Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99580
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李弘元zh_TW
dc.contributor.advisorHung-Yuan Lien
dc.contributor.author郭俊亨zh_TW
dc.contributor.authorChun-Heng Kuoen
dc.date.accessioned2025-09-16T16:10:52Z-
dc.date.available2025-09-17-
dc.date.copyright2025-09-16-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation1 Kuo, C. H. et al. Screening gestational diabetes mellitus: The role of maternal age. PloS one 12, e0173049, doi:10.1371/journal.pone.0173049 (2017).
2 Metzger, B. E. et al. Hyperglycemia and adverse pregnancy outcomes. The New England journal of medicine 358, 1991-2002, doi:10.1056/NEJMoa0707943 (2008).
3 Wei, J. N. et al. Birth weight correlates differently with cardiovascular risk factors in youth. Obesity (Silver Spring, Md.) 15, 1609-1616, doi:10.1038/oby.2007.190 (2007).
4 Dabelea, D. et al. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes 49, 2208-2211 (2000).
5 Practice Bulletin No. 180: Gestational Diabetes Mellitus. Obstetrics and gynecology 130, e17-e37, doi:10.1097/aog.0000000000002159 (2017).
6 Ogurtsova, K. et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes research and clinical practice 128, 40-50, doi:10.1016/j.diabres.2017.03.024 (2017).
7 Crowther, C. A. et al. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. The New England journal of medicine 352, 2477-2486, doi:10.1056/NEJMoa042973 (2005).
8 Landon, M. B. et al. A multicenter, randomized trial of treatment for mild gestational diabetes. The New England journal of medicine 361, 1339-1348, doi:10.1056/NEJMoa0902430 (2009).
9 Coustan, D. R. & Imarah, J. Prophylactic insulin treatment of gestational diabetes reduces the incidence of macrosomia, operative delivery, and birth trauma. American journal of obstetrics and gynecology 150, 836-842, doi:10.1016/0002-9378(84)90459-9 (1984).
10 Hartling, L. et al. Benefits and Harms of Treating Gestational Diabetes Mellitus: A Systematic Review and Meta-analysis for the U.S. Preventive Services Task Force and the National Institutes of Health Office of Medical Applications of Research. Annals of internal medicine 159, 123-129, doi:10.7326/0003-4819-159-2-201307160-00661 (2013).
11 Casey, B. M. et al. Effect of Treatment of Mild Gestational Diabetes on Long-Term Maternal Outcomes. American journal of perinatology, doi:10.1055/s-0039-1681058 (2019).
12 Gillman, M. W. et al. Effect of treatment of gestational diabetes mellitus on obesity in the next generation. Diabetes care 33, 964-968, doi:10.2337/dc09-1810 (2010).
13 Landon, M. B. et al. Mild gestational diabetes mellitus and long-term child health. Diabetes care 38, 445-452, doi:10.2337/dc14-2159 (2015).
14 Beck, P. & Daughaday, W. H. Human placental lactogen: studies of its acute metabolic effects and disposition in normal man. The Journal of clinical investigation 46, 103-110, doi:10.1172/jci105503 (1967).
15 Ryan, E. A. & Enns, L. Role of gestational hormones in the induction of insulin resistance. The Journal of clinical endocrinology and metabolism 67, 341-347, doi:10.1210/jcem-67-2-341 (1988).
16 Barbour, L. A. et al. Human placental growth hormone causes severe insulin resistance in transgenic mice. American journal of obstetrics and gynecology 186, 512-517 (2002).
17 Barbour, L. A. et al. Human placental growth hormone increases expression of the p85 regulatory unit of phosphatidylinositol 3-kinase and triggers severe insulin resistance in skeletal muscle. Endocrinology 145, 1144-1150, doi:10.1210/en.2003-1297 (2004).
18 O'Sullivan, J. B. & Mahan, C. M. CRITERIA FOR THE ORAL GLUCOSE TOLERANCE TEST IN PREGNANCY. Diabetes 13, 278-285 (1964).
19 Sovio, U., Murphy, H. R. & Smith, G. C. Accelerated Fetal Growth Prior to Diagnosis of Gestational Diabetes Mellitus: A Prospective Cohort Study of Nulliparous Women. Diabetes care 39, 982-987, doi:10.2337/dc16-0160 (2016).
20 Harper, L. M. et al. Early gestational diabetes screening in obese women: a randomized controlled trial. American journal of obstetrics and gynecology 222, 495.e491-495.e498, doi:10.1016/j.ajog.2019.12.021 (2020).
21 Standards of medical care in diabetes--2017. Classification and Diagnosis of Diabetes. Diabetes care 40, S18-S20, doi:10.2337/dc17-S005 (2017).
22 Duran, A. et al. Introduction of IADPSG criteria for the screening and diagnosis of gestational diabetes mellitus results in improved pregnancy outcomes at a lower cost in a large cohort of pregnant women: the St. Carlos Gestational Diabetes Study. Diabetes care 37, 2442-2450, doi:10.2337/dc14-0179 (2014).
23 Wu, E. T. et al. Diagnosis of more gestational diabetes lead to better pregnancy outcomes: Comparing the International Association of the Diabetes and Pregnancy Study Group criteria, and the Carpenter and Coustan criteria. Journal of diabetes investigation 7, 121-126, doi:10.1111/jdi.12378 (2016).
24 Kuo, C. H. & Li, H. Y. Diagnostic Strategies for Gestational Diabetes Mellitus: Review of Current Evidence. Current diabetes reports 19, 155, doi:10.1007/s11892-019-1271-x (2019).
25 Simmons, D. et al. Treatment of Gestational Diabetes Mellitus Diagnosed Early in Pregnancy. The New England journal of medicine 388, 2132-2144, doi:10.1056/NEJMoa2214956 (2023).
26 Barbour, L. A. et al. Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes. Diabetes care 30 Suppl 2, S112-119, doi:10.2337/dc07-s202 (2007).
27 Homko, C., Sivan, E., Chen, X., Reece, E. A. & Boden, G. Insulin secretion during and after pregnancy in patients with gestational diabetes mellitus. The Journal of clinical endocrinology and metabolism 86, 568-573, doi:10.1210/jcem.86.2.7137 (2001).
28 Buchanan, T. A., Xiang, A., Kjos, S. L. & Watanabe, R. What is gestational diabetes? Diabetes care 30 Suppl 2, S105-111, doi:10.2337/dc07-s201 (2007).
29 Marynissen, G., Aerts, L. & Van Assche, F. A. The endocrine pancreas during pregnancy and lactation in the rat. Journal of developmental physiology 5, 373-381 (1983).
30 Parsons, J. A., Brelje, T. C. & Sorenson, R. L. Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. Endocrinology 130, 1459-1466, doi:10.1210/endo.130.3.1537300 (1992).
31 Butler, A. E. et al. Adaptive changes in pancreatic beta cell fractional area and beta cell turnover in human pregnancy. Diabetologia 53, 2167-2176, doi:10.1007/s00125-010-1809-6 (2010).
32 Brelje, T. C. et al. Effect of homologous placental lactogens, prolactins, and growth hormones on islet B-cell division and insulin secretion in rat, mouse, and human islets: implication for placental lactogen regulation of islet function during pregnancy. Endocrinology 132, 879-887, doi:10.1210/endo.132.2.8425500 (1993).
33 Vasavada, R. C. et al. Targeted expression of placental lactogen in the beta cells of transgenic mice results in beta cell proliferation, islet mass augmentation, and hypoglycemia. The Journal of biological chemistry 275, 15399-15406 (2000).
34 Freemark, M. et al. Targeted deletion of the PRL receptor: effects on islet development, insulin production, and glucose tolerance. Endocrinology 143, 1378-1385, doi:10.1210/endo.143.4.8722 (2002).
35 Frankenne, F. et al. The physiology of growth hormones (GHs) in pregnant women and partial characterization of the placental GH variant. The Journal of clinical endocrinology and metabolism 66, 1171-1180, doi:10.1210/jcem-66-6-1171 (1988).
36 McIntyre, H. D. et al. Placental growth hormone (GH), GH-binding protein, and insulin-like growth factor axis in normal, growth-retarded, and diabetic pregnancies: correlations with fetal growth. The Journal of clinical endocrinology and metabolism 85, 1143-1150, doi:10.1210/jcem.85.3.6480 (2000).
37 Newbern, D. & Freemark, M. Placental hormones and the control of maternal metabolism and fetal growth. Current opinion in endocrinology, diabetes, and obesity 18, 409-416, doi:10.1097/MED.0b013e32834c800d (2011).
38 Hill, D. J. Placental control of metabolic adaptations in the mother for an optimal pregnancy outcome. What goes wrong in gestational diabetes? Placenta 69, 162-168, doi:10.1016/j.placenta.2018.01.002 (2018).
39 Rawn, S. M. et al. Pregnancy Hyperglycemia in Prolactin Receptor Mutant, but Not Prolactin Mutant, Mice and Feeding-Responsive Regulation of Placental Lactogen Genes Implies Placental Control of Maternal Glucose Homeostasis. Biology of reproduction 93, 75, doi:10.1095/biolreprod.115.132431 (2015).
40 Rasanen, J. P. et al. Glycosylated fibronectin as a first-trimester biomarker for prediction of gestational diabetes. Obstetrics and gynecology 122, 586-594, doi:10.1097/AOG.0b013e3182a0c88b (2013).
41 Retnakaran, R. et al. Evaluation of Circulating Determinants of Beta-Cell Function in Women With and Without Gestational Diabetes. The Journal of clinical endocrinology and metabolism 101, 2683-2691, doi:10.1210/jc.2016-1402 (2016).
42 Ngala, R. A., Fondjo, L. A., Gmagna, P., Ghartey, F. N. & Awe, M. A. Placental peptides metabolism and maternal factors as predictors of risk of gestational diabetes in pregnant women. A case-control study. PloS one 12, e0181613-e0181613, doi:10.1371/journal.pone.0181613 (2017).
43 Liao, S. et al. Maternal serum placental growth hormone, insulin-like growth factors and their binding proteins at 20 weeks' gestation in pregnancies complicated by gestational diabetes mellitus. Hormones (Athens, Greece) 16, 282-290, doi:10.14310/horm.2002.1747 (2017).
44 Samuel, V. T. & Shulman, G. I. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. The Journal of clinical investigation 126, 12-22, doi:10.1172/jci77812 (2016).
45 Samuel, V. T. et al. Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. The Journal of clinical investigation 117, 739-745, doi:10.1172/jci30400 (2007).
46 Raddatz, K. et al. Time-dependent effects of Prkce deletion on glucose homeostasis and hepatic lipid metabolism on dietary lipid oversupply in mice. Diabetologia 54, 1447-1456, doi:10.1007/s00125-011-2073-0 (2011).
47 Yu, C. et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277, 50230-50236, doi:10.1074/jbc.M200958200 (2002).
48 Itani, S. I., Ruderman, N. B., Schmieder, F. & Boden, G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51, 2005-2011 (2002).
49 Szendroedi, J. et al. Role of diacylglycerol activation of PKCtheta in lipid-induced muscle insulin resistance in humans. Proceedings of the National Academy of Sciences of the United States of America 111, 9597-9602, doi:10.1073/pnas.1409229111 (2014).
50 Saltiel, A. R. & Olefsky, J. M. Inflammatory mechanisms linking obesity and metabolic disease. The Journal of clinical investigation 127, 1-4, doi:10.1172/jci92035 (2017).
51 Shi, H. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. The Journal of clinical investigation 116, 3015-3025, doi:10.1172/jci28898 (2006).
52 Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. The Journal of clinical investigation 117, 175-184, doi:10.1172/jci29881 (2007).
53 Liddle, D. M. et al. Integrated Immunomodulatory Mechanisms through which Long-Chain n-3 Polyunsaturated Fatty Acids Attenuate Obese Adipose Tissue Dysfunction. Nutrients 9, doi:10.3390/nu9121289 (2017).
54 Li, P. et al. LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nature medicine 21, 239-247, doi:10.1038/nm.3800 (2015).
55 Li, P. et al. Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance. Cell 167, 973-984 e912, doi:10.1016/j.cell.2016.10.025 (2016).
56 Khambule, L. & George, J. A. The Role of Inflammation in the Development of GDM and the Use of Markers of Inflammation in GDM Screening. Advances in experimental medicine and biology 1134, 217-242, doi:10.1007/978-3-030-12668-1_12 (2019).
57 Yung, H. W. et al. Placental endoplasmic reticulum stress in gestational diabetes: the potential for therapeutic intervention with chemical chaperones and antioxidants. Diabetologia 59, 2240-2250, doi:10.1007/s00125-016-4040-2 (2016).
58 Liong, S. & Lappas, M. Endoplasmic reticulum stress is increased in adipose tissue of women with gestational diabetes. PloS one 10, e0122633, doi:10.1371/journal.pone.0122633 (2015).
59 Liong, S. & Lappas, M. Endoplasmic reticulum stress regulates inflammation and insulin resistance in skeletal muscle from pregnant women. Molecular and cellular endocrinology 425, 11-25, doi:10.1016/j.mce.2016.02.016 (2016).
60 Santulli, G. Angiopoietin-like proteins: a comprehensive look. Frontiers in endocrinology 5, 4, doi:10.3389/fendo.2014.00004 (2014).
61 Oike, Y., Akao, M., Kubota, Y. & Suda, T. Angiopoietin-like proteins: potential new targets for metabolic syndrome therapy. Trends in molecular medicine 11, 473-479, doi:10.1016/j.molmed.2005.08.002 (2005).
62 Oike, Y., Yasunaga, K. & Suda, T. Angiopoietin-related/angiopoietin-like proteins regulate angiogenesis. International journal of hematology 80, 21-28 (2004).
63 Doi, Y. et al. Angiopoietin-like protein 2 and risk of type 2 diabetes in a general Japanese population: the Hisayama study. Diabetes care 36, 98-100, doi:10.2337/dc12-0166 (2013).
64 Ebert, T. et al. Serum levels of angiopoietin-related growth factor in diabetes mellitus and chronic hemodialysis. Metabolism: clinical and experimental 58, 547-551, doi:10.1016/j.metabol.2008.11.016 (2009).
65 Li, Y. & Teng, C. Angiopoietin-like proteins 3, 4 and 8: regulating lipid metabolism and providing new hope for metabolic syndrome. Journal of drug targeting 22, 679-687, doi:10.3109/1061186x.2014.928715 (2014).
66 Zhang, R. The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking. Open biology 6, 150272, doi:10.1098/rsob.150272 (2016).
67 Kim, H. K. et al. Angiopoietin-like peptide 4 regulates insulin secretion and islet morphology. Biochemical and biophysical research communications 485, 113-118, doi:10.1016/j.bbrc.2017.02.031 (2017).
68 Lichtenstein, L. et al. Angptl4 upregulates cholesterol synthesis in liver via inhibition of LPL- and HL-dependent hepatic cholesterol uptake. Arteriosclerosis, thrombosis, and vascular biology 27, 2420-2427, doi:10.1161/atvbaha.107.151894 (2007).
69 Ortega-Senovilla, H., van Poppel, M. N. M., Desoye, G. & Herrera, E. Angiopoietin-like protein 4 (ANGPTL4) is related to gestational weight gain in pregnant women with obesity. Scientific reports 8, 12428, doi:10.1038/s41598-018-29731-w (2018).
70 Mandard, S. et al. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. The Journal of biological chemistry 281, 934-944, doi:10.1074/jbc.M506519200 (2006).
71 Kersten, S. Physiological regulation of lipoprotein lipase. Biochimica et biophysica acta 1841, 919-933, doi:10.1016/j.bbalip.2014.03.013 (2014).
72 Gruppen, E. G., Kersten, S. & Dullaart, R. P. F. Plasma angiopoietin-like 4 is related to phospholipid transfer protein activity in diabetic and non-diabetic subjects: role of enhanced low grade inflammation. Lipids in health and disease 17, 60, doi:10.1186/s12944-018-0717-5 (2018).
73 Lu, Q., Lu, P., Chen, W., Lu, L. & Zheng, Z. ANGPTL-4 induces diabetic retinal inflammation by activating Profilin-1. Experimental eye research 166, 140-150, doi:10.1016/j.exer.2017.10.009 (2018).
74 Chen, L., Chen, R., Wang, H. & Liang, F. Mechanisms Linking Inflammation to Insulin Resistance. International journal of endocrinology 2015, 508409-508409, doi:10.1155/2015/508409 (2015).
75 Abu-Farha, M. et al. Increased ANGPTL3, 4 and ANGPTL8/betatrophin expression levels in obesity and T2D. Lipids in health and disease 15, 181, doi:10.1186/s12944-016-0337-x (2016).
76 Tjeerdema, N. et al. Inflammation increases plasma angiopoietin-like protein 4 in patients with the metabolic syndrome and type 2 diabetes. BMJ open diabetes research & care 2, e000034, doi:10.1136/bmjdrc-2014-000034 (2014).
77 Yang, L. Y. et al. Angiopoietin-Like Protein 4 Is a High-Density Lipoprotein (HDL) Component for HDL Metabolism and Function in Nondiabetic Participants and Type-2 Diabetic Patients. J Am Heart Assoc 6, doi:10.1161/jaha.117.005973 (2017).
78 Barja-Fernandez, S. et al. Plasma ANGPTL-4 is Associated with Obesity and Glucose Tolerance: Cross-Sectional and Longitudinal Findings. Molecular nutrition & food research 62, e1800060, doi:10.1002/mnfr.201800060 (2018).
79 Gusarova, V. et al. Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes. Nat Commun 9, 2252, doi:10.1038/s41467-018-04611-z (2018).
80 González-Muniesa, P., de Oliveira, C., Pérez de Heredia, F., Thompson, M. P. & Trayhurn, P. Fatty acids and hypoxia stimulate the expression and secretion of the adipokine ANGPTL4 (angiopoietin-like protein 4/ fasting-induced adipose factor) by human adipocytes. Journal of nutrigenetics and nutrigenomics 4, 146-153, doi:10.1159/000327774 (2011).
81 Kersten, S. et al. Caloric restriction and exercise increase plasma ANGPTL4 levels in humans via elevated free fatty acids. Arteriosclerosis, thrombosis, and vascular biology 29, 969-974, doi:10.1161/atvbaha.108.182147 (2009).
82 Sanderson, L. M. et al. Peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) but not PPARalpha serves as a plasma free fatty acid sensor in liver. Molecular and cellular biology 29, 6257-6267, doi:10.1128/mcb.00370-09 (2009).
83 Liu, L. et al. ANGPTL4 mediates the protective role of PPARgamma activators in the pathogenesis of preeclampsia. Cell death & disease 8, e3054, doi:10.1038/cddis.2017.419 (2017).
84 Weissmann-Brenner, A. et al. Maternal and neonatal outcomes of large for gestational age pregnancies. Acta Obstet Gynecol Scand 91, 844-849, doi:10.1111/j.1600-0412.2012.01412.x (2012).
85 Sjaarda, L. A. et al. Customized large-for-gestational-age birthweight at term and the association with adverse perinatal outcomes. American journal of obstetrics and gynecology 210, 63.e61-63.e11, doi:10.1016/j.ajog.2013.09.006 (2014).
86 Rosen, H. et al. Delivery outcomes of large-for-gestational-age newborns stratified by the presence or absence of gestational diabetes mellitus. Int J Gynaecol Obstet 141, 120-125, doi:10.1002/ijgo.12387 (2018).
87 Lei, X. et al. Childhood Health Outcomes in Term, Large-for-Gestational-Age Babies With Different Postnatal Growth Patterns. Am J Epidemiol 187, 507-514, doi:10.1093/aje/kwx271 (2018).
88 Chiavaroli, V. et al. Insulin Resistance and Oxidative Stress in Children Born Small and Large for Gestational Age. Pediatrics 124, 695-702, doi:10.1542/peds.2008-3056 (2009).
89 Johnsson, I. W., Haglund, B., Ahlsson, F. & Gustafsson, J. A high birth weight is associated with increased risk of type 2 diabetes and obesity. Pediatric Obesity 10, 77-83, doi:https://doi.org/10.1111/ijpo.230 (2015).
90 Baer, R. J. et al. Population-based risks of mortality and preterm morbidity by gestational age and birth weight. J Perinatol 36, 1008-1013, doi:10.1038/jp.2016.118 (2016).
91 Boghossian, N. S., Geraci, M., Edwards, E. M. & Horbar, J. D. In-Hospital Outcomes in Large for Gestational Age Infants at 22-29 Weeks of Gestation. J Pediatr 198, 174-180.e113, doi:10.1016/j.jpeds.2018.02.042 (2018).
92 Rustogi, D. et al. Neurodevelopmental outcomes of singleton large for gestational age infants <29 weeks' gestation: a retrospective cohort study. J Perinatol 41, 1313-1321, doi:10.1038/s41372-021-01080-z (2021).
93 Ozawa, J., Tanaka, K., Kabe, K. & Namba, F. Impact of being large-for-gestational-age on neonatal mortality and morbidities in extremely premature infants. Pediatr Res 90, 910-916, doi:10.1038/s41390-021-01375-z (2021).
94 Martorell, R. & Gonzalez-cossio, T. Maternal nutrition and birth weight. Yearb Phys Anthropol 30, 195-220, doi:10.1002/ajpa.1330300511 (1987).
95 Viegas, O. A., Ratnam, S. S. & Cole, T. J. Ethnic and other factors affecting birthweight in Singapore. Int J Gynaecol Obstet 29, 289-295, doi:10.1016/0020-7292(89)90351-2 (1989).
96 van den Berg, G., van Eijsden, M., Vrijkotte, T. G. & Gemke, R. J. Suboptimal maternal vitamin D status and low education level as determinants of small-for-gestational-age birth weight. Eur J Nutr 52, 273-279, doi:10.1007/s00394-012-0327-3 (2013).
97 Arabzadeh, H. et al. The maternal factors associated with infant low birth weight: an umbrella review. BMC Pregnancy and Childbirth 24, 316, doi:10.1186/s12884-024-06487-y (2024).
98 Hsieh, W. S. et al. Nationwide singleton birth weight percentiles by gestational age in Taiwan, 1998-2002. Acta Paediatr Taiwan 47, 25-33 (2006).
99 McCormick, M. C. The contribution of low birth weight to infant mortality and childhood morbidity. The New England journal of medicine 312, 82-90, doi:10.1056/nejm198501103120204 (1985).
100 Saigal, S. & Doyle, L. W. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 371, 261-269, doi:10.1016/s0140-6736(08)60136-1 (2008).
101 Platt, M. J. Outcomes in preterm infants. Public Health 128, 399-403, doi:10.1016/j.puhe.2014.03.010 (2014).
102 Wondie, W. T., Zeleke, K. A. & Wubneh, C. A. Incidence and predictors of mortality among low birth weight neonates in the first week of life admitted to the neonatal intensive care unit in Northwestern Ethiopia comprehensive specialized hospitals, 2022. Multi-center institution-based retrospective follow-up study. BMC Pediatr 23, 489, doi:10.1186/s12887-023-04319-0 (2023).
103 Immanuel, J. & Simmons, D. Screening and Treatment for Early-Onset Gestational Diabetes Mellitus: a Systematic Review and Meta-analysis. Current diabetes reports 17, 115, doi:10.1007/s11892-017-0943-7 (2017).
104 Poston, L. et al. Effect of a behavioural intervention in obese pregnant women (the UPBEAT study): a multicentre, randomised controlled trial. The lancet. Diabetes & endocrinology 3, 767-777, doi:10.1016/s2213-8587(15)00227-2 (2015).
105 Walsh, J. M., McGowan, C. A., Mahony, R., Foley, M. E. & McAuliffe, F. M. Low glycaemic index diet in pregnancy to prevent macrosomia (ROLO study): randomised control trial. BMJ (Clinical research ed.) 345, e5605, doi:10.1136/bmj.e5605 (2012).
106 Metzger, B. E. et al. Summary and recommendations of the Fifth International Workshop-Conference on Gestational Diabetes Mellitus. Diabetes care 30 Suppl 2, S251-260, doi:10.2337/dc07-s225 (2007).
107 Tai, Y. Y. et al. Simplifying the screening of gestational diabetes by maternal age plus fasting plasma glucose at first prenatal visit: A prospective cohort study. PloS one 15, e0237224, doi:10.1371/journal.pone.0237224 (2020).
108 Yen, I. W. et al. Overweight and obesity are associated with clustering of metabolic risk factors in early pregnancy and the risk of GDM. PloS one 14, e0225978, doi:10.1371/journal.pone.0225978 (2019).
109 Metzger, B. E. et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes care 33, 676-682, doi:10.2337/dc09-1848 (2010).
110 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes care 41, S13-s27, doi:10.2337/dc18-S002 (2018).
111 Chen, K. Y. et al. Maternal Plasma Lipids During Pregnancy, Insulin-like Growth Factor-1, and Excess Fetal Growth. The Journal of clinical endocrinology and metabolism 106, e3461-e3472, doi:10.1210/clinem/dgab364 (2021).
112 Bennett, W. A., Lagoo-Deenadayalan, S., Brackin, M. N., Hale, E. & Cowan, B. D. Cytokine expression by models of human trophoblast as assessed by a semiquantitative reverse transcription-polymerase chain reaction technique. American journal of reproductive immunology (New York, N.Y. : 1989) 36, 285-294 (1996).
113 Yin, N. et al. IL-27 activates human trophoblasts to express IP-10 and IL-6: implications in the immunopathophysiology of preeclampsia. Mediators of inflammation 2014, 926875-926875, doi:10.1155/2014/926875 (2014).
114 Fenton, T. R. & Kim, J. H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr 13, 59, doi:10.1186/1471-2431-13-59 (2013).
115 Engle, W. A. A Recommendation for the Definition of “Late Preterm” (Near-Term) and the Birth Weight–Gestational Age Classification System. Seminars in Perinatology 30, 2-7, doi:https://doi.org/10.1053/j.semperi.2006.01.007 (2006).
116 Lawn, J. Born too soon: The Global Action Report on Preterm Birth. (2012).
117 Gregory, E. C. W., Valenzuela, C. P. & Hoyert, D. L. Fetal Mortality: United States, 2021. Natl Vital Stat Rep 72, 1-21 (2023).
118 [Neonatal mortality: definitions and limitations]. Rev Chil Pediatr 59, 203-205 (1988).
119 Wu, T.-P., Liang, F.-W., Huang, Y.-L., Chen, L.-H. & Lu, T.-H. Maternal Mortality in Taiwan: A Nationwide Data Linkage Study. PloS one 10, e0132547, doi:10.1371/journal.pone.0132547 (2015).
120 Lin, C. M. et al. Validation of the Taiwan Birth Registry using obstetric records. J Formos Med Assoc 103, 297-301 (2004).
121 Chou, H. H. et al. Association of maternal chronic disease with risk of congenital heart disease in offspring. Cmaj 188, E438-e446, doi:10.1503/cmaj.160061 (2016).
122 Joseph, K. S. et al. Implausible birth weight for gestational age. Am J Epidemiol 153, 110-113, doi:10.1093/aje/153.2.110 (2001).
123 Velleman, P. F. Definition and Comparison of Robust Nonlinear Data Smoothing Algorithms. Journal of the American Statistical Association 75, 609-615, doi:10.2307/2287657 (1980).
124 Tsai, Y.-T. et al. ANGPTL4 Induces TMZ Resistance of Glioblastoma by Promoting Cancer Stemness Enrichment via the EGFR/AKT/4E-BP1 Cascade. International Journal of Molecular Sciences 20, 5625 (2019).
125 Hivert, M. F. et al. Pathophysiology from preconception, during pregnancy, and beyond. Lancet 404, 158-174, doi:10.1016/s0140-6736(24)00827-4 (2024).
126 Li, M. et al. Glycaemic status during pregnancy and longitudinal measures of fetal growth in a multi-racial US population: a prospective cohort study. Lancet Diabetes Endocrinol 8, 292-300, doi:10.1016/s2213-8587(20)30024-3 (2020).
127 Brand, J. S. et al. Gestational diabetes and ultrasound-assessed fetal growth in South Asian and White European women: findings from a prospective pregnancy cohort. BMC Medicine 16, 203, doi:10.1186/s12916-018-1191-7 (2018).
128 Wang, J. et al. The effects of gestational diabetes mellitus on fetal growth: is it different for low-risk and medium–high-risk pregnant women? Archives of Gynecology and Obstetrics 310, 833-842, doi:10.1007/s00404-023-07229-9 (2024).
129 Harrison, R. K., Cruz, M., Wong, A., Davitt, C. & Palatnik, A. The timing of initiation of pharmacotherapy for women with gestational diabetes mellitus. BMC Pregnancy Childbirth 20, 773, doi:10.1186/s12884-020-03449-y (2020).
130 Ford, H. L. et al. Predictors for insulin use in gestational diabetes mellitus. Eur J Obstet Gynecol Reprod Biol 272, 177-181, doi:10.1016/j.ejogrb.2022.03.025 (2022).
131 Simmons, D. et al. Call to action for a life course approach. Lancet 404, 193-214, doi:10.1016/s0140-6736(24)00826-2 (2024).
132 Koivunen, S. et al. Towards national comprehensive gestational diabetes screening - consequences for neonatal outcome and care. Acta Obstet Gynecol Scand 96, 106-113, doi:10.1111/aogs.13030 (2017).
133 Barja-Fernandez, S. et al. Plasma ANGPTL-4 is Associated with Obesity and Glucose Tolerance: Cross-Sectional and Longitudinal Findings. Mol Nutr Food Res 62, e1800060, doi:10.1002/mnfr.201800060 (2018).
134 Miller, H. I., Bortz, W. M. & Durham, B. C. The rate of appearance of FFA in plasma triglyceride of normal and obese subjects. Metabolism 17, 515-521, doi:10.1016/0026-0495(68)90043-7 (1968).
135 Horowitz, J. F. et al. Effect of short-term fasting on lipid kinetics in lean and obese women. Am J Physiol 276, E278-284, doi:10.1152/ajpendo.1999.276.2.E278 (1999).
136 Bermudez, J. A. & Velásquez, C. M. [Profile of free fatty acids (FFA) in serum of young Colombians with obesity and metabolic syndrome]. Arch Latinoam Nutr 64, 248-257 (2014).
137 Varady, K. A. et al. Effects of weight loss via high fat vs. low fat alternate day fasting diets on free fatty acid profiles. Sci Rep 5, 7561, doi:10.1038/srep07561 (2015).
138 Mizutani, N. et al. Reduction of insulin signaling upregulates angiopoietin-like protein 4 through elevated free fatty acids in diabetic mice. Exp Clin Endocrinol Diabetes 120, 139-144, doi:10.1055/s-0031-1291258 (2012).
139 Zuo, Y., He, Z., Chen, Y. & Dai, L. Dual role of ANGPTL4 in inflammation. Inflamm Res 72, 1303-1313, doi:10.1007/s00011-023-01753-9 (2023).
140 Brown, R., Imran, S. A. & Wilkinson, M. Lipopolysaccharide (LPS) stimulates adipokine and socs3 gene expression in mouse brain and pituitary gland in vivo, and in N-1 hypothalamic neurons in vitro. J Neuroimmunol 209, 96-103, doi:10.1016/j.jneuroim.2009.02.001 (2009).
141 Jung, K. H. et al. ANGPTL4 exacerbates pancreatitis by augmenting acinar cell injury through upregulation of C5a. EMBO Mol Med 12, e11222, doi:10.15252/emmm.201911222 (2020).
142 Phua, T. et al. Angiopoietin-like 4 Mediates Colonic Inflammation by Regulating Chemokine Transcript Stability via Tristetraprolin. Sci Rep 7, 44351, doi:10.1038/srep44351 (2017).
143 Guo, L. et al. Silencing Angiopoietin-Like Protein 4 (ANGPTL4) Protects Against Lipopolysaccharide-Induced Acute Lung Injury Via Regulating SIRT1 /NF-kB Pathway. J Cell Physiol 230, 2390-2402, doi:10.1002/jcp.24969 (2015).
144 Zhu, P. et al. Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(-):H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell 19, 401-415, doi:10.1016/j.ccr.2011.01.018 (2011).
145 Brozzi, F. et al. Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia 58, 2307-2316, doi:10.1007/s00125-015-3669-6 (2015).
146 Xu, Y. et al. The E3 ligase Hrd1 stabilizes Tregs by antagonizing inflammatory cytokine-induced ER stress response. JCI Insight 4, doi:10.1172/jci.insight.121887 (2019).
147 Li, G., Scull, C., Ozcan, L. & Tabas, I. NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis. J Cell Biol 191, 1113-1125, doi:10.1083/jcb.201006121 (2010).
148 Morris, A. Obesity: ANGPTL4 - the link binding obesity and glucose intolerance. Nat Rev Endocrinol 14, 251, doi:10.1038/nrendo.2018.35 (2018).
149 Janssen, A. W. F. et al. Loss of angiopoietin-like 4 (ANGPTL4) in mice with diet-induced obesity uncouples visceral obesity from glucose intolerance partly via the gut microbiota. Diabetologia 61, 1447-1458, doi:10.1007/s00125-018-4583-5 (2018).
150 Aryal, B. et al. Absence of ANGPTL4 in adipose tissue improves glucose tolerance and attenuates atherogenesis. JCI Insight 3, doi:10.1172/jci.insight.97918 (2018).
151 Singh, A. K. et al. Hepatocyte-specific suppression of ANGPTL4 improves obesity-associated diabetes and mitigates atherosclerosis in mice. J Clin Invest 131, doi:10.1172/jci140989 (2021).
152 Gray, N. E. et al. Angiopoietin-like 4 (Angptl4) Protein Is a Physiological Mediator of Intracellular Lipolysis in Murine Adipocytes*. Journal of Biological Chemistry 287, 8444-8456, doi:https://doi.org/10.1074/jbc.M111.294124 (2012).
153 Yoon, J. C. et al. Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol 20, 5343-5349, doi:10.1128/mcb.20.14.5343-5349.2000 (2000).
154 Kersten, S. et al. Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem 275, 28488-28493, doi:10.1074/jbc.M004029200 (2000).
155 Li, M., Hu, J., Yao, L. & Gao, M. Decreased ANGPTL4 impairs endometrial angiogenesis during peri-implantation period in patients with recurrent implantation failure. J Cell Mol Med 24, 10730-10743, doi:10.1111/jcmm.15696 (2020).
156 Cheng, J. C. et al. G protein-coupled estrogen receptor stimulates human trophoblast cell invasion via YAP-mediated ANGPTL4 expression. Commun Biol 4, 1285, doi:10.1038/s42003-021-02816-5 (2021).
157 Barbour, L. A. et al. Human placental growth hormone causes severe insulin resistance in transgenic mice. American journal of obstetrics and gynecology 186, 512-517, doi:https://doi.org/10.1067/mob.2002.121256 (2002).
158 McIntyre, H. D. et al. Hormonal and metabolic factors associated with variations in insulin sensitivity in human pregnancy. Diabetes Care 33, 356-360, doi:10.2337/dc09-1196 (2010).
159 Wang, Y. et al. Angiopoietin-like protein 4 improves glucose tolerance and insulin resistance but induces liver steatosis in high-fat-diet mice. Mol Med Rep 14, 3293-3300, doi:10.3892/mmr.2016.5637 (2016).
160 Xu, A. et al. Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice. Proc Natl Acad Sci U S A 102, 6086-6091, doi:10.1073/pnas.0408452102 (2005).
161 Ortega-Senovilla, H., Schaefer-Graf, U., Meitzner, K., Abou-Dakn, M. & Herrera, E. Decreased concentrations of the lipoprotein lipase inhibitor angiopoietin-like protein 4 and increased serum triacylglycerol are associated with increased neonatal fat mass in pregnant women with gestational diabetes mellitus. J Clin Endocrinol Metab 98, 3430-3437, doi:10.1210/jc.2013-1614 (2013).
162 Li, M. et al. ANGPTL4 participates in gestational diabetes mellitus via regulating Akt pathway. European review for medical and pharmacological sciences 22, 5056-5062, doi:10.26355/eurrev_201808_15697 (2018).
163 Yamada, T., Ozaki, N., Kato, Y., Miura, Y. & Oiso, Y. Insulin downregulates angiopoietin-like protein 4 mRNA in 3T3-L1 adipocytes. Biochem Biophys Res Commun 347, 1138-1144, doi:10.1016/j.bbrc.2006.07.032 (2006).
164 Carter, E. B. et al. Large-for-gestational age and stillbirth: is there a role for antenatal testing? Ultrasound Obstet Gynecol 54, 334-337, doi:10.1002/uog.20162 (2019).
165 Bukowski, R. et al. Fetal growth and risk of stillbirth: a population-based case-control study. PLoS Med 11, e1001633, doi:10.1371/journal.pmed.1001633 (2014).
166 Burmeister, B., Zaleski, C., Cold, C. & McPherson, E. Wisconsin Stillbirth Service Program: analysis of large for gestational age cases. Am J Med Genet A 158a, 2493-2498, doi:10.1002/ajmg.a.35578 (2012).
167 Wood, S. & Tang, S. Stillbirth and large for gestational age at birth. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet 33, 1974-1979, doi:10.1080/14767058.2018.1534229 (2020).
168 Mendez-Figueroa, H., Truong, V. T. T., Pedroza, C. & Chauhan, S. P. Large for Gestational Age Infants and Adverse Outcomes among Uncomplicated Pregnancies at Term. Am J Perinatol 34, 655-662, doi:10.1055/s-0036-1597325 (2017).
169 Vashevnik, S., Walker, S. & Permezel, M. Stillbirths and neonatal deaths in appropriate, small and large birthweight for gestational age fetuses. Aust N Z J Obstet Gynaecol 47, 302-306, doi:10.1111/j.1479-828X.2007.00742.x (2007).
170 Francis, A., Hugh, O. & Gardosi, J. Customized vs INTERGROWTH-21(st) standards for the assessment of birthweight and stillbirth risk at term. American journal of obstetrics and gynecology 218, S692-s699, doi:10.1016/j.ajog.2017.12.013 (2018).
171 Suárez-Idueta, L. et al. Neonatal mortality risk of large-for-gestational-age and macrosomic live births in 15 countries, including 115.6 million nationwide linked records, 2000-2020. Bjog, doi:10.1111/1471-0528.17706 (2023).
172 Jee, G., Kotecha, S. J., Chakraborty, M., Kotecha, S. & Odd, D. Early childhood parent-reported speech problems in small and large for gestational age term-born and preterm-born infants: a cohort study. BMJ Open 13, e065587, doi:10.1136/bmjopen-2022-065587 (2023).
173 Wang, A. et al. Circulating anti-angiogenic factors during hypertensive pregnancy and increased risk of respiratory distress syndrome in preterm neonates. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet 25, 1447-1452, doi:10.3109/14767058.2011.640368 (2012).
174 Bromfield, S. G., Ma, Q., DeVries, A., Inglis, T. & Gordon, A. S. The association between hypertensive disorders during pregnancy and maternal and neonatal outcomes: a retrospective claims analysis. BMC Pregnancy Childbirth 23, 514, doi:10.1186/s12884-023-05818-9 (2023).
175 Ulfsdottir, H., Grandahl, M., Björk, J., Karlemark, S. & Ekéus, C. The association between pre-eclampsia and neonatal complications in relation to gestational age. Acta Paediatr 113, 426-433, doi:10.1111/apa.17080 (2024).
176 Erez, O. et al. Preeclampsia and eclampsia: the conceptual evolution of a syndrome. American journal of obstetrics and gynecology 226, S786-s803, doi:10.1016/j.ajog.2021.12.001 (2022).
177 Yagel, S. et al. Expert review: preeclampsia Type I and Type II. Am J Obstet Gynecol MFM 5, 101203, doi:10.1016/j.ajogmf.2023.101203 (2023).
178 Kiserud, T. et al. The World Health Organization Fetal Growth Charts: A Multinational Longitudinal Study of Ultrasound Biometric Measurements and Estimated Fetal Weight. PLoS Med 14, e1002220, doi:10.1371/journal.pmed.1002220 (2017).
179 Blondel, B. et al. Algorithms for combining menstrual and ultrasound estimates of gestational age: consequences for rates of preterm and postterm birth. Bjog 109, 718-720, doi:10.1111/j.1471-0528.2002.01068.x (2002).
180 Deputy, N. P. et al. Validity of gestational age estimates by last menstrual period and neonatal examination compared to ultrasound in Vietnam. BMC Pregnancy Childbirth 17, 25, doi:10.1186/s12884-016-1192-5 (2017).
181 TAIPALE, P. & HIILESMAA, V. Predicting Delivery Date by Ultrasound and Last Menstrual Period in Early Gestation. Obstetrics & Gynecology 97, 189-194 (2001).
182 Kim, H. E., Song, I. G., Chung, S. H., Choi, Y. S. & Bae, C. W. Trends in Birth Weight and the Incidence of Low Birth Weight and Advanced Maternal Age in Korea between 1993 and 2016. J Korean Med Sci 34, e34, doi:10.3346/jkms.2019.34.e34 (2019).
183 Pollock, E. A., Gennuso, K. P., Givens, M. L. & Kindig, D. Trends in infants born at low birthweight and disparities by maternal race and education from 2003 to 2018 in the United States. BMC Public Health 21, 1117, doi:10.1186/s12889-021-11185-x (2021).
184 Waits, A., Guo, C. Y. & Chien, L. Y. Inadequate gestational weight gain contributes to increasing rates of low birth weight in Taiwan: 2011-2016 nationwide surveys. Taiwan J Obstet Gynecol 60, 857-862, doi:10.1016/j.tjog.2021.07.013 (2021).
185 Islam, M. M. Increasing Incidence of Infants with Low Birth Weight in Oman. Sultan Qaboos Univ Med J 15, e177-183 (2015).
186 Zhou, R. et al. Secular trends of low birth weight, preterm birth, and small for gestational age in Shanghai from 2004 to 2020: an age-period-cohort analysis. BMC Pregnancy Childbirth 23, 540, doi:10.1186/s12884-023-05799-9 (2023).
187 Okwaraji, Y. B. et al. National, regional, and global estimates of low birthweight in 2020, with trends from 2000: a systematic analysis. The Lancet 403, 1071-1080, doi:10.1016/S0140-6736(23)01198-4 (2024).
188 Chen, Y. et al. Delivery modes and pregnancy outcomes of low birth weight infants in China. J Perinatol 36, 41-46, doi:10.1038/jp.2015.137 (2016).
189 Stoltenberg, C. & Magnus, P. Children with low birth weight and low gestational age in Oslo, Norway: immigration is not the cause of increasing proportions. J Epidemiol Community Health 49, 588-593, doi:10.1136/jech.49.6.588 (1995).
190 Oken, E. Secular trends in birthweight. Nestle Nutr Inst Workshop Ser 71, 103-114, doi:10.1159/000342576 (2013).
191 Mansor, E., Ahmad, N., Mohd Zulkefli, N. A. & Lim, P. Y. Incidence and determinants of low birth weight in Peninsular Malaysia: A multicentre prospective cohort study. PloS one 19, e0306387, doi:10.1371/journal.pone.0306387 (2024).
192 Lin, S. Y. et al. Trends in epidemiology of hyperglycemia in pregnancy in Taiwan, 2008-2017. Front Endocrinol (Lausanne) 13, 1041066, doi:10.3389/fendo.2022.1041066 (2022).
193 Shen, Y. M., See, L. C. & Lin, S. R. Birth weight among singletons born to foreign-born mothers in Taiwan: a population-based birth register study. J Epidemiol 19, 152-160, doi:10.2188/jea.je20080096 (2009).
194 Oh, Y. & Bae, J. Impact of Changes in Maternal Age and Parity Distribution on the Increasing Trends in the Low Birth Weight and Very Low Birth Weight Rates in South Korea, 2005-2015. J Prev Med Public Health 52, 123-130, doi:10.3961/jpmph.18.247 (2019).
195 Shah, P. S. & Balkhair, T. Air pollution and birth outcomes: a systematic review. Environ Int 37, 498-516, doi:10.1016/j.envint.2010.10.009 (2011).
196 Liu, A., Qian, N., Yu, H., Chen, R. & Kan, H. Estimation of disease burdens on preterm births and low birth weights attributable to maternal fine particulate matter exposure in Shanghai, China. Sci Total Environ 609, 815-821, doi:10.1016/j.scitotenv.2017.07.174 (2017).
197 Xaverius, P. K., O'Reilly, Z., Li, A., Flick, L. H. & Arnold, L. D. Smoking Cessation and Pregnancy: Timing of Cessation Reduces or Eliminates the Effect on Low Birth Weight. Matern Child Health J 23, 1434-1441, doi:10.1007/s10995-019-02751-2 (2019).
198 Kasdallah, N. et al. Premature Birth, low Birth Weight and Birth Defects after assisted reproductive therapies. a 18-year comparative study. Tunis Med 95, 103-108 (2017).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99580-
dc.description.abstract研究背景: 隨著生育年齡提高,愈來愈多婦女罹患妊娠糖尿病(gestational diabetes mellitus)。罹患妊娠糖尿病的孕婦,會增加媽媽及胎兒的周產期併發症及未來發生肥胖與糖尿病的風險,所以,了解妊娠糖尿病的病理生理機轉,進而發展預測與治療的方法,是臨床上很重要的問題。雖然治療妊娠糖尿病能改善許多周產期後果,但一些懷孕不良事件及長期後果的風險仍無法減輕。目前建議篩檢妊娠糖尿病的時間為孕期第24到28週,但文獻指出早在數週之前,罹患妊娠糖尿病的孕婦腹中的胎兒就已經加速成長。如果提早篩檢與介入,可能可以改善這群孕婦的懷孕結果及小孩的健康。本研究第一部分會測試早期篩檢與介入比起常規篩檢與介入能否改善懷孕後果。
在病理生理機轉方面,肥胖是導致妊娠糖尿病的危險因子且與胰島素阻抗相關,在過往文獻發現,human placental lactogen(CSH2)與growth hormone variant(GH2)與孕期胰島素阻抗以及β細胞增生有關,然而人類研究卻發現不一致的結果,因此應該還存在其他GDM病理生理機轉。Angiopoietin-like 4(ANGPTL4)是一種分泌醣蛋白,在非懷孕族群的研究中發現能促進胰島素分泌,同時造成胰島素阻抗,且與發炎反應有關。懷孕時,血中ANGPTL4會隨孕期增加,這些調節血糖的功能與懷孕時的變化與CSH2及GH2很類似,然而目前沒有文獻探討懷孕時ANGPTL4在血糖代謝與GDM病理生理機轉的角色。我們初步研究發現,肥胖孕婦胎盤ANGPTL4的表現,比正常體重的孕婦高,且孕期血中ANGPTL4濃度與胰島素阻抗有關。本研究第二部分會深入探討ANGPTL4在妊娠糖尿病的病理生理機轉所扮演的角色,我們的假說是:肥胖會使游離脂肪酸增加,刺激胎盤滋養細胞表現與分泌ANGPTL4。胎盤的ANGPTL4可能會引起內質網壓力與發炎反應,進一步影響CSH2與GH2的表現與分泌。此外,胎盤製造的ANGPTL4也會分泌到血液中,與CSH2及GH2一起影響孕婦全身的胰島素敏感性,最後導致妊娠糖尿病的發生。
另一方面,與妊娠糖尿病相關的懷孕後果中,大於胎齡(large for gestational age,LGA)是最常被選作主要目標,LGA且足月的胎兒會增加許多懷孕不良後果的風險,然而,在早產兒中,LGA與懷孕不良後果的關係仍不確定,本研究第三部分會完整評估足月兒與不同程度的早產兒,LGA與各種早產相關及懷孕常見併發症的關係。最後,台灣用來評估是否符合LGA的新生兒出生體重參考標準已經許久沒更新,本研究第四部分會分析台灣全國性新生兒出生體重,更新參考標準並製作生長曲線圖。
材料與方法: 第一部份,我們在臺大醫院及台大新竹分院執行開放式隨機分派試驗,預期收錄2054位懷孕婦女。這些婦女需生產單胞胎且從未被診斷為糖尿病,之後依隨機分配分成兩組,一組為早期篩檢,於孕期第18-20週執行75克糖水測試。另一組為常規篩檢,於孕期第24–28週執行糖水測試。若糖水測試時的血糖濃度,有任一個數值達標:空腹 ≥ 92 mg/dL、一小時 ≥ 180 mg/dL、二小時 ≥ 153 mg/dL,即診斷妊娠糖尿病。確診的孕婦會接受生活方式介入並執行自我血糖監控。如果4週內血糖沒有達標,會給予藥物治療。我們比較兩組主要結果的差異,包含剖腹產率、新生兒出生體重超過90百分位比率、新生兒低血糖率、臍帶血中C-胜肽超過90百分位比率、妊娠高血壓、子癲前症及生產創傷的綜合測量(目的1)。
第二部分,我們以之前收錄的孕婦世代進行人類研究,比較正常孕婦與肥胖孕婦胎盤的ANGPTL4、內質網壓力、發炎指標、CSH2與GH2的表現(目的2);我們也檢測孕期的血液檢體,以了解不同孕期血中的ANGPTL4濃度與游離脂肪酸、CSH2、GH2濃度以及β細胞功能指標以及胰島素阻抗指標之間的關係(目的3),並釐清懷孕早期及中期是否能預測妊娠糖尿病的發生(目的4)。此外,我們利用3A-sub-E滋養細胞株,探討棕櫚酸會否刺激ANGPTL4表現(目的5),以及滋養細胞過度表現ANGPTL4是否會引起內質網壓力、發炎反應以及調控CSH2與GH2的表現與分泌(目的6)。最後,我們利用骨骼肌L6細胞株,探討外加ANGPTL4重組蛋白對於骨骼肌細胞胰島素敏感性與胰島素訊息傳遞的影響(目的7)。
第三部分,我們利用 2007–2018年台灣出生通報檔與健保資料庫連結,進行回溯性全國世代研究,納入24–42週單胞胎新生兒,並依其出生週數分為足月(37–42週)、晚期早產(34–36週)、中度早產(32–33週)、高度早產(28–31週)及極度早產(24–27週)。LGA依2013世界衛生組織生長曲線及台灣生長曲線定義。我們比較不同出生週數各組LGA與適當胎齡(appropriate for gestational age,AGA)新生兒之周產期後果(目的8)。
第四部分,我們分析2008–2017年台灣出生通報檔中,1,913,124名單胞胎新生兒的資料(目的9)。針對每一完整妊娠週數與性別,計算出生體重百分位,並採用非線性resistant smoothing技術,繪製平滑化的妊娠週數出生體重百分位曲線(目的10)。
結果: 第一部份之隨機分派試驗於期中分析後因無效性提前終止。意向性分析共納入967名受試者;主要結果在兩組間無顯著差異。與常規篩檢組相比,早期篩檢組的新生兒低血糖發生率顯著較低,而早期篩檢組中的妊娠糖尿病產婦之新生兒脂肪堆積顯著較高。兩組不良事件率相近。
在第二部分中,我們發現肥胖孕婦之胎盤ANGPTL4表現顯著高於正常體位對照組。棕櫚酸可誘導滋養層細胞表現ANGPTL4且表現量與棕櫚酸劑量成正比。於滋養層細胞過度表現ANGPTL4會引發內質網壓力,進而刺激GH2之表現與分泌,但不影響CSH2。在 L6 骨骼肌細胞中,分泌形式的ANGPTL4透過表皮生長因子受體(EGFR)/細胞外訊號調節激酶1/2(ERK1/2)路徑抑制胰島素介導的葡萄糖攝取。於孕婦世代中,第一孕期血漿ANGPTL4濃度可預測妊娠糖尿病發生,並與身體質量指數、血漿三酸甘油脂及GH2濃度呈正相關;而與第二孕期之胰島素敏感指數 ISI0,120呈負相關。
在1,602,638名台灣新生兒中,44,359名(2.8%)依世界衛生組織(WHO)標準被歸為LGA(第三部份)。與AGA相比,足月與晚期早產 LGA新生兒於初次剖腹產、產程遲滯、新生兒低血糖、生產創傷、缺氧缺血性腦病變、需光照治療的黃疸、呼吸窘迫、入住新生兒加護病房、新生兒敗血症與胎兒死亡之風險顯著升高;然而於中度、高度及極度早產組別,大多數上述風險並未增加。相反地,LGA會降低下列風險,包括在高度早產組別中的初次剖腹產、新生兒敗血症及肺支氣管發育不全,於中度與高度早產組別中的需光照治療的黃疸、呼吸窘迫及入住新生兒加護病房,以及在晚期、中度與高度早產組別中的早產兒視網膜病變。以台灣生長曲線標準重新分析結果一致。
在第四部份中,我們納入出生通報檔資料庫中994,175名男嬰與918,949名女嬰進行分析。從2008至2017年,平均出生體重由3,098.10 g降至3,049.88 g(p < 0.0001);低出生體重年發生率由5.59%升至6.98% (p < 0.0001)。同時觀察到平均妊娠週數微幅下降 (p < 0.001),外籍母親比例顯著下降(p < 0.0001)。本研究亦提供按妊娠週數分層之男、女單胞胎出生體重百分位。
結論: 比起現行標準做法,妊娠糖尿病普篩提前至18–20週對整體妊娠結果可能無明顯助益,但可能降低新生兒低血糖;透過早期篩檢確診之妊娠糖尿病產婦其新生兒具有較高新生兒脂肪堆積。其次,肥胖會誘導胎盤ANGPTL4表現,並透過引發內質網壓力及促進GH2分泌參與妊娠糖尿病之病理生理機轉;分泌形式的ANPGTL4可於骨骼肌誘發胰島素阻抗,並可作為早期預測妊娠糖尿病之生物標誌。此外,LGA 與足月及晚期早產新生兒之多項周產期併發症風險增加相關,但在更早週數之早產組別則無此現象,臨床應依妊娠週數調整LGA新生兒之處理策略。最後,本研究建立了台灣最新的全國性出生體重曲線,並確認 2008–2017年低出生體重率持續上升,建議進一步探討母體與環境因子對此趨勢的影響。
zh_TW
dc.description.abstractBackground: The prevalence of gestational diabetes mellitus (GDM) has been increasing in parallel with the rising maternal age. Women with GDM are at increased risk of maternal and fetal perinatal complications, future development of maternal diabetes, and neonatal obesity. Therefore, elucidating the pathophysiology of GDM and advancing its prediction and treatment are of great clinical importance. Although treatment for GDM can improve many perinatal outcomes, risks of some adverse pregnancy events and long-term outcomes cannot be mitigated. Studies have pointed that women with GDM have excessive fetus growth weeks earlier than the current recommended screening period at 24-28 weeks of gestation. Therefore, earlier screening and intervention may improve pregnancy outcomes and the health of the offspring. In the first part of this study, we would test if early screening and intervention for GDM can improve pregnancy outcomes compared to standard screening and intervention.
In the aspect of the pathophysiology of GDM, obesity is a risk factor for GDM and is associated with insulin resistance. Animal studies have reported that placental lactogen (CSH2) and growth hormone variant (GH2) were associated with insulin resistance and β-cell proliferation during pregnancy. However, human studies showed inconsistent results, which indicates that other pathophysiologies may exist in the disease process of GDM. Angiopoietin-like 4 (ANGPTL4) is a secretory glycoprotein. Researches in non-pregnant subjects have shown that ANGPTL4 could induce insulin secretion, while it also caused insulin resistance and inflammation. During pregnancy, the levels of plasma ANGPTL4 increased gradually. The function in glucose metabolism and changes during pregnancy of ANGPTL4 are similar to those of CSH2 and GH2. However, there was currently no literature regarding the role of ANGPTL4 in glucose metabolism during pregnancy and the pathophysiology of GDM. In our preliminary data, we found that placental ANGPTL4 expression was higher in obese pregnant women. In addition, serum ANGPTL4 levels at early pregnancy were positively associated with insulin resistance index. In the second part of this study, we would investigate the role of ANGPTL4 in the pathophysiology of GDM. We hypothesized that obesity results in an increase in plasma free fatty acid, which stimulates the expression and secretion of ANGPTL4 in placenta. ANGPTL4 could induce endoplasmic reticulum (ER) stress and inflammation, and regulate the expression and secretion of CSH2 and GH2 in placenta. Moreover, ANGPTL4 in placenta could be secreted into circulation to have an endocrine effect, which led to the development of insulin resistance and GDM during pregnancy, along with the effect of plasma CSH2 and GH2.
On the other hand, among pregnancy outcomes associated with GDM, large for gestational age (LGA) is most commonly chosen as the primary outcome. Term infants with LGA carry an increased risk of various adverse pregnancy outcomes. However, the relationship between LGA and adverse pregnancy outcomes in preterm infants remains uncertain. Therefore, the third part of this study would comprehensively evaluate the association between LGA and prematurity-related and common pregnancy outcomes across term infants and infants with different degrees of prematurity. Lastly, the Taiwanese newborn birth weight reference standards used to determine LGA status have not been updated for many years. Hence, the fourth part of this study would analyze nationwide newborn birth weight data in Taiwan, update the reference standards, and produce new growth charts.
Materials and methods: In the first part of this study, we aimed to conduct an open-label randomized controlled trial (RCT) in 2054 pregnant women, who delivered a singleton and who have not been diagnosed with overt diabetes mellitus at National Taiwan University Hospital and its HsinChu branch. These pregnant women were randomly assigned to two groups, an early screening group and a standard screening group. Subjects in the early screening group received a 75g 2-hour oral glucose tolerance test (OGTT) at 18-20 weeks of gestation and those in the standard screening group would receive an OGTT at 24-28 weeks of gestation. GDM was diagnosed if one of the plasma glucose levels at fasting, 1-hour, and 2-hour during an OGTT was equal or above 92 mg/dL, 180 mg/dL, or 153 mg/dL respectively. Subjects who were diagnosed with GDM received lifestyle intervention and self-monitoring of blood glucose. Pharmacological therapies were given when the target of glycemic control is not achieved within 4 weeks. We compared the primary outcome between the two groups, which was a composite measure of primary cesarean section, birth weight > 90th percentile, neonatal hypoglycemia, cord serum C-peptide > 90th percentile, gestational hypertension, preeclampsia, and birth trauma (specific aim 1).
In the second part of this study, we used the samples collected previously in a pregnancy cohort. We compared the expression of ANGPTL4, ER stress markers, inflammatory markers, CSH2, and GH2 in the placenta of obese pregnant women and lean pregnant women (specific aim 2). We measured blood samples in the first and the second trimesters and analyze the relationship between serum ANGPTL4, free fatty acid, CSH2, GH2, β-cell function and insulin resistance markers (specific aim 3). We also clarified whether serum ANGPTL4 levels at first and second trimesters or the incremental levels could predict the incidence of GDM (specific aim 4). In addition, we used 3A-sub-E trophoblast cell line to test whether palmitic acid could induce ANGPTL4 expression (specific aim 5). We also explored the effect of ANGPTL4 overexpression of trophoblasts on ER stress, inflammation, and the expression and secretion of CSH2 and GH2 (specific aim 6). Using L6 skeletal muscle cell lines, we investigated the effect of recombinant ANGPTL4 treatment on insulin signaling and glucose uptake (specific aim 7).
In the third part of this study, using the Birth Reporting Databases (BRD) (2007-2018) linked to Taiwan’s National Health Insurance Research Database, we conducted a retrospective nationwide cohort study of singleton neonates delivered between 24-42 weeks of gestation. Based on gestational age at delivery, the enrolled neonates were classified into term (37-42 weeks of gestation), late preterm (34-36 weeks of gestation), moderate preterm (32-33 weeks of gestation), very preterm (28-31 weeks of gestation), and extremely preterm (24-27 weeks of gestation). LGA was defined by the 2013 World Health Organization (WHO) growth standard and the Taiwan growth standard. Perinatal outcomes were compared between LGA and appropriate for gestational age (AGA) neonates across different gestational age groups (specific aim 8).
In the fourth part of this study, we analyzed 1,913,124 singleton live births from the dataset of Taiwan BRD between 2008 and 2017 (specific aim 9). Birth weight percentiles were calculated for each completed gestational week and gender. A nonlinear, resistant smoothing technique was applied to develop smoothed birth weight-for-gestational-age percentile curves (specific aim 10).
Results: The RCT in the first part was stopped early for futility after the interim analysis. Of the 967 women included in the intention-to-treat analysis, the primary outcome was not significantly different between the two groups. Neonatal hypoglycemia was significantly lower and neonatal adiposity in women with GDM was significantly higher in the early screening group compared with the standard screening group. Adverse event rates were similar between the two groups.
In the second part, we found that ANGPTL4 expression in the placenta was higher in obese pregnant women than in lean controls. Palmitic acid significantly induced ANGPTL4 expression in trophoblast cells in a dose-response manner. ANGPTL4 overexpression in trophoblast cells resulted in ER stress, which stimulated the expression and secretion of GH2 but not CSH2. In L6 skeletal muscle cells, soluble ANGPTL4 suppressed insulin-mediated glucose uptake through the epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinases 1/2 (ERK 1/2) pathways. In pregnant women, plasma ANGPTL4 concentrations in the first trimester predicted the incidence of GDM, were positively associated with body mass index, plasma triglyceride, and plasma GH2 in the first trimester, and were negatively associated with insulin sensitivity index ISI0,120 in the second trimester.
Among the 1,602,638 neonates in Taiwan, 44,359 were classified as LGA by the 2013 WHO growth standard (the third part). Compared to AGA neonates, LGA neonates in term and late preterm groups exhibited higher risks of primary cesarean section, prolonged labor, neonatal hypoglycemia, birth trauma, hypoxic ischemic encephalopathy, jaundice needing phototherapy, respiratory distress, neonatal intensive care unit (NICU) admission, newborn sepsis, and fetal death. However, most of these risks were not increased in moderate, very, and extremely preterm groups. Conversely, being LGA was associated with lower risks of primary cesarean section, newborn sepsis, and bronchopulmonary dysplasia in the very preterm group, and jaundice needing phototherapy, respiratory distress, and NICU admission in the moderate and very preterm groups, and retinopathy of prematurity in the late, moderate, and very preterm groups. These findings remained consistent when the Taiwan growth standard was applied.
In the fourth part, we included 994,175 male neonates and 918,949 female neonates in the BRD cohort. During the study period, the annual mean birth weight decreased significantly from 3098.10g to 3049.88g (p < 0.0001). A significant increase in the annual rate of low birth weight (LBW) was observed, rising from 5.59% in 2008 to 6.98% in 2017 (p < 0.0001), coinciding with a slight and significant decrease in gestational age (p < 0.001) and a significantly declining proportion of foreign-born mothers (p < 0.0001) during the same period. In addition, birth weight percentiles by weeks of gestation in male and female singleton births were reported.
Conclusion: Compared to standard practice, advancing universal GDM screening to 18-20 weeks of gestation may not improve pregnancy outcomes, except for a reduction in neonatal hypoglycemia. Newborns of women diagnosed with GDM through early screening had higher neonatal adiposity. Subsequently, placental ANGPTL4 is induced by obesity and is involved in the pathophysiology of GDM via the induction of ER stress and GH2 secretion. Soluble ANGPTL4 can lead to insulin resistance in skeletal muscle cells and is an early biomarker for predicting GDM. Additionally, being LGA is associated with increased risks of perinatal complications in term and late preterm neonates, but not in earlier preterm groups. These findings underscore the importance of tailoring management strategies for LGA neonates to consider different degrees of prematurity. Finally, this study developed an updated, nationwide birth weight chart for Taiwan. An increasing rate of LBW was observed from 2008 to 2017. Further investigation into maternal and environmental factors contributing to these trends is warranted.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:10:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-16T16:10:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目 次
口試委員會審定書……………………………………………………………………………………………………………………………………………………………I
誌謝………………………………………………………………………………………………………………………………………………………………………………………II
中文摘要…………………………………………………………………………………………………………………………………………………………………………III
英文摘要……………………………………………………………………………………………………………………………………………………………………………VI
投稿清單……………………………………………………………………………………………………………………………………………………………………………IX
博士論文內容
一、研究背景及目標………………………………………………………………………………………………………………………………………………………1
二、研究方法及材料……………………………………………………………………………………………………………………………………………………26
第一部分、早期普篩妊娠糖尿病對於懷孕結果的影響―TESGO隨機分派試驗……………26
第二部分、肥胖、ANGPTL4與GDM致病機轉探討―人類世代研究及細胞實驗………………33
第三部分、足月與不同程度早產兒之LGA與懷孕結果的關係―全國性世代研究…………44
第四部分、更新台灣新生兒出生體重參考標準及生長曲線圖―全國性世代研究………47
三、研究結果……………………………………………………………………………………………………………………………………………………………………49
第一部分、早期普篩妊娠糖尿病對於懷孕結果的影響―TESGO隨機分派試驗………………49
第二部分、肥胖、ANGPTL4與GDM致病機轉探討―人類世代研究及細胞實驗………………52
第三部分、足月與不同程度早產兒之LGA與懷孕結果的關係―全國性世代研究…………56
第四部分、更新台灣新生兒出生體重參考標準及生長曲線圖―全國性世代研究…………61
四、討論與展望………………………………………………………………………………………………………………………………………………………………63
第一部分、早期普篩妊娠糖尿病對於懷孕結果的影響―TESGO隨機分派試驗………………63
第二部分、肥胖、ANGPTL4與GDM致病機轉探討―人類世代研究及細胞實驗………………66
第三部分、足月與不同程度早產兒之LGA與懷孕結果的關係―全國性世代研究…………71
第四部分、更新台灣新生兒出生體重參考標準及生長曲線圖―全國性世代研究…………76
五、結論……………………………………………………………………………………………………………………………………………………………………………80
參考文獻……………………………………………………………………………………………………………………………………………………………………………81

表 次
表一、Baseline characteristics of pregnant women in the early pregnancy screening group (Early) and the standard screening group (Standard) in the intention-to-treat population……………………………………………………………………………………………………………………96
表二、Baseline characteristics of pregnant women with or without gestational diabetes mellitus in the early screening group (Early) and the standard screening group (Standard) in the intention-to-treat population………………………………………………………………………………………………………………………………………………………………………97
表三、Glycemic status, rate of gestational diabetes mellitus, and rate of insulin therapy of pregnant women, and clinical characteristics of neonates at birth in the early screening group (Early) and the standard screening group (Standard) in the intention-to-treat population……………………………………………………98
表四、Glycemic status and rate of insulin therapy in pregnant women with or without gestational diabetes mellitus, and their neonatal characteristics at birth in the early screening group (Early) and the standard screening group (Standard) in the intention-to-treat population…………………………………………………100
表五、Glycemic status of pregnant women with GDM in the early screening group (Early) and the standard screening group (Standard) in the intention-to-treat population……………………………………………………………………………………………………………………………………………102
表六、The primary outcome and secondary outcomes of pregnant women in the early screening group (Early) and the standard screening group (Standard) and the crude and adjusted risk ratio for the outcomes in the early screening group, compared with the standard screening group in the intention-to-treat population…………………………………………………………………………………………………………………103
表七、The primary outcome and secondary outcomes of pregnant women with or without gestational diabetes mellitus in the early screening group (Early) and the standard screening group (Standard) and the crude and adjusted risk ratio for the outcomes in the early screening group, compared with the standard screening group in the intention-to-treat population……………………………105
表八、The primary outcome and its individual components in women with or without risk factors in the early screening group in the intention-to-treat population…………………………………107
表九、Body mass index, body weight, and weight change during pregnancy and after delivery in women with or without gestational diabetes mellitus in the early screening group (Early) and the standard screening group (Standard) in the intention-to-treat population………………………………………………………………107
表十、Fetal growth by ultrasound assessments during pregnancy in women with or without gestational diabetes mellitus in the early screening group (Early) and the standard screening group (Standard) in the intention-to-treat population…………………………………………………………………………………………………………………………………………………110
表十一、Adverse events of pregnant women with gestational diabetes mellitus and their fetuses in the early screening group (Early) and the standard screening group (Standard) in the safety population…………………………………………………………………………………………………………………………………………………………………112
表十二、Summary of missing data in the early screening group (Early) and the standard screening group (Standard) in the intention-to-treat population…………………………………………………………………………………………………………………………………………………………………113
表十三、Clinical characteristics of pregnant women with or without obesity before pregnancy…………………………………………………………………………………………………………………………………………………116
表十四、Clinical characteristics of pregnant women with and without gestational diabetes mellitus………………………………………………………………………………………………………………117
表十五、Plasma ANGPTL4 concentrations during pregnancy in women with and without gestational diabetes mellitus…………………………………………………………………………………………118
表十六、The relationship between plasma ANGPTL4 concentrations in the first trimester and (a) BMI, plasma TG, plasma GH2, plasma CSH2, and FPG in the first trimester, (b) plasma TG, FFAs, FPG, 1 h PG, and 2 h PG in the second trimester, and (c) HOMA2-IR in the first and second trimester and ISI0,120 in the second trimester in pregnant women………………………………………………………………………………119
表十七、The unadjusted and adjusted odds ratios of gestational diabetes mellitus for every one standard deviation increase in plasma ANGPTL4 concentrations in the first trimester…………………………………………………………………………………………120
表十八、The area under the receiver operating characteristic curve with and without indicated variables in models predicting GDM……………………………………………………………………………………………………………………………………………………………………………………121
表十九、Baseline characteristics of pregnant women with LGA neonates and AGA neonates, divided into 5 groups according to gestational age (GA) at delivery. Definitions of LGA and AGA are according to the WHO growth standard………………………………………………………………………………………………………………………………………………………………………122
表二十、Incidence of pregnancy outcomes in pregnant women with LGA or AGA neonates, divided into 5 groups according to gestational age (GA) at delivery. Definitions of LGA and AGA are according to the WHO growth standard………………………………………………………………………………………………………………………………………………………………………124
表二十一、Crude odds ratios (95% confidence intervals) for pregnancy outcomes of pregnant women with LGA neonates, compared to pregnant women with AGA neonates, divided into 5 groups according to gestational age (GA) at delivery. Definitions of LGA and AGA are according to the WHO growth standard………………………………………………………………………………………………………………………………………………………………………126
表二十二、Adjusted odds ratios (95% confidence intervals) for pregnancy outcomes of pregnant women with LGA neonates, compared to pregnant women with AGA neonates, divided into 5 groups according to gestational age (GA) at delivery. Definitions of LGA and AGA are according to the WHO growth standard………………………………………………………………………………………………………………………………………………………………………128
表二十三、Adjusted odds ratios (95% confidence intervals) for pregnancy outcomes of pregnant women with LGA neonates and diabetes in pregnancy, compared to pregnant women with AGA neonates and diabetes in pregnancy, divided into 5 groups according to gestational age (GA) at delivery. Definitions of LGA and AGA are according to the WHO growth standard…………130
表二十四、Adjusted odds ratios (95% confidence intervals) for pregnancy outcomes of pregnant women with LGA neonates and without diabetes in pregnancy, compared to pregnant women with AGA neonates and without diabetes in pregnancy, divided into 5 groups according to gestational age (GA) at delivery. Definitions of LGA and AGA are according to the WHO growth standard……………………………………………………………………………………………………………………………………………………132
表二十五、Adjusted odds ratios (95% confidence intervals) for pregnancy outcomes of pregnant women with LGA neonates and diabetes in pregnancy, compared to pregnant women with AGA neonates and diabetes in pregnancy, divided into 5 groups according to gestational age (GA) at delivery. Definitions of LGA and AGA are according to the Taiwan growth standard………………………………………………………………………………………………………………………………………………………………………134
表二十六、Adjusted odds ratios (95% confidence intervals) for pregnancy outcomes of pregnant women with LGA neonates and without diabetes in pregnancy, compared to pregnant women with AGA neonates and without diabetes in pregnancy, divided into 5 groups according to gestational age (GA) at delivery. Definitions of LGA and AGA are according to the Taiwan growth standard……………………………………………………………………………………………………………………………………………………136
表二十七、Baseline characteristics of pregnant women with LGA neonates and AGA neonates, divided into 5 groups according to gestational age (GA) at delivery. Definitions of LGA and AGA are according to the Taiwan growth standard………………………………………………………………………………………………………………………………………………………………………138
表二十八、 Incidence of pregnancy outcomes in pregnant women with LGA or AGA neonates, divided into 5 groups according to gestational age (GA) at delivery. Definitions of LGA and AGA are according to the Taiwan growth standard………………………………………………………………………………………………………………………………………………………………………140
表二十九、Crude odds ratios (95% confidence intervals) for pregnancy outcomes of pregnant women with LGA neonates, compared to pregnant women with AGA neonates, divided into 5 groups according to gestational age (GA) at delivery. Definitions of LGA and AGA are according to the Taiwan growth standard………………………………………………………………………………………………………………………………………………………………………142
表三十、Adjusted odds ratios (95% confidence intervals) for pregnancy outcomes of pregnant women with LGA neonates, compared to pregnant women with AGA neonates, divided into 5 groups according to gestational age (GA) at delivery. Definitions of LGA and AGA are according to the Taiwan growth standard………………………………………………………………………………………………………………………………………………………………………144
表三十一、Characteristics of singleton newborns with gestational age of 22-42 weeks in Taiwan between 2008 and 2017…………………………………………………………………………………146
表三十二、Raw birth weight percentiles for each completed week of gestation in male singleton births in Taiwan between 2008 and 2017………………………………………147
表三十三、Raw birth weight percentiles for each completed week of gestation in female singleton births in Taiwan between 2008 and 2017…………………………………148
表三十四、Birth weight percentiles based on the smoothed curves for each completed week of gestation in male and female singleton births in Taiwan between 2008 and 2017 by the 4253H smoothing method……………………………………………………149
表三十五、Comparisons of the characteristics of different birth weight reference studies………………………………………………………………………………………………………………………………………………151
 
圖 次
圖一、Protocol for pre-existing diabetes screening, gestational diabetes mellitus screening, glucose monitoring, and ultrasonography in the early screening group and the standard screening group……………………………………………………………152
圖二、The flow diagram of the trial…………………………………………………………………………………………………153
圖三、(A) Changes in maternal body weight during pregnancy and after delivery and changes in (B) biparietal diameter, (C) femoral length, (D) head circumference, (E) abdominal circumference, and (F) estimated fetal weight during pregnancy in fetuses in the standard screening group (solid circle) and the early screening group (solid square) in the intention-to-treat population…………………………………………………………………………………………………………………………………………………154
圖四、(A) Changes in maternal body weight during pregnancy and after delivery and changes in (B) biparietal diameter, (C) femur length, (D) head circumference, (E) abdominal circumference, and (F) estimated fetal weight during pregnancy in fetuses born by pregnant women without GDM in the standard screening group (solid circle), fetuses born by pregnant women without GDM in the early screening group (solid square), fetuses born by pregnant women with GDM in the standard screening group (hollow circle), and fetuses born by pregnant women with GDM in the early screening group (hollow square) in the intention-to-treat population…………………………………………………155
圖五、The placental expression of (A) ANGPTL4 and (B) ER stress marker CHOP in obese pregnant women and women with normal BMI. Treatment of palmitic acid induced the (C) mRNA and (D) protein expression of ANGPTL4 in 3A-sub-E trophoblast cells………………………………………………………………………………………………………………………………………………157
圖六、The protein expression of ANGPTL4 in the placenta of obese women and women with normal BMI was determined by IHC…………………………………………………………………………158
圖七、ANGPTL4 overexpression promotes ER stress, which stimulates the expression of growth hormone-variant (GH2) in 3A-sub-E trophoblast cells………………………………………………………………………………………………………………………………………………………………………………159
圖八、Overexpression of ANGPTL4 does not induce inflammation in trophoblasts……………………………………………………………………………………………………………………………………………………………161
圖九、ANGPTL4 inhibits insulin signaling and glucose uptake in L6 skeletal muscle cells through EGF receptor and ERK 1/2 pathways……………………………………………162
圖十、Plasma ANGPTL4 increases during pregnancy, and plasma ANGPTL4 in the first trimester can predict the development of GDM………………………………………………………164
圖十一、The schematic diagram of the mechanisms linking obesity, ANGPTL4, and GDM…………………………………………………………………………………………………………………………………………………………………………165
圖十二、Flowchart depicting enrollment of the participants in the study. Definitions of LGA and AGA are according to the WHO growth standard…………166
圖十三、Flowchart depicting enrollment of the participants in the study. Definitions of LGA and AGA are according to the Taiwan growth standard…167
圖十四、Flowchart of study sample………………………………………………………………………………………………………168
圖十五、Smoothed and raw birth weight percentile curves (10th, 50th and 90th) for gestational ages 22 to 44 weeks in male (left) and female (right) singleton births in Taiwan between 2008 and 2017……………………………………………………………169
圖十六、Smoothed birth weight percentile curves for each completed week of gestation in male (upper) and female (lower) singleton births in Taiwan between 2008 and 2017……………………………………………………………………………………………………………………………………170
圖十七、Comparisons of the birth weight standard curves at the 10th and 90th percentiles by gestational week according to the Taiwan fetal growth chart, the WHO fetal growth chart, and the Fenton growth chart in male (upper) and female (lower) neonates………………………………………………………………………………………………………………………………171
-
dc.language.isozh_TW-
dc.subject胰島素阻抗zh_TW
dc.subject胰島素訊息傳遞zh_TW
dc.subject大於胎齡zh_TW
dc.subject周產期後果zh_TW
dc.subject早產兒zh_TW
dc.subject低出生體重zh_TW
dc.subject妊娠糖尿病zh_TW
dc.subject出生體重曲線圖zh_TW
dc.subject內質網壓力zh_TW
dc.subject胎盤荷爾蒙zh_TW
dc.subjectANGPTL4zh_TW
dc.subject懷孕結果zh_TW
dc.subject早期篩檢及介入zh_TW
dc.subjectlow birth weighten
dc.subjectgestational diabetes mellitusen
dc.subjectearly screening and interventionen
dc.subjectpregnancy outcomesen
dc.subjectANGPTL4en
dc.subjectplacental hormonesen
dc.subjectER stressen
dc.subjectinsulin resistanceen
dc.subjectinsulin signalingen
dc.subjectlarge for gestational ageen
dc.subjectperinatal outcomesen
dc.subjectprematurityen
dc.subjectbirth weight charten
dc.title妊娠糖尿病的早期篩檢、預測及病理生理機轉: 來自基礎及臨床研究的新證據zh_TW
dc.titleEarly Screening, Prediction and Pathophysiology of Gestational Diabetes Mellitus: new evidence from bench and clinical studiesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.coadvisor王淑慧zh_TW
dc.contributor.coadvisorShu-Huei Wangen
dc.contributor.oralexamcommittee楊偉勛;李中一;許志成;歐弘毅zh_TW
dc.contributor.oralexamcommitteeWei-Shiung Yang;Chung-Yi Li;Chih-Cheng Hsu;Horng-Yih Ouen
dc.subject.keyword妊娠糖尿病,早期篩檢及介入,懷孕結果,ANGPTL4,胎盤荷爾蒙,內質網壓力,胰島素阻抗,胰島素訊息傳遞,大於胎齡,周產期後果,早產兒,低出生體重,出生體重曲線圖,zh_TW
dc.subject.keywordgestational diabetes mellitus,early screening and intervention,pregnancy outcomes,ANGPTL4,placental hormones,ER stress,insulin resistance,insulin signaling,large for gestational age,perinatal outcomes,prematurity,low birth weight,birth weight chart,en
dc.relation.page171-
dc.identifier.doi10.6342/NTU202503498-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-04-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床醫學研究所-
dc.date.embargo-lift2025-09-17-
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved