(immunoglobulin G2a;IgG2a)受到抑制。菌相分析中發現PM2.5及OVA刺激對小鼠的共生菌相產生不同的調節作用,此外血清中的OVA特異性免疫球蛋白含量與厭氧支原體屬(Anaeroplasma)及鼠桿狀菌科(Muribaculaceae)含量呈正相關,與乳桿菌屬(Lactobacillus)呈負相關。PM2.5¬單獨並未造成呼吸道症狀但仍會提升梭菌綱(Clostridia)中瘤胃菌科(Ruminococcaceae)和毛螺菌科(Lachnospiraceae)含量,並與免疫球蛋白呈負相關。另一方面,OVA致敏小鼠肺部NLRP3發炎體的表現會因PM2.5刺激而更加提升,MCC950顯著降低肺部免疫細胞浸潤,並降低肺部趨化因子eotaxin-1、CCL3及CCL5的表現量。細胞實驗中,我們發現NLRP3發炎體的訊號來自嗜中性球而非一般預測的肺泡巨噬細胞或呼吸道上皮細胞。實驗中,體外活化的嗜中性球在遭遇PM2.5或外加IL 1β刺激後,其功能性細胞激素TNF及趨化因子CCL3的分泌量都會顯著上升。
總結以上實驗結果,PM2.5透過提升呼吸道嗜酸性球及嗜中性球數量來加劇呼吸道過敏性發炎及呼吸道過度反應。在OVA致敏及未致敏小鼠中,PM2.5暴露表現出不同的共生菌相組成,此外由嗜中性球調控的NLRP3發炎體訊息傳遞在PM2.5在呼吸道過敏性發炎中對於提升肺部細胞浸潤扮演重要角色。此結果提升我們對於氣喘病因學的認知,顯示共生菌相具備成為氣喘生物性指標的潛力,並指出嗜中性球中的NLRP3發炎體活化可能影響疾病的嚴重程度。
zh_TW
dc.description.abstractIncreased contact with pollutants in industrialization causes constant epithelial damage, followed by microbiota dysbiosis and chronic inflammation, leading to a burst in the prevalence of inflammatory diseases. Among all, particulate matter 2.5 (PM2.5) has drawn public concerns due to its physicochemical characteristics and pathological role. PM2.5 aggravates allergic airway inflammation by inducing type 2 immunity-biased response and excessive accumulation of oxidative stress. Thus, we are interested in two aspects; the first one lay on the PM2.5-induced microbiota dysbiosis; whereas the second one is on nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammasome signaling in response to PM2.5-induced accumulation of oxidative stress since their role in the initiation of type 2 inflammation was not fully understood.
Ovalbumin (OVA)-induced murine models with intranasal PM2.5 were applied to study the changes in features of airway allergic inflammation. Besides the common model with alum adjuvant, we included an alum-free model to prevent possible redundancy between PM2.5 and alum adjuvant. First, we analyzed the compositional shift of microbiota and their correlation to the serum level of OVA-specific immunoglobulins. Second, we applied the inflammasome inhibitor, MCC950, to the animal and evaluated the alterations in the allergic features. In vitro, we analyzed the inflammasome signaling of alveolar macrophages (AM), airway epithelial cell (AEC) line A549 and LA 4, and neutrophils after PM2.5 stimulation.
In both models, PM2.5 aggravated airway hyperresponsiveness (AHR) and increased the activation status of lung-infiltrating CD4+ T cells in OVA-sensitized mice. In the alum free model, PM2.5 enhanced eosinophilic inflammation and TSLP expression; induced neutrophilic inflammation and IL-17 production in the lungs; and suppressed the sera OVA-specific IgG2a levels. We observed that PM2.5 and OVA immunization induced different dysbiosis in the gut. The serum level of OVA-specific immunoglobulins was positively correlated with the abundance of Anaeroplasma and Muribaculaceae; negatively correlated with Lactobacillus. Naïve mice exposed to PM2.5 did not develop AHR but still obtained an increased abundance of Ruminococcaceae and Lachnospiraceae. Both Clostridia are negatively correlated to the level of OVA-specific immunoglobulins. On the other hand, PM2.5 enhanced NLRP3 expression in the lungs of OVA-sensitized mice. Treatment by MCC950 suppressed the lung infiltrations with decreased expression of chemokines eotaxin-1, CCL3, and CCL5. Following in vitro experiments identified neutrophils instead of AM or AEC as the source of PM2.5-enhanced inflammasome signaling. Further, the addition of inflammasome product, IL 1β, enhanced TNFα and CCL3 production in neutrophils.
Collectively, PM2.5 aggravated allergic airway inflammation by enhancing eosinophils and neutrophils in the lungs and exacerbated AHR. The particle generated a unique pattern of dysbiosis between naïve and OVA-sensitized mice. In addition, the study emphasized the role of neutrophil-derived inflammasome in the PM2.5-induced effect on allergic airway inflammation. The data collectively advance our knowledge on the etiology of asthma by suggesting microbiota as biomarkers and proposing a new controller, the inflammasome in neutrophils, in disease severity.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:11:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-16T16:11:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
中文摘要 (Chinese Abstract) ii
Abstract iv
Table of Contents vii
List of Figures xii
List of Tables xvi
Chapter 1. Introduction 1
Section 1. Health impacts of particulate matter 2.5 (PM2.5) 2
1.1 Air pollution and PM2.5 in Taiwan 2
1.2 Clinical outcomes related to PM2.5 pollution 3
1.3 Immune responses exerted by PM2.5 4
Section 2. Asthma 6
2.1 Clinical symptoms of asthma 6
2.2 Immunopathology of asthma & the endotypes 7
2.3 Adjuvant effect of PM2.5 in asthma 8
Section 3. The role of microbiota dysbiosis in asthma 10
3.1 The epithelial barrier hypothesis 10
3.2 The gut-lung axis in asthma 11
3.3 Microbiota dysbiosis in PM2.5 exposure 12
Section 4. NLRP3 inflammasome in asthma severity 13
4.1 Overall introduction of NLRP3 inflammasome 13
4.2 Potential of NLRP3 inflammasome in asthma 14
4.3 NLRP3 inflammasome may serve as an initiator of the PM2.5-induced effect 15
Section 5. Specific Aim 15
Chapter 2. Materials & Methods 17
Section 1. Materials 18
1.1 Animals 18
1.2 OVA-induced asthmatic model 18
1.3 PM2.5 preparation 18
1.4 Unrestrained whole-body plethysmography (UWBP) 19
1.5 Histopathological evaluation 19
1.6 Preparation of lung single-cell suspension 19
1.7 Ex vivo experiments 20
1.8 Fluorescence-activated cell sorting (FACS) 21
1.9 Enzyme-linked immunosorbent assay (ELISA) 22
1.10 Immunoblot 23
1.11 Quantitative real-time polymerase chain reaction (qPCR) 24
1.12 16S rRNA amplicon sequencing 25
1.13 Statistical analysis 25
Section 2. Methods 26
2.1 Animals 26
2.2 OVA-induced asthmatic model 26
2.3 PM2.5 preparation 27
2.4 Unrestrained whole-body plethysmography (UWBP) 27
2.5 Histopathological evaluation 28
2.6 Preparation of lung single-cell suspension 28
2.7 Ex vivo experiments 28
2.8 FACS 30
2.9 ELISA 30
2.10 Immunoblot 32
2.11 qPCR 32
2.12 16S rRNA amplicon sequencing & analysis 33
2.13 Statistical analysis 34
Chapter 3. Results 35
Section 1. PM2.5 exerted an adjuvant effect to aggravate pulmonary inflammation. 36
1.1 Experimental Design: finding the sufficient dose of PM2.5 36
1.2 PM2.5 exerted airway symptoms in OVA-sensitized mice, not naïve mice. 37
Section 2. PM2.5 fortified type 2 response and induced neutrophilic inflammation. 38
2.1 PM2.5 suppressed OVA-specific IgG2a. 38
2.2 PM2.5 enhanced infiltrations of eosinophils and neutrophils. 39
2.3 PM2.5 enhanced the activation status to fuel Th2 and Th17 response in the lungs. 40
Section 3. Gut dysbiosis as a potential biomarker for PM2.5-induced effects. 41
3.1 PM2.5 and OVA immunization induced individual dysbiosis. 41
3.2 PM2.5-enhanced taxa in naïve and OVA-sensitized mice were different. 42
3.3 Gut dysbiosis was correlated with the serum level of immunoglobulins with OVA specificity. 43
3.4 Gut dysbiosis did not affect host metabolism. 43
Section 4. NLRP3 inflammasome signaling supported lung infiltrations in allergic airway inflammation. 44
4.1 PM2.5 enhanced NLRP3 inflammasome signaling in OVA-sensitized mice. 44
4.2 Blockade of inflammasome signaling reduced lung infiltration in the OVA sensitized mice. 45
4.3 AM and AEC were not the primary source of inflammasome signaling in response to PM2.5. 46
4.4 Neutrophils responded to PM2.5 with increased IL-1β, TNFα, and CCL3 secretion. 47
4.5 IL-1β signaling increased the production of CCL3 and enhanced the chemotaxis of neutrophils. 49
Section 5. Conclusion 49
Chapter 4. Discussions 51
Chapter 5. Perspectives 65
References 69
Figures & Tables 87
-
dc.language.isoen-
dc.subject氣喘zh_TW
dc.subject空氣懸浮微粒PM2.5zh_TW
dc.subject嗜中性球zh_TW
dc.subjectNLRP3發炎體zh_TW
dc.subject共生菌相zh_TW
dc.subjectmicrobiotaen
dc.subjectNLRP3 inflammasomeen
dc.subjectneutrophilen
dc.subjectasthmaen
dc.subjectPM2.5en
dc.title探討NLRP3發炎體及共生菌相在空氣懸浮微粒PM2.5引發的過敏氣道發炎中扮演的角色zh_TW
dc.titleStudy on the Role of NLRP3 Inflammasome and Microbiota in PM2.5-induced Allergic Airway Inflammationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee黃凱文;許秉寧;李永凌;孫昭玲;樹金忠zh_TW
dc.contributor.oralexamcommitteeKai-Wen Huang;Ping-Ning Hsu;Yungling Leo Lee;Jau-Ling Suen;Chin-Chung Shuen
dc.subject.keyword空氣懸浮微粒PM2.5,氣喘,共生菌相,NLRP3發炎體,嗜中性球,zh_TW
dc.subject.keywordPM2.5,asthma,microbiota,NLRP3 inflammasome,neutrophil,en
dc.relation.page138-
dc.identifier.doi10.6342/NTU202501433-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-02-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床醫學研究所-
dc.date.embargo-lift2030-06-30-
Appears in Collections:臨床醫學研究所

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Until 2030-06-30
8.48 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved