請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99576完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳晉興 | zh_TW |
| dc.contributor.advisor | Jin-Shing Chen | en |
| dc.contributor.author | 洪琬婷 | zh_TW |
| dc.contributor.author | Wan-Ting Hung | en |
| dc.date.accessioned | 2025-09-16T16:10:09Z | - |
| dc.date.available | 2025-09-17 | - |
| dc.date.copyright | 2025-09-16 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-29 | - |
| dc.identifier.citation | 1. Soriano L, Khalid T, Whelan D, O’Huallachain N, Redmond KC, O’Brien FJ, et al. Development and clinical translation of tubular constructs for tracheal tissue engineering: a review. European Respir Rev. 2021;30(162):210154.
2. Abouarab AA, Elsayed HH, Elkhayat H, Mostafa A, Cleveland DC, Nori AE. Current Solutions for Long-Segment Tracheal Reconstruction. Ann Thorac Cardiovas. 2017;23(2):ra.16-00251. 3. Greaney AM, Niklason LE. The History of Engineered Tracheal Replacements: Interpreting the Past and Guiding the Future. Tissue Eng Part B Rev. 2020;27(4):341–52. 4. Grillo HC. Surgery of the Trachea and Bronchi. B. C. Decker; 2003. 5. Haykal S, Salna M, Waddell TK, Hofer SO. Advances in Tracheal Reconstruction. Plastic Reconstr Surg Global Open. 2014 July;2(7):e178. 6. CLAGETT OT, GRINDLAY JH, MOERSCH HJ. RESECTION OF THE TRACHEA: An Experimental Study and a Report of a Case. Arch Surg. 1948;57(2):253–66. 7. Craig RL, Holmes GW, Shabart EJ. TRACHEAL RESECTION AND REPLACEMENT WITH A PROSTHESIS. J Thorac Surg. 1953;25(4):384–96. 8. Toomes H, Mickisch G, Vogt-Moykopf I. Experiences with prosthetic reconstruction of the trachea and bifurcation. Thorax. 1985;40(1):32. 9. Virk JS, Zhang H, Nouraei R, Sandhu G. Prosthetic reconstruction of the trachea: A historical perspective. World J Clin Cases. 2017;5(4):128–33. 10. Fabre D, Kolb F, Fadel E, Mercier O, Mussot S, Chevalier TL, et al. Successful Tracheal Replacement in Humans Using Autologous Tissues: An 8-Year Experience. Ann Thorac Surg. 2013 Oct;96(4):1146 1155. 11. Kolb F, Simon F, Gaudin R, Thierry B, Mussot S, Dupic L, et al. 4-Year Follow-up in a Child with a Total Autologous Tracheal Replacement. New Engl J Medicine. 2018 Apr 5;378(14):1355 1357. 12. Delaere P, Vranckx J, Verleden G, Leyn PD, Raemdonck DV, Group LTT. Tracheal allotransplantation after withdrawal of immunosuppressive therapy. New Engl J Medicine. 2010 Jan 14;362(2):138 145. 13. Delaere PR, Vranckx JJ, Meulemans J, Poorten VV, Segers K, Raemdonck DV, et al. Learning Curve in Tracheal Allotransplantation. Am J Transplant. 2012;12(9):2538–45. 14. Delaere PR, Hermans R. Tracheal Autotransplantation as a New and Reliable Technique for the Functional Treatment of Advanced Laryngeal Cancer. Laryngoscope. 2003;113(7):1244–51. 15. Hysi I, Wurtz A, Zawadzki C, Kipnis E, Jashari R, Hubert T, et al. Immune tolerance of epithelium-denuded-cryopreserved tracheal allograft. Eur J Cardio-thorac. 2014;45(6):e180–6. 16. Tojo T, Kitamura S, Gojo S, Kushibe K, Nezu K, Taniguchi S. Epithelial regeneration and preservation of tracheal cartilage after tracheal replacement with cryopreserved allograft in the rat. J Thorac Cardiovasc Surg. 1998;116(4):624–7. 17. Genden EM, Miles BA, Harkin TJ, DeMaria S, Kaufman AJ, Mayland E, et al. Single-stage long-segment tracheal transplantation. Am J Transplant. 2021;21(10):3421–7. 18. Genden EM, Harkin T, Laitman BM, Florman SS. Vascularized Tracheal Transplantation: A Twenty Month Follow Up. Laryngoscope. 2023;133(8):1839–45. 19. Paterlini M. Disgraced surgeon Paolo Macchiarini convicted over experimental trachea surgery. BMJ. 2022;377:o1516. 20. Elliott MJ, Coppi PD, Speggiorin S, Roebuck D, Butler CR, Samuel E, et al. Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet. 2012;380(9846):994–1000. 21. Hamilton NJ, Kanani M, Roebuck DJ, Hewitt RJ, Cetto R, Culme‐Seymour EJ, et al. Tissue‐Engineered Tracheal Replacement in a Child: A 4‐Year Follow‐Up Study. Am J Transplant. 2015;15(10):2750–7. 22. Elliott MJ, Butler CR, Varanou‐Jenkins A, Partington L, Carvalho C, Samuel E, et al. Tracheal Replacement Therapy with a Stem Cell‐Seeded Graft: Lessons from Compassionate Use Application of a GMP‐Compliant Tissue‐Engineered Medicine. Stem Cell Transl Med. 2017;6(6):1458–64. 23. Steinke M, Dally I, Friedel G, Walles H, Walles T. Host-Integration of a Tissue-Engineered Airway Patch: Two-Year Follow-Up in a Single Patient. Tissue Eng Part A. 2015;21(3–4):573–9. 24. Park JH, Yoon JK, Lee JB, Shin YM, Lee KW, Bae SW, et al. Experimental Tracheal Replacement Using 3-dimensional Bioprinted Artificial Trachea with Autologous Epithelial Cells and Chondrocytes. Sci Rep-uk. 2019;9(1):2103. 25. Huang L, Wang L, He J, Zhao J, Zhong D, Yang G, et al. Tracheal suspension by using 3-dimensional printed personalized scaffold in a patient with tracheomalacia. J Thorac Dis. 2016 Nov;8(11):3323–8. 26. Morrison RJ, Sengupta S, Flanangan CL, Ohye RG, Hollister SJ, Green GE. Treatment of Severe Acquired Tracheomalacia With a Patient-Specific, 3D-Printed, Permanent Tracheal Splint. Jama Otolaryngology Head Neck Surg. 2017 Jan 26; 27. She Y, Fan Z, Wang L, Li Y, Sun W, Tang H, et al. 3D Printed Biomimetic PCL Scaffold as Framework Interspersed With Collagen for Long Segment Tracheal Replacement. Front Cell Dev Biol. 2021;9:629796. 28. Hsieh CT, Liao CY, Dai NT, Tseng CS, Yen BL, Hsu S hui. 3D printing of tubular scaffolds with elasticity and complex structure from multiple waterborne polyurethanes for tracheal tissue engineering. Appl Mater Today. 2018;12:330–41. 29. Lin W, Tang H, Cao R, Chen J, Wang L, She Y, et al. 3D‐printed Engineered Trachea Functionalized by Diverse Extracellular Matrix Particles. Adv Healthc Mater. 2025;e2500124. 30. Morrison RJ, Hollister SJ, Niedner MF, Mahani MG, Park AH, Mehta DK, et al. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci Transl Med. 2015;7(285):285ra64-285ra64. 31. PRESSMAN J, SIMON MB. Observations upon the experimental repair of the trachea using autogenous aorta and polyethylene tubes. Surgery, Gynecology & Obstetrics. 1958;106(1):56–62. 32. PRESSMAN JJ, SIMON MB. Tracheal stretching and metaplasia of the tracheal rings from cartilage to bone following the use of aortic homografts. Am Surg. 1959;25:850–6. 33. Martinod E, Seguin A, Radu DM, Boddaert G, Chouahnia K, Fialaire-Legendre A, et al. Airway transplantation: a challenge for regenerative medicine. Eur J Med Res. 2013;18(1):25. 34. Martinod E, Zakine G, Fornes P, Zegdi R, d’Audiffret A, Aupecle B, et al. [Metaplasia of aortic tissue into tracheal tissue. Surgical perspectives]. Comptes rendus de l’Academie des sciences Serie III, Sciences de la vie [Internet]. 2000 May;323(5):455 460. Available from: https://www.ncbi.nlm.nih.gov/pubmed/10879293 35. Martinod E, Seguin A, Pfeuty K, Fornes P, Kambouchner M, Azorin JF, et al. Long-term evaluation of the replacement of the trachea with an autologous aortic graft. Ann Thorac Surg. 2003;75(5):1572–8. 36. Azorin JF, Bertin F, Martinod E, Laskar M. Tracheal replacement with an aortic autograft. Eur J Cardio-thorac. 2006;29(2):261–3. 37. Martinod E, Seguin A, Holder-Espinasse M, Kambouchner M, Duterque-Coquillaud M, Azorin JF, et al. Tracheal Regeneration Following Tracheal Replacement With an Allogenic Aorta. Ann Thorac Surg. 2005 Mar;79(3):942–8. 38. Jaillard S, Holder-Espinasse M, Hubert T, Copin MC, Duterque-Coquillaud M, Wurtz A, et al. Tracheal Replacement by Allogenic Aorta in the Pig. Chest. 2006;130(5):1397–404. 39. Makris D, Holder-Espinasse M, Wurtz A, Seguin A, Hubert T, Jaillard S, et al. Tracheal Replacement With Cryopreserved Allogenic Aorta. Chest. 2010;137(1):60–7. 40. Wurtz A, Porte H, Conti M, Desbordes J, Copin MC, Azorin J, et al. Tracheal Replacement with Aortic Allografts. New Engl J Medicine. 2006 Nov 2;355(18):1938 1940. 41. Wurtz A, Porte H, Conti M, Dusson C, Desbordes J, Copin MC, et al. Surgical technique and results of tracheal and carinal replacement with aortic allografts for salivary gland–type carcinoma. J Thorac Cardiovasc Surg. 2010 Aug;140(2):387-393.e2. 42. Radu DM, Seguin A, Bruneval P, Legendre AF, Carpentier A, Martinod E. Bronchial replacement with arterial allografts. Ann Thorac Surg. 2010;90(1):252–8. 43. Martinod E, Radu DM, Chouahnia K, Seguin A, Fialaire-Legendre A, Brillet PY, et al. Human Transplantation of a Biologic Airway Substitute in Conservative Lung Cancer Surgery. Ann Thorac Surg. 2011 Mar;91(3):837–42. 44. Martinod E, Paquet J, Dutau H, Radu DM, Bensidhoum M, Abad S, et al. In Vivo Tissue Engineering of Human Airways. Ann Thorac Surg. 2016 Oct 2;103(5):1631 1640. 45. Martinod E, Chouahnia K, Radu DM, Joudiou P, Uzunhan Y, Bensidhoum M, et al. Feasibility of Bioengineered Tracheal and Bronchial Reconstruction Using Stented Aortic Matrices. JAMA. 2018;319(21):2212. 46. Martinod E, Radu DM, Onorati I, Portela AMS, Peretti M, Guiraudet P, et al. Airway replacement using stented aortic matrices: Long‐term follow‐up and results of the TRITON‐01 study in 35 adult patients. Am J Transplant. 2022;22(12):2961–70. 47. Martinod E, Radu DM, Onorati I, Chapalain X, Portela AMS, Peretti M, et al. Tracheobronchial Replacement. JAMA Surg. 2025;160(8). 48. Hung WT, Liao HC, Hsu HH, Chen JS. Stented cryopreserved aortic allograft for reconstruction of long-segment post-tuberculosis tracheal stenosis. J Formos Méd Assoc. 2024; 49. Lu CW, Liao HC, Tsou KC, Hung WT, Huang PM, Hsu HH, et al. Cryopreserved Aortic Graft Patch Repair of Traumatic Tracheal Rupture Defect: A Case Report. JTCVS Tech. 2024; 50. Seguin A, Baccari S, Holder-Espinasse M, Bruneval P, Carpentier A, Taylor DA, et al. Tracheal regeneration: Evidence of bone marrow mesenchymal stem cell involvement. J Thorac Cardiovasc Surg [Internet]. 2013 May 1;145(5):1297 1304.e2. 51. Standardization IO for. ISO 10993-6:2016(En). Biological Evaluation of Medical Devices — Annex E: Examples of evaluation of local biological effects after implantation [Internet]. 2016. Available from: https://www.iso.org/ obp/ui#iso:std:iso:10993:-6:ed-3:v1:en 52. VAŠÍČEK D, VAŠÍČKOVÁ K, PARKÁNYI V, ONDRUŠKA Ľ. Noninvasive PCR sexing of neonatal rabbits selected for islet cell culture. Slovak Journal of Animal Science. 2011 Mar 31;44(2):43–7. 53. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–72. 54. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13(9):731–40. 55. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. 56. Okuda S, Watanabe Y, Moriya Y, Kawano S, Yamamoto T, Matsumoto M, et al. jPOSTrepo: an international standard data repository for proteomes. Nucleic Acids Res. 2017;45(D1):D1107–11. 57. Williams R, Khan IM, Richardson K, Nelson L, McCarthy HE, Analbelsi T, et al. Identification and Clonal Characterisation of a Progenitor Cell Sub-Population in Normal Human Articular Cartilage. PLoS ONE. 2010;5(10):e13246. 58. Vinod E, Johnson NN, Kumar S, Amirtham SM, James JV, Livingston A, et al. Migratory chondroprogenitors retain superior intrinsic chondrogenic potential for regenerative cartilage repair as compared to human fibronectin derived chondroprogenitors. Sci Rep-uk. 2021;11(1):23685. 59. Solomon M, DeLay M, Reynaud D. Phenotypic Analysis of the Mouse Hematopoietic Hierarchy Using Spectral Cytometry: From Stem Cell Subsets to Early Progenitor Compartments. Cytom Part A. 2020;97(10):1057–65. 60. Svantesson C, John J, Taskar V, Evander E, Jonson B. Respiratory mechanics in rabbits ventilated with different tidal volumes. Respir Physiol. 1996;106(3):307–16. 61. Kelly M, Macdougall K, Olabisi O, McGuire N. In vivo response to polypropylene following implantation in animal models: a review of biocompatibility. Int Urogynecology J. 2017;28(2):171–80. 62. Kobayashi S, Takebe T, Inui M, Iwai S, Kan H, Zheng YW, et al. Reconstruction of human elastic cartilage by a CD44+ CD90+ stem cell in the ear perichondrium. Proc National Acad Sci. 2011;108(35):14479–84. 63. Gvaramia D, Kern J, Jakob Y, Zenobi-Wong M, Rotter N. Regenerative Potential of Perichondrium: A Tissue Engineering Perspective. Tissue Eng Part B Rev. 2022;28(3):531–41. 64. Yoon MH, Kim JH, Oak CH, Jang TW, Jung MH, Chun BK, et al. Tracheal cartilage regeneration by progenitor cells derived from the perichondrium. Tissue Eng Regen Med. 2013;10(5):286–92. 65. Dupont A, Corseaux D, Dekeyzer O, Drobecq H, Guihot A, Susen S, et al. The proteome and secretome of human arterial smooth muscle cells. PROTEOMICS. 2005;5(2):585–96. 66. Tang DD, Anfinogenova Y. Physiologic Properties and Regulation of the Actin Cytoskeleton in Vascular Smooth Muscle. J Cardiovasc Pharmacol Ther. 2008;13(2):130–40. 67. Johnson RT, Solanki R, Warren DT. Mechanical programming of arterial smooth muscle cells in health and ageing. Biophys Rev. 2021;13(5):757–68. 68. Crotta S, Villa M, Major J, Finsterbusch K, Llorian M, Carmeliet P, et al. Repair of airway epithelia requires metabolic rewiring towards fatty acid oxidation. Nat Commun. 2023;14(1):721. 69. Lin C, Ying C, Xu Y, Zou Y, Chen R, Xu K, et al. Synergizing adaptive immunity and regenerative signals to enhance osteochondral defects repair. Bioact Mater. 2025;46:242–58. 70. Michigami T. Current Understanding on the Molecular Basis of Chondrogenesis. Clin Pediatric Endocrinol. 2014;23(1):1–8. 71. Chen H, Tan XN, Hu S, Liu RQ, Peng LH, Li YM, et al. Molecular Mechanisms of Chondrocyte Proliferation and Differentiation. Frontiers Cell Dev Biology. 2021;9:664168. 72. Li J, Dong S. The Signaling Pathways Involved in Chondrocyte Differentiation and Hypertrophic Differentiation. Stem Cells Int. 2016;2016:2470351. 73. Goldring MB, Tsuchimochi K, Ijiri K. The control of chondrogenesis. J Cell Biochem. 2006;97(1):33–44. 74. Danišovič Ľ, Varga I, Polák Š. Growth factors and chondrogenic differentiation of mesenchymal stem cells. Tissue Cell. 2012;44(2):69–73. 75. Fortier LA, Barker JU, Strauss EJ, McCarrel TM, Cole BJ. The Role of Growth Factors in Cartilage Repair. Clin Orthop Relat Res. 2011;469(10):2706–15. 76. Zhang Y, Chai Z, Yu C, Wu Y, Ou Y, Wei J. The role of growth factor in the repair of articular cartilage. Aging Sci. 2022, 10,1000274. 77. Mendelson A, Frank E, Allred C, Jones E, Chen M, Zhao W, et al. Chondrogenesis by chemotactic homing of synovium, bone marrow, and adipose stem cells in vitro. FASEB J. 2011;25(10):3496–504. 78. Huang B, Li P, Chen M, Peng L, Luo X, Tian G, et al. Hydrogel composite scaffolds achieve recruitment and chondrogenesis in cartilage tissue engineering applications. J Nanobiotechnology. 2022;20(1):25. 79. Lu Y, Wang Y, Zhang H, Tang Z, Cui X, Li X, et al. Solubilized Cartilage ECM Facilitates the Recruitment and Chondrogenesis of Endogenous BMSCs in Collagen Scaffolds for Enhancing Microfracture Treatment. ACS Appl Mater Interfaces. 2021;13(21):24553–64. 80. Seol D, McCabe DJ, Choe H, Zheng H, Yu Y, Jang K, et al. Chondrogenic progenitor cells respond to cartilage injury. Arthritis Rheum. 2012;64(11):3626–37. 81. Ellman MB, Yan D, Ahmadinia K, Chen D, An HS, Im HJ. Fibroblast growth factor control of cartilage homeostasis. J Cell Biochem. 2013;114(4):735–42. 82. Pizzute T, Li J, Zhang Y, Davis ME, Pei M. Fibroblast Growth Factor Ligand Dependent Proliferation and Chondrogenic Differentiation of Synovium-Derived Stem Cells and Concomitant Adaptation of Wnt/Mitogen-Activated Protein Kinase Signals. Tissue Eng Part A. 2016;22(15–16):1036–46. 83. Campbell DD, Pei M. Surface Markers for Chondrogenic Determination: A Highlight of Synovium-Derived Stem Cells. Cells. 2012;1(4):1107–20. 84. Jessop ZM, Manivannan S, Zhang Y, Thornton CA, Narayan R, Whitaker IS. Tissue specific stem/progenitor cells for cartilage tissue engineering: A systematic review of the literature. Appl Phys Rev. 2019;6(3):031301. 85. Vogt PR, Segesser LK von, Goffin Y, Niederhäuser U, Genoni M, Künzli A, et al. Eradication of Aortic Infections With the Use of Cryopreserved Arterial Homografts. Ann Thorac Surg. 1996;62(3):640–5. 86. Vogt PR, Brunner-LaRocca HP, Lachat M, Ruef C, Turina MI. Technical details with the use of cryopreserved arterial allografts for aortic infection: Influence on early and midterm mortality. J Vasc Surg. 2002;35(1):80–6. 87. Gabriel M, Pukacki F, Dzieciuchowicz Ł, Oszkinis G, Checiński P. Cryopreserved arterial allografts in the treatment of prosthetic graft infections. Eur J Vasc Endovasc Surg. 2004;27(6):590–6. 88. Jashari R, Hoeck BV, Ngakam R, Goffin Y, Fan Y. Banking of cryopreserved arterial allografts in Europe: 20 years of operation in the European Homograft Bank (EHB) in Brussels. Cell Tissue Bank. 2013;14(4):589–99. 89. González-Gay M, López-Martínez R, Busto-Suárez S, Riedemann-Wistuba ME, Menéndez-Herrero MÁ, Álvarez-Marcos F, et al. Immunological Aspects Involved in the Degeneration of Cryopreserved Arterial Allografts. Front Surg. 2020;7:616654. 90. Rodríguez M, Pascual G, Pérez-Köhler B, Cifuentes A, Garcia-Honduvilla N, Bellón JM, et al. Immune response to the long-term grafting of cryopreserved small-diameter arterial allografts. Histol Histopathol. 2012;27(7):873–84. 91. Lupinetti FM, Tsai TT, Kneebone JM, Bove EL. Effect of cryopreservation on the presence of endothelial cells on human valve allografts. J Thorac Cardiovasc Surg. 1993;106(5):912–7. 92. Mathieu P, Roussel JC, Dagenais F, Anegon I. Cartilaginous metaplasia and calcification in aortic allograft is associated with transforming growth factor β1 expression. J Thorac Cardiovasc Surg. 2003;126(5):1449–54. 93. Qiao JH, Mertens RB, Fishbein MC, Geller SA. Cartilaginous metaplasia in calcified diabetic peripheral vascular disease: Morphologic evidence of enchondral ossification. Hum Pathol. 2003;34(4):402–7. 94. Chen PY, Qin L, Li G, Malagon-Lopez J, Wang Z, Bergaya S, et al. Smooth Muscle Cell Reprogramming in Aortic Aneurysms. Cell Stem Cell. 2020;26(4):542-557.e11. 95. Seguin A, Radu D, Holder-Espinasse M, Bruneval P, Fialaire-Legendre A, Duterque-Coquillaud M, et al. Tracheal Replacement With Cryopreserved, Decellularized, or Glutaraldehyde-Treated Aortic Allografts. Ann Thorac Surg. 2009 Mar;87(3):861–7. 96. Bos PK, Osch GJVM van, Frenz DA, Verhaar JAN, Verwoerd-Verhoef HL. Growth factor expression in cartilage wound healing: temporal and spatial immunolocalization in a rabbit auricular cartilage wound model. Osteoarthr Cartilage. 2001;9(4):382–9. 97. SOHN SA, OHLSEN L. GROWTH OF CARTILAGE FROM A FREE PERICHONDRIAL GRAFT PLACED ACROSS A DEFECT IN A RABBIT’S TRACHEA. Plast Reconstr Surg. 1974;53(1):55–60. 98. Engkvist O, Johansson SH, Ohlsén L, Skoog T. Reconstruction of Articular Cartilage Using Autologous Perichondrial Grafts: A Preliminary Report. Scand J Plast Reconstr Surg. 1975;9(3):203–6. 99. Ohlsén L, Nordin U. Tracheal Reconstruction with Perichondrial Grafts: An Experimental Study. Scand J Plast Reconstr Surg. 1976;10(2):135–45. 100. OHLSÉN L. CARTILAGE REGENERATION FROM PERICHONDRIUM. Plast Reconstr Surg. 1978;62(4):507–13. 101. Engkvist O. Reconstruction of Patellar Articular Cartilage with Free Autologous Perichondrial Grafts: An Experimental Study in Dogs. Scand J Plast Reconstr Surg. 1979;13(3):361–9. 102. Hartig GK, Esclamado RM, Telian SA. Chondrogenesis by Free and Vascularized Rabbit Auricular Perichondrium. Ann Otol, Rhinol Laryngol. 1994;103(11):901–4. 103. Clevens RA, Esclamado R, Naficy S. Vascularized auricular perichondrium in airway reconstruction: The effects of stenting with and without a mucosal graft. Laryngoscope. 1995;105(10):1043–8. 104. Naficy S, Esclamado RM, Clevens RA. Reconstruction of the Rabbit Trachea with Vascularized Auricular Perichondrium. Ann Otol, Rhinol Laryngol. 1996;105(5):356–62. 105. Skoog T, Ohlséan L, Sohn SA. Perichondrial Potential for Cartilagenous Regeneration. Scand J Plast Reconstr Surg. 1972;6(2):123–5. 106. Yotsuyanagi T, Urushidate S, Watanabe M, Sawada Y. Reconstruction of a Three-Dimensional Structure Using Cartilage Regenerated from the Perichondrium of Rabbits. Plast Reconstr Surg. 1999;103(4):1120–3. 107. Zang M, Zhang Q, Davis G, Huang G, Jaffari M, Ríos CN, et al. Perichondrium directed cartilage formation in silk fibroin and chitosan blend scaffolds for tracheal transplantation. Acta Biomater. 2011;7(9):3422–31. 108. Kon M, Hooff A van den. Cartilage Tube Formation by Perichondrium. Plast Reconstr Surg. 1983;72(6):791–5. 109. Solchaga LA, Penick K, Porter JD, Goldberg VM, Caplan AI, Welter JF. FGF‐2 enhances the mitotic and chondrogenic potentials of human adult bone marrow‐derived mesenchymal stem cells. J Cell Physiol. 2005;203(2):398–409. 110. Cheng T, Yang C, Weber N, Kim HT, Kuo AC. Fibroblast growth factor 2 enhances the kinetics of mesenchymal stem cell chondrogenesis. Biochem Biophys Res Commun. 2012;426(4):544–50. 111. Solchaga LA, Penick K, Goldberg VM, Caplan AI, Welter JF. Fibroblast Growth Factor-2 Enhances Proliferation and Delays Loss of Chondrogenic Potential in Human Adult Bone-Marrow-Derived Mesenchymal Stem Cells. Tissue Eng Part A. 2010;16(3):1009–19. 112. Handorf AM, Li WJ. Fibroblast Growth Factor-2 Primes Human Mesenchymal Stem Cells for Enhanced Chondrogenesis. PLoS ONE. 2011;6(7):e22887. 113. Igai H, Yamamoto Y, Chang SS, Yamamoto M, Tabata Y, Yokomise H. Tracheal cartilage regeneration by slow release of basic fibroblast growth factor from a gelatin sponge. J Thorac Cardiovasc Surg. 2007;134(1):170–5. 114. Yokote F, Yamauchi Y, Komura H, Tanuma T, Sakao Y, Kawamura M, et al. A novel method of tracheal anastomosis healing using a single submucosal injection of basic fibroblast growth factor: initial report. Eur J Cardio-Thorac Surg. 2021;61(4):917–24. 115. Salassa JR, Pearson BW, Payne WS. Gross and Microscopical Blood Supply of the Trachea. Ann Thorac Surg. 1977;24(2):100–7. 116. Kraan PM van der, Buma P, Kuppevelt T van, Berg WB van D. Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthr Cartil. 2002;10(8):631–7. 117. Shimizu M, Minakuchi K, Kaji S, Koga J. Chondrocyte Migration to Fibronectin, Type I Collagen, and Type II Collagen. Cell Struct Funct. 1997;22(3):309–15. 118. Watt FM, Huck WTS. Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol. 2013;14(8):467–73. 119. Strecanska M, Danisovic L, Ziaran S, Cehakova M. The Role of Extracellular Matrix and Hydrogels in Mesenchymal Stem Cell Chondrogenesis and Cartilage Regeneration. Life. 2022;12(12):2066. 120. Sun Y, Yan L, Chen S, Pei M. Functionality of decellularized matrix in cartilage regeneration: A comparison of tissue versus cell sources. Acta Biomater. 2018;74:56–73. 121. Li J, Narayanan K, Zhang Y, Hill RC, He F, Hansen KC, et al. Role of lineage-specific matrix in stem cell chondrogenesis. Biomaterials. 2020;231:119681. 122. Tao T, Li Y, Gui C, Ma Y, Ge Y, Dai H, et al. Fibronectin Enhances Cartilage Repair by Activating Progenitor Cells Through Integrin α5β1 Receptor. Tissue Eng Part A. 2018;24(13–14):1112–24. 123. Betre H, Setton LA, Meyer DE, Chilkoti A. Characterization of a Genetically Engineered Elastin-like Polypeptide for Cartilaginous Tissue Repair. Biomacromolecules. 2002;3(5):910–6. 124. Betre H, Ong SR, Guilak F, Chilkoti A, Fermor B, Setton LA. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials. 2006;27(1):91–9. 125. Annabi N, Fathi A, Mithieux SM, Martens P, Weiss AS, Dehghani F. The effect of elastin on chondrocyte adhesion and proliferation on poly (ɛ-caprolactone)/elastin composites. Biomaterials. 2011;32(6):1517–25. 126. Daamen WF, Veerkamp JH, Hest JCM van, Kuppevelt TH van. Elastin as a biomaterial for tissue engineering. Biomaterials. 2007;28(30):4378–98. 127. Igai H, Chang SS, Gotoh M, Yamamoto Y, Yamamoto M, Tabata Y, et al. Widespread and Early Tracheal Cartilage Regeneration by Synchronous Slow Release of b-FGF and BMP-2. Asaio J. 2009;55(3):266–70. 128. Igai H, Chang SS, Gotoh M, Yamamoto Y, Misaki N, Okamoto T, et al. Regeneration of Canine Tracheal Cartilage by Slow Release of Basic Fibroblast Growth Factor from Gelatin Sponge. Asaio J. 2006;52(1):86–91. 129. Heng WL, Madhavan K, Wee P, Seck T, Lim YP, Lim CH. Banking of cryopreserved iliac artery and vein homografts: clinical uses in transplantation. Cell Tissue Bank. 2015;16(2):235–42. 130. Špaček M, Měřička P, Janoušek L, Štádler P, Adamec M, Vlachovský R, et al. Current vascular allograft procurement, cryopreservation and transplantation techniques in the Czech Republic. Adv Clin Exp Med. 2019;28(4):529–34. 131. Hwang S, Bae JH, Kim IO, Hong JJ. Current vascular allograft procurement, cryopreservation and transplantation techniques in the Asan Medical Center Tissue Bank. Ann Liver Transplant. 2021;1(1):79–85. 132. Capella-Monsonís H, Crum RJ, Hussey GS, Badylak SF. Advances, challenges, and future directions in the clinical translation of ECM biomaterials for regenerative medicine applications. Adv Drug Deliv Rev. 2024;211:115347. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99576 | - |
| dc.description.abstract | 氣管原生軟骨具有有限的再生能力,使得尋找適合的氣管修補生物材料成為持續的挑戰。本研究探討未經去細胞化之冷凍保存主動脈同種異體移植物作為氣管軟骨再生支架的角色。原本應用於感染性主動脈重建的冷凍保存異體主動脈,具有作為大型動脈的特徵,包括豐富的彈性纖維與平滑肌細胞,並在體外展現出良好的軟骨細胞生物相容性。氣管-冷凍保存異體主動脈修補構造展現出與原生氣管相近的抗拉性能,且能耐受正常呼氣壓力。在兔子的氣管缺損修補模型中,冷凍保存異體主動脈僅引發輕至中度的免疫反應,且反應隨時間逐漸消退。植入一個月內,即可觀察到新生軟骨、血管新生及上皮再生。於後續十二個月中,原有的主動脈支架逐步降解,並由新生的軟骨組織——來源於受贈者的軟骨前驅細胞——取代。蛋白質體分析顯示,冷凍保存異體主動脈富含細胞骨架、細胞黏附、遷移及細胞外基質相關蛋白質。在富含的生長因子中,成纖維細胞生長因子2被確認為促進細胞趨化與軟骨分化的關鍵因子之一;此外,來自冷凍保存異體主動脈的細胞外基質亦展現對軟骨前驅細胞與軟骨細胞的趨觸效應。綜合本研究結果,冷凍保存異體主動脈不僅作為結構支架,同時也作為生物活性平台,透過協同的生物相容性、生長因子訊號傳導及細胞外基質支持,促進氣管軟骨再生。 | zh_TW |
| dc.description.abstract | Native tracheal cartilage exhibits limited regenerative capacity, making the search for suitable biomaterials for tracheal repair a persistent challenge. In this study, a non-decellularized cryopreserved aortic allograft (CAo) is investigated as a scaffold for tracheal cartilage regeneration. Originally used to reconstruct infected aortas, CAo retains key features of a large artery—abundant elastic fibers and smooth muscle cells—and demonstrates favorable in vitro biocompatibility with chondrocytes. A trachea–CAo patch construct maintains tensile properties comparable to native trachea and tolerates normal expiratory forces. In a rabbit patch-defect model, CAo elicits only a mild-to-moderate immune response that gradually subsides. Within one month of implantation, robust neocartilage formation is observed, along with angiogenesis and epithelial regeneration. Over the next 12 months, the original aortic scaffold progressively degrades, while newly formed cartilage—originating from recipient perichondrial chondroprogenitor cells—replaces it. Proteomic analyses show that CAo is enriched in cytoskeletal, adhesion, cell adhesion, migration, and extracellular matrix (ECM)–related proteins. Among the enriched growth factors, fibroblast growth factor 2 (FGF-2) was identified as a key mediator that promotes both chemotaxis and chondrogenic differentiation. In addition, the ECM derived from CAo supports haptotactic migration of chondroprogenitor cells and chondrocytes. These findings indicate that CAo serves as both a structural and biological scaffold, activating tracheal cartilage regeneration through synergistic biocompatibility, growth factor signaling, and ECM support. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:10:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-16T16:10:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌 謝 ii 中 文 摘 要 iii Abstract iv Table of Contents v List of Figures ix List of Tables x Chapter 1: Introduction 1 1.1. Clinical challenges in tracheal reconstruction 1 1.2. Current strategies for tracheal reconstruction and their limitations 1 1.3. Emergence of aortic graft in tracheal reconstruction 3 1.4. Clinical Experience of CAo-Based Tracheal Reconstruction at National Taiwan University Hospital 5 1.5. Biological Potential and Challenges of CAo 7 1.6. Research aims and objectives 7 Chapter 2.: Material and Methods 9 2.1. Preparation of cryopreserved aortic allografts (CAo) 9 2.2. Histology Examination 9 2.2.1. Hematoxylin and Eosin (H&E) staining 9 2.2.2. Movat’s pentachrome staining 9 2.2.3. Immunohistochemistry staining 10 2.2.4. Von Kossa staining 11 2.3. Alamar blue assay for aortic tissue metabolic activity 12 2.4. Lactate dehydrogenase (LDH) assay 12 2.5. In vitro aortic tissue culture 12 2.6. Western blot 13 2.7. Primary culture of rabbit tracheal chondrocytes 13 2.8. In vitro biocompatibility test 14 2.9. Mechanical properties 14 2.9.1. Tensile test 14 2.9.2. Blow test of tracheal-CAo patch constructs 15 2.10. Animal experimentation 15 2.11. Laser capture microdissection (LCM), DNA extraction, and PCR analysis 16 2.12. Immunofluorescence (IF) staining for Sox9 and PCNA 17 2.13. Proteomic analysis 17 2.13.1. Protein extraction and digestion 17 2.13.2. LC-MS/MS acquisition 18 2.13.3. Data processing 19 2.13.4. Statistical and bioinformatics analysis 19 2.13.5. Data availability 19 2.14. Primary culture of human airway chondroprogenitor cells (hCPCs) 20 2.14.1. Cell isolation & Fibronectin Adhesion Assay 20 2.14.2. Flow Cytometry of hCPCs 20 2.14.3. Tests of progenitor phenotypic plasticity 21 2.15. Horizontal co-culture 21 2.16. Preparation of CAo-CM 22 2.17. Boyden chamber transwell migration 22 2.18. Haptotaxis assay using decellularized ECM derived from CAo and CTr 23 2.19. Statical analysis 24 Chapter 3: Results 25 3.1. CAo graft characterization 25 3.1.1. Microscopic analyses 25 3.1.2. Metabolic features 25 3.1.3. In vitro biocompatibility with tracheal chondrocyte 26 3.2. Mechanical properties of CAo and trachea-CAo patch constructs 26 3.3. Progressive in vivo cartilage regeneration induced by CAo in tracheal defect repair 27 3.3.1. In vivo biocompatibility 27 3.3.2. Cartilage regeneration and integration 28 3.4. Tracing the origin of regenerated cartilage in CAo scaffolds. 29 3.4.1. Laser capture microdissection and PCR of the neocartilage in gender-mismatch design 29 3.4.2. Evidence of perichondrial involvement in CAo neochondrogenesis 30 3.5. Comparative proteomic analysis of rabbit CAo and tracheal tissues 31 3.6. Validation of effect of FGF-2 released from CAo on chondrogenesis 32 3.7. Validation of haptotactic effect of CAo-derived ECM on chondrocytes and chondroprogenitors 34 Chapter 4: Discussion 36 4.1. Summary of study findings 36 4.2. Distinct tissue remodeling of CAo in tracheal reconstruction compared to vascular replacement 36 4.3. Recipient-derived cell contribution to neocartilage formation in CAo 37 4.4. CAo induces perichondrial chondroprogenitors to initiate chondrogenesis along the scaffold 38 4.5. Proteomic analysis identifies FGF-2 as a key factor driving chondrogenesis within CAo 39 4.6. Angiogenic effects of CAo facilitate tissue regeneration 39 4.7. ECM proteins in CAo promote progenitor adhesion, migration, and matrix deposition 40 4.8. Mechanical limitations of CAo and the evolving rigidity with neocartilage formation 40 4.9. Limitations 41 Chapter 5: Conclusions 42 5.1. Novelty and implication summary 42 5.2. Future perspectives 42 Reference 44 Appendix 55 Appendix 1:Figures 55 Appendix 2:Tables 75 Appendix 3:Related Publications 82 | - |
| dc.language.iso | en | - |
| dc.subject | 氣管 | zh_TW |
| dc.subject | 冷凍保存主動脈 | zh_TW |
| dc.subject | 生物性支架 | zh_TW |
| dc.subject | 軟骨生成 | zh_TW |
| dc.subject | 軟骨膜 | zh_TW |
| dc.subject | 細胞外基質 | zh_TW |
| dc.subject | 成纖維細胞生長因子 | zh_TW |
| dc.subject | extracellular matrices | en |
| dc.subject | chondrogenesis | en |
| dc.subject | biological scaffolds | en |
| dc.subject | tracheae | en |
| dc.subject | cryopreserved aortas | en |
| dc.subject | fibroblast growth factors | en |
| dc.subject | perichondria | en |
| dc.title | 冷凍保存主動脈同種移植物的生物特性及其在氣管軟骨再生中的作用 | zh_TW |
| dc.title | Exploring the Biological Properties of Cryopreserved Aortic Allografts and Their Role in Mediating Tracheal Cartilage Regeneration | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 許文明;楊台鴻 | zh_TW |
| dc.contributor.coadvisor | Wen-Ming Hsu;Tai-Horng Young | en |
| dc.contributor.oralexamcommittee | 黃凱文;陳祈玲;黃才旺;蔡昕霖 | zh_TW |
| dc.contributor.oralexamcommittee | Kai-Wen Huang;Chi-Ling Chen;Tsai-Wang Huang;Hsin-Lin Tsai | en |
| dc.subject.keyword | 氣管,冷凍保存主動脈,生物性支架,軟骨生成,軟骨膜,細胞外基質,成纖維細胞生長因子, | zh_TW |
| dc.subject.keyword | tracheae,cryopreserved aortas,biological scaffolds,chondrogenesis,perichondria,extracellular matrices,fibroblast growth factors, | en |
| dc.relation.page | 82 | - |
| dc.identifier.doi | 10.6342/NTU202502844 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-30 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床醫學研究所 | - |
| dc.date.embargo-lift | 2025-09-17 | - |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 4.72 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
