請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99575完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周文堅 | zh_TW |
| dc.contributor.advisor | Wen-Chien Chou | en |
| dc.contributor.author | 姚啟元 | zh_TW |
| dc.contributor.author | Chi-Yuan Yao | en |
| dc.date.accessioned | 2025-09-16T16:09:58Z | - |
| dc.date.available | 2025-09-17 | - |
| dc.date.copyright | 2025-09-16 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-25 | - |
| dc.identifier.citation | 1. Arber DA, Orazi A, Hasserjian RP, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140(11):1200-1228.
2. Takahashi K, Tanaka T. Clonal evolution and hierarchy in myeloid malignancies. Trends Cancer. 2023;9(9):707-715. 3. Papaemmanuil E, Gerstung M, Malcovati L, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122(22):3616-3627; quiz 3699. 4. Ortmann CA, Kent DG, Nangalia J, et al. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med. 2015;372(7):601-612. 5. Grinfeld J, Nangalia J, Baxter EJ, et al. Classification and Personalized Prognosis in Myeloproliferative Neoplasms. N Engl J Med. 2018;379(15):1416-1430. 6. Genovese G, Kähler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477-2487. 7. Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488-2498. 8. Weeks LD, Niroula A, Neuberg D, et al. Prediction of risk for myeloid malignancy in clonal hematopoiesis. NEJM Evid. 2023;2(5). 9. Steensma DP, Bejar R, Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9-16. 10. Jaiswal S, Natarajan P, Silver AJ, et al. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. N Engl J Med. 2017;377(2):111-121. 11. Libby P, Sidlow R, Lin AE, et al. Clonal Hematopoiesis: Crossroads of Aging, Cardiovascular Disease, and Cancer: JACC Review Topic of the Week. J Am Coll Cardiol. 2019;74(4):567-577. 12. Yao CY, Ko TY, Yang LT, et al. Clonal Hematopoiesis Is Associated With Adverse Clinical Outcomes and Left Ventricular Remodeling in Aortic Stenosis. JACC Adv. 2025;4(2):101532. 13. Ogawa S. Genetics of MDS. Blood. 2019;133(10):1049-1059. 14. Bernard E, Hasserjian RP, Greenberg PL, et al. Molecular taxonomy of myelodysplastic syndromes and its clinical implications. Blood. 2024;144(15):1617-1632. 15. Bejar R, Stevenson K, Abdel-Wahab O, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364(26):2496-2506. 16. Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454-2465. 17. Gangat N, Patnaik MM, Tefferi A. Myelodysplastic syndromes: Contemporary review and how we treat. Am J Hematol. 2016;91(1):76-89. 18. Kewan T, Bahaj W, Durmaz A, et al. Validation of the Molecular International Prognostic Scoring System in patients with myelodysplastic syndromes. Blood. 2023. 19. Sauta E, Robin M, Bersanelli M, et al. Real-World Validation of Molecular International Prognostic Scoring System for Myelodysplastic Syndromes. J Clin Oncol. 2023:Jco2201784. 20. Pellagatti A, Benner A, Mills KI, et al. Identification of gene expression-based prognostic markers in the hematopoietic stem cells of patients with myelodysplastic syndromes. J Clin Oncol. 2013;31(28):3557-3564. 21. Garcia JS, Platzbecker U, Odenike O, et al. Efficacy and safety of venetoclax plus azacitidine for patients with treatment-naive high-risk myelodysplastic syndromes. Blood. 2025;145(11):1126-1135. 22. Ley TJ, Miller C, Ding L, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059-2074. 23. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med. 2016;374(23):2209-2221. 24. Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022;36(7):1703-1719. 25. Grimwade D, Hills RK, Moorman AV, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 2010;116(3):354-365. 26. Döhner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. N Engl J Med. 2015;373(12):1136-1152. 27. DiNardo CD, Erba HP, Freeman SD, Wei AH. Acute myeloid leukaemia. Lancet. 2023;401(10393):2073-2086. 28. Bezerra MF, Lima AS, Piqué-Borràs MR, et al. Co-occurrence of DNMT3A, NPM1, FLT3 mutations identifies a subset of acute myeloid leukemia with adverse prognosis. Blood. 2020;135(11):870-875. 29. Parkin B, Ouillette P, Li Y, et al. Clonal evolution and devolution after chemotherapy in adult acute myelogenous leukemia. Blood. 2013;121(2):369-377. 30. Ng SW, Mitchell A, Kennedy JA, et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature. 2016;540(7633):433-437. 31. Medeiros BC, Chan SM, Daver NG, Jonas BA, Pollyea DA. Optimizing survival outcomes with post-remission therapy in acute myeloid leukemia. Am J Hematol. 2019;94(7):803-811. 32. Thol F, Ganser A. Treatment of Relapsed Acute Myeloid Leukemia. Curr Treat Options Oncol. 2020;21(8):66. 33. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298(5600):1912-1934. 34. Cheek S, Zhang H, Grishin NV. Sequence and structure classification of kinases. J Mol Biol. 2002;320(4):855-881. 35. Cheek S, Ginalski K, Zhang H, Grishin NV. A comprehensive update of the sequence and structure classification of kinases. BMC Struct Biol. 2005;5:6. 36. Wilson LJ, Linley A, Hammond DE, et al. New Perspectives, Opportunities, and Challenges in Exploring the Human Protein Kinome. Cancer Res. 2018;78(1):15-29. 37. Lee PY, Yeoh Y, Low TY. A recent update on small-molecule kinase inhibitors for targeted cancer therapy and their therapeutic insights from mass spectrometry-based proteomic analysis. Febs j. 2022. 38. Cohen P, Cross D, Jänne PA. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat Rev Drug Discov. 2021;20(7):551-569. 39. Attwood MM, Fabbro D, Sokolov AV, Knapp S, Schiöth HB. Trends in kinase drug discovery: targets, indications and inhibitor design. Nat Rev Drug Discov. 2021;20(11):839-861. 40. Roskoski R, Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update. Pharmacol Res. 2024;200:107059. 41. Hochhaus A, Larson RA, Guilhot F, et al. Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia. N Engl J Med. 2017;376(10):917-927. 42. Breccia M, Alimena G. The significance of early, major and stable molecular responses in chronic myeloid leukemia in the imatinib era. Crit Rev Oncol Hematol. 2011;79(2):135-143. 43. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674. 44. Megías-Vericat JE, Ballesta-López O, Barragán E, Martínez-Cuadrón D, Montesinos P. Tyrosine kinase inhibitors for acute myeloid leukemia: A step toward disease control? Blood Rev. 2020;44:100675. 45. Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N Engl J Med. 2017;377(5):454-464. 46. Perl AE, Martinelli G, Cortes JE, et al. Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML. N Engl J Med. 2019;381(18):1728-1740. 47. Pratz KW, Cherry M, Altman JK, et al. Gilteritinib in Combination With Induction and Consolidation Chemotherapy and as Maintenance Therapy: A Phase IB Study in Patients With Newly Diagnosed AML. J Clin Oncol. 2023;41(26):4236-4246. 48. Cortes JE, Khaled S, Martinelli G, et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2019;20(7):984-997. 49. Erba HP, Montesinos P, Kim HJ, et al. Quizartinib plus chemotherapy in newly diagnosed patients with FLT3-internal-tandem-duplication-positive acute myeloid leukaemia (QuANTUM-First): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2023;401(10388):1571-1583. 50. Larrosa-Garcia M, Baer MR. FLT3 Inhibitors in Acute Myeloid Leukemia: Current Status and Future Directions. Mol Cancer Ther. 2017;16(6):991-1001. 51. Short NJ, Nguyen D, Ravandi F. Treatment of older adults with FLT3-mutated AML: Emerging paradigms and the role of frontline FLT3 inhibitors. Blood Cancer J. 2023;13(1):142. 52. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-2405. 53. Döhner H, Wei AH, Appelbaum FR, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022;140(12):1345-1377. 54. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923-930. 55. Pellagatti A, Armstrong RN, Steeples V, et al. Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations. Blood. 2018;132(12):1225-1240. 56. Gerstung M, Pellagatti A, Malcovati L, et al. Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes. Nat Commun. 2015;6:5901. 57. Tyner JW, Tognon CE, Bottomly D, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562(7728):526-531. 58. Chou WC, Chou SC, Liu CY, et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood. 2011;118(14):3803-3810. 59. Simons A, Shaffer LG, Hastings RJ. Cytogenetic Nomenclature: Changes in the ISCN 2013 Compared to the 2009 Edition. Cytogenet Genome Res. 2013;141(1):1-6. 60. Tsai CH, Hou HA, Tang JL, et al. Prognostic impacts and dynamic changes of cohesin complex gene mutations in de novo acute myeloid leukemia. Blood Cancer J. 2017;7(12):663. 61. Forbes SA, Beare D, Gunasekaran P, et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015;43(Database issue):D805-811. 62. Landrum MJ, Lee JM, Riley GR, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42(Database issue):D980-985. 63. Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308-311. 64. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;Chapter 7:Unit7.20. 65. Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812-3814. 66. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21. 67. Yang W, Soares J, Greninger P, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41(Database issue):D955-961. 68. Barretina J, Caponigro G, Stransky N, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603-607. 69. Huang Y, Mohanty V, Dede M, et al. Characterizing cancer metabolism from bulk and single-cell RNA-seq data using METAFlux. Nat Commun. 2023;14(1):4883. 70. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. 71. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-15550. 72. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16(5):284-287. 73. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417-425. 74. Yao CY, Lin CC, Wang YH, et al. Kinome expression profiling improves risk stratification and therapeutic targeting in myelodysplastic syndromes. Blood Adv. 2024;8(10):2442-2454. 75. Eid S, Turk S, Volkamer A, Rippmann F, Fulle S. KinMap: a web-based tool for interactive navigation through human kinome data. BMC Bioinformatics. 2017;18(1):16. 76. Will B, Zhou L, Vogler TO, et al. Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations. Blood. 2012;120(10):2076-2086. 77. Woll PS, Kjällquist U, Chowdhury O, et al. Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo. Cancer Cell. 2014;25(6):794-808. 78. Kharas MG, Lengner CJ, Al-Shahrour F, et al. Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia. Nat Med. 2010;16(8):903-908. 79. Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q. GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol. 2008;9 Suppl 1(Suppl 1):S4. 80. Bottomly D, Long N, Schultz AR, et al. Integrative analysis of drug response and clinical outcome in acute myeloid leukemia. Cancer Cell. 2022;40(8):850-864.e859. 81. Morrell JA, Orme J, Butlin RJ, Roche TE, Mayers RM, Kilgour E. AZD7545 is a selective inhibitor of pyruvate dehydrogenase kinase 2. Biochem Soc Trans. 2003;31(Pt 6):1168-1170. 82. Song C, Bae Y, Jun J, et al. Identification of TG100-115 as a new and potent TRPM7 kinase inhibitor, which suppresses breast cancer cell migration and invasion. Biochim Biophys Acta Gen Subj. 2017;1861(4):947-957. 83. Zhang T, Inesta-Vaquera F, Niepel M, et al. Discovery of potent and selective covalent inhibitors of JNK. Chem Biol. 2012;19(1):140-154. 84. Deng H, Yu F, Chen J, Zhao Y, Xiang J, Lin A. Phosphorylation of Bad at Thr-201 by JNK1 promotes glycolysis through activation of phosphofructokinase-1. J Biol Chem. 2008;283(30):20754-20760. 85. Lhoumeau AC, Arcangeli ML, De Grandis M, et al. Ptk7-Deficient Mice Have Decreased Hematopoietic Stem Cell Pools as a Result of Deregulated Proliferation and Migration. J Immunol. 2016;196(10):4367-4377. 86. Lhoumeau AC, Puppo F, Prébet T, Kodjabachian L, Borg JP. PTK7: a cell polarity receptor with multiple facets. Cell Cycle. 2011;10(8):1233-1236. 87. Edling CE, Hallberg B. c-Kit--a hematopoietic cell essential receptor tyrosine kinase. Int J Biochem Cell Biol. 2007;39(11):1995-1998. 88. Shomali W, Gotlib J. The new tool "KIT" in advanced systemic mastocytosis. Hematology Am Soc Hematol Educ Program. 2018;2018(1):127-136. 89. Garland P, Quraishe S, French P, O'Connor V. Expression of the MAST family of serine/threonine kinases. Brain Res. 2008;1195:12-19. 90. Kim P, Park J, Lee DJ, et al. Mast4 determines the cell fate of MSCs for bone and cartilage development. Nat Commun. 2022;13(1):3960. 91. Martin-Zanca D, Hughes SH, Barbacid M. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature. 1986;319(6056):743-748. 92. Brzeziańska E, Karbownik M, Migdalska-Sek M, Pastuszak-Lewandoska D, Włoch J, Lewiński A. Molecular analysis of the RET and NTRK1 gene rearrangements in papillary thyroid carcinoma in the Polish population. Mutat Res. 2006;599(1-2):26-35. 93. Vaishnavi A, Capelletti M, Le AT, et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med. 2013;19(11):1469-1472. 94. Tognon C, Knezevich SR, Huntsman D, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell. 2002;2(5):367-376. 95. Herbrich SM, Kannan S, Nolo RM, Hornbaker M, Chandra J, Zweidler-McKay PA. Characterization of TRKA signaling in acute myeloid leukemia. Oncotarget. 2018;9(53):30092-30105. 96. Mulloy JC, Jankovic V, Wunderlich M, et al. AML1-ETO fusion protein up-regulates TRKA mRNA expression in human CD34+ cells, allowing nerve growth factor-induced expansion. Proc Natl Acad Sci U S A. 2005;102(11):4016-4021. 97. Radu M, Semenova G, Kosoff R, Chernoff J. PAK signalling during the development and progression of cancer. Nat Rev Cancer. 2014;14(1):13-25. 98. Zheng J, Zhang C, Li Y, Jiang Y, Xing B, Du X. p21-activated kinase 6 controls mitosis and hepatocellular carcinoma progression by regulating Eg5. Biochim Biophys Acta Mol Cell Res. 2021;1868(2):118888. 99. Lin H, Rothe K, Chen M, et al. The miR-185/PAK6 axis predicts therapy response and regulates survival of drug-resistant leukemic stem cells in CML. Blood. 2020;136(5):596-609. 100. Volpin V, Michels T, Sorrentino A, et al. CAMK1D Triggers Immune Resistance of Human Tumor Cells Refractory to Anti-PD-L1 Treatment. Cancer Immunol Res. 2020;8(9):1163-1179. 101. Kang X, Lu Z, Cui C, et al. The ITIM-containing receptor LAIR1 is essential for acute myeloid leukaemia development. Nat Cell Biol. 2015;17(5):665-677. 102. Pellagatti A, Cazzola M, Giagounidis A, et al. Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells. Leukemia. 2010;24(4):756-764. 103. Yamazaki S, Nakauchi H. Insights into signaling and function of hematopoietic stem cells at the single-cell level. Curr Opin Hematol. 2009;16(4):255-258. 104. Gross-Goupil M, François L, Quivy A, Ravaud A. Axitinib: a review of its safety and efficacy in the treatment of adults with advanced renal cell carcinoma. Clin Med Insights Oncol. 2013;7:269-277. 105. Chen Y, Tortorici MA, Garrett M, Hee B, Klamerus KJ, Pithavala YK. Clinical pharmacology of axitinib. Clin Pharmacokinet. 2013;52(9):713-725. 106. Pemovska T, Johnson E, Kontro M, et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature. 2015;519(7541):102-105. 107. Halbach S, Hu Z, Gretzmeier C, et al. Axitinib and sorafenib are potent in tyrosine kinase inhibitor resistant chronic myeloid leukemia cells. Cell Commun Signal. 2016;14:6. 108. Giles FJ, Bellamy WT, Estrov Z, et al. The anti-angiogenesis agent, AG-013736, has minimal activity in elderly patients with poor prognosis acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Leuk Res. 2006;30(7):801-811. 109. Ndubaku CO, Heffron TP, Staben ST, et al. Discovery of 2-{3-[2-(1-isopropyl-3-methyl-1H-1,2-4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl]-1H-pyrazol-1-yl}-2-methylpropanamide (GDC-0032): a β-sparing phosphoinositide 3-kinase inhibitor with high unbound exposure and robust in vivo antitumor activity. J Med Chem. 2013;56(11):4597-4610. 110. Morgillo F, Della Corte CM, Diana A, et al. Phosphatidylinositol 3-kinase (PI3Kα)/AKT axis blockade with taselisib or ipatasertib enhances the efficacy of anti-microtubule drugs in human breast cancer cells. Oncotarget. 2017;8(44):76479-76491. 111. Rahmani M, Nkwocha J, Hawkins E, et al. Cotargeting BCL-2 and PI3K Induces BAX-Dependent Mitochondrial Apoptosis in AML Cells. Cancer Res. 2018;78(11):3075-3086. 112. Perl AE, Larson RA, Podoltsev NA, et al. Follow-up of patients with R/R FLT3-mutation-positive AML treated with gilteritinib in the phase 3 ADMIRAL trial. Blood. 2022;139(23):3366-3375. 113. Daver N, Perl AE, Maly J, et al. Venetoclax Plus Gilteritinib for FLT3-Mutated Relapsed/Refractory Acute Myeloid Leukemia. J Clin Oncol. 2022;40(35):4048-4059. 114. Bazarbachi A, Labopin M, Battipaglia G, et al. Sorafenib improves survival of FLT3-mutated acute myeloid leukemia in relapse after allogeneic stem cell transplantation: a report of the EBMT Acute Leukemia Working Party. Haematologica. 2019;104(9):e398-e401. 115. Jentsch-Ullrich K, Pelz AF, Braun H, et al. Complete molecular remission in a patient with Philadelphia-chromosome positive acute myeloid leukemia after conventional therapy and imatinib. Haematologica. 2004;89(5):Ecr15. 116. Lazarevic V, Golovleva I, Nygren I, Wahlin A. Induction chemotherapy and post-remission imatinib therapy for de Novo BCR-ABL-positive AML. Am J Hematol. 2006;81(6):470-471. 117. Ritchie DS, McBean M, Westerman DA, Kovalenko S, Seymour JF, Dobrovic A. Complete molecular response of e6a2 BCR-ABL-positive acute myeloid leukemia to imatinib then dasatinib. Blood. 2008;111(5):2896-2898. 118. Piccaluga PP, Malagola M, Rondoni M, et al. Imatinib mesylate in the treatment of newly diagnosed or refractory/resistant c-KIT positive acute myeloid leukemia. Results of an Italian Multicentric Phase II Study. Haematologica. 2007;92(12):1721-1722. 119. Paschka P, Schlenk RF, Weber D, et al. Adding dasatinib to intensive treatment in core-binding factor acute myeloid leukemia-results of the AMLSG 11-08 trial. Leukemia. 2018;32(7):1621-1630. 120. Marcucci G, Geyer S, Laumann K, et al. Combination of dasatinib with chemotherapy in previously untreated core binding factor acute myeloid leukemia: CALGB 10801. Blood Adv. 2020;4(4):696-705. 121. Hu S, Ueda M, Stetson L, et al. A Novel Glycogen Synthase Kinase-3 Inhibitor Optimized for Acute Myeloid Leukemia Differentiation Activity. Mol Cancer Ther. 2016;15(7):1485-1494. 122. Rizzieri DA, Cooley S, Odenike O, et al. An open-label phase 2 study of glycogen synthase kinase-3 inhibitor LY2090314 in patients with acute leukemia. Leuk Lymphoma. 2016;57(8):1800-1806. 123. Ruvolo PP. GSK-3 as a novel prognostic indicator in leukemia. Adv Biol Regul. 2017;65:26-35. 124. Wang Z, Iwasaki M, Ficara F, et al. GSK-3 promotes conditional association of CREB and its coactivators with MEIS1 to facilitate HOX-mediated transcription and oncogenesis. Cancer Cell. 2010;17(6):597-608. 125. Xia J, Feng S, Zhou J, et al. GSK3 inhibitor suppresses cell growth and metabolic process in FLT3-ITD leukemia cells. Med Oncol. 2022;40(1):44. 126. Banerji V, Frumm SM, Ross KN, et al. The intersection of genetic and chemical genomic screens identifies GSK-3α as a target in human acute myeloid leukemia. J Clin Invest. 2012;122(3):935-947. 127. Pan T, Wang S, Feng H, et al. Preclinical evaluation of the ROCK1 inhibitor, GSK269962A, in acute myeloid leukemia. Front Pharmacol. 2022;13:1064470. 128. Wermke M, Camgoz A, Paszkowski-Rogacz M, et al. RNAi profiling of primary human AML cells identifies ROCK1 as a therapeutic target and nominates fasudil as an antileukemic drug. Blood. 2015;125(24):3760-3768. 129. Tarumoto Y, Lu B, Somerville TDD, et al. LKB1, Salt-Inducible Kinases, and MEF2C Are Linked Dependencies in Acute Myeloid Leukemia. Mol Cell. 2018;69(6):1017-1027.e1016. 130. Tarumoto Y, Lin S, Wang J, et al. Salt-inducible kinase inhibition suppresses acute myeloid leukemia progression in vivo. Blood. 2020;135(1):56-70. 131. Yang HS, Matthews CP, Clair T, et al. Tumorigenesis suppressor Pdcd4 down-regulates mitogen-activated protein kinase kinase kinase kinase 1 expression to suppress colon carcinoma cell invasion. Mol Cell Biol. 2006;26(4):1297-1306. 132. Knight TE, Edwards H, Taub JW, Ge Y. MAP4K1 expression is a novel resistance mechanism and independent prognostic marker in AML-but can be overcome via targeted inhibition. EBioMedicine. 2021;70:103488. 133. Yang R, Guo C. Discovery of potent pyruvate dehydrogenase kinase inhibitors and evaluation of their anti-lung cancer activity under hypoxia. Medchemcomm. 2018;9(11):1843-1849. 134. Meng S, Alanazi R, Ji D, et al. Role of TRPM7 kinase in cancer. Cell Calcium. 2021;96:102400. 135. Takahashi K, Umebayashi C, Numata T, et al. TRPM7-mediated spontaneous Ca(2+) entry regulates the proliferation and differentiation of human leukemia cell line K562. Physiol Rep. 2018;6(14):e13796. 136. Wu Q, Wu W, Jacevic V, Franca TCC, Wang X, Kuca K. Selective inhibitors for JNK signalling: a potential targeted therapy in cancer. J Enzyme Inhib Med Chem. 2020;35(1):574-583. 137. Semba T, Sammons R, Wang X, Xie X, Dalby KN, Ueno NT. JNK Signaling in Stem Cell Self-Renewal and Differentiation. Int J Mol Sci. 2020;21(7). 138. Tournier C. The 2 Faces of JNK Signaling in Cancer. Genes Cancer. 2013;4(9-10):397-400. 139. Alarcon-Vargas D, Ronai Z. c-Jun-NH2 kinase (JNK) contributes to the regulation of c-Myc protein stability. J Biol Chem. 2004;279(6):5008-5016. 140. Hess P, Pihan G, Sawyers CL, Flavell RA, Davis RJ. Survival signaling mediated by c-Jun NH(2)-terminal kinase in transformed B lymphoblasts. Nat Genet. 2002;32(1):201-205. 141. Xiao X, Liu P, Li D, et al. Combination therapy of BCR-ABL-positive B cell acute lymphoblastic leukemia by tyrosine kinase inhibitor dasatinib and c-JUN N-terminal kinase inhibition. J Hematol Oncol. 2020;13(1):80. 142. Liou JT, Lin CS, Liao YC, Ho LJ, Yang SP, Lai JH. JNK/AP-1 activation contributes to tetrandrine resistance in T-cell acute lymphoblastic leukaemia. Acta Pharmacol Sin. 2017;38(8):1171-1183. 143. Samson N, Ablasser A. The cGAS-STING pathway and cancer. Nat Cancer. 2022;3(12):1452-1463. 144. Sun Y, Wu Y, Pang G, et al. STING is crucial for the survival of RUNX1::RUNX1T1 leukemia cells. Leukemia. 2024;38(10):2102-2114. 145. Åbacka H, Hansen JS, Huang P, et al. Targeting GLUT1 in acute myeloid leukemia to overcome cytarabine resistance. Haematologica. 2021;106(4):1163-1166. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99575 | - |
| dc.description.abstract | 背景
人類的激酶體(kinome)涵蓋超過500種蛋白激酶(kinase),於調控細胞增生、分化、凋亡及代謝等基本細胞過程中扮演關鍵角色。雖然激酶之不正常調控已被證實與多種固態腫瘤相關,其在骨髓系之惡性腫瘤,特別是骨髓化生不良症候群(MDS)與急性骨髓性白血病(AML)中的表現量研究及其臨床意義尚未被充分釐清。本研究透過系統性的藥物-轉錄體(pharmaco-transcriptomic)分析,評估MDS與AML中激酶體表現之圖譜,希望可藉此優化病患之預後分級,並鑑別高風險分子病患族群中的新穎治療把點。 實驗方法 本研究分析來自台大醫院(National Taiwan University Hospital, NTUH)之MDS與AML患者骨髓樣本的轉錄體資料,以研究與整體存活相關之激酶表現。並根據那些與不良預後顯著相關之激酶表現,建構MDS與AML的激酶預後模型。我們運用轉錄體富集(gene set enrichment)分析用於探索相關分子機制;藥物敏感性資料則取得Genomics of Drug Sensitivity in Cancer (GDSC)與Beat AML資料庫。針對激酶標靶治療的細胞實驗驗證,則以AML細胞株進行JNK-IN-8小分子抑制劑的相關藥理實驗。 結果 針對MDS,我們建立了一個新穎的激酶預後模型(KS-MDS),其整合了七個與不良預後相關的激酶(PTK7、KIT、MAST4、NTRK1、PAK6、CAMK1D 與 PRKCZ)。在AML方面,亦使用相同策略建立一個AML之預後模型(KS-AML),其包含了十三個預後相關激酶(CDK18、GSK3A、MAP3K6、MAP4K1、MAPK8、NEK3、PDK2、ROCK1、SCYL3、SIK2、SIK3、TRPM7 與 ULK3)。在MDS與AML中,較高的激酶風險分數顯著與高危險度之臨床與分子特徵有關,多變數分析亦確認其為整體存活之獨立不良預後因子。在MDS中,轉錄體分析顯示,KS-MDS高危之病患具有顯著之造血與血癌幹細胞之基因表現特徵。藥物敏感性分析發現VEGFR抑制劑axitinib與PI3K抑制劑taselisib對於KS-MDS表現較高之造血細胞株具有治療效果。在AML中,轉錄體分析顯示KS-AML高危之病患富含KMT2A重組及NPM1突變相關的轉錄特徵。功能性實驗證實,MAPK8 (JNK)的抑制劑JNK-IN-8可抑制AML細胞增生、誘導細胞凋亡,並降低c-JUN、c-MYC與cGAS-STING路徑的活性。此外,JNK-IN-8與BCL2抑制劑venetoclax合併使用,可達到糖解與氧化磷酸化反應的雙重抑制,此為一新穎之對抗AML代謝可塑性的治療策略。 結論 本研究建立了針對MDS與AML之全新激酶體預後模型,能夠補足傳統臨床風險分類,進一步提升預後分級的精確性,並協助找尋具潛力的新穎治療標靶藥物。我們的研究發現激酶體異常表現為高風險骨髓系腫瘤的顯著特徵,並突顯以激酶為標靶的治療策略在抑制癌細胞增生與代謝感受性方面的臨床應用潛力,未來可望用於發展以個人化生物標記為導向的精準治療策略。 | zh_TW |
| dc.description.abstract | Introduction
The human kinome, comprising over 500 protein kinases, plays a pivotal role in regulating essential cellular processes, including proliferation, differentiation, apoptosis, and metabolism. While kinase dysregulation has been implicated in numerous solid cancers, its comprehensive characterization and clinical relevance in myeloid malignancies, notably myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), remain incompletely defined. In this study, we performed a systematic pharmaco-transcriptomic analysis to evaluate kinase expression signatures in MDS and AML, aiming to refine prognostic stratification and identify actionable therapeutic vulnerabilities in high-risk molecular subgroups. Materials and Methods We analyzed the transcriptomic data from bone marrow (BM) samples from the MDS and AML patients at the National Taiwan University Hospital (NTUH) to identify kinases whose expression correlated with overall survival (OS). kinase-based prognostic models for MDS and AML were constructed by integrating the expression of the most significant adverse-risk kinases. Gene set enrichment analyses were performed to explore associated molecular programs. Drug sensitivity correlations were evaluated using the Genomics of Drug Sensitivity in Cancer (GDSC) and Beat AML databases. Functional validation of kinase-targeted therapy was conducted using the JNK inhibitor JNK-IN-8 in AML cell lines. Results A kinase-based prognostic model for MDS, termed KS-MDS, was constructed by integrating the expression of seven poor prognostic kinases (PTK7, KIT, MAST4, NTRK1, PAK6, CAMK1D and PRKCZ). A similar approach was applied to the NTUH AML dataset to derive the kinase-based prognostic model for AML, termed KS-AML, incorporating thirteen prognostically relevant kinases (CDK18, GSK3A, MAP3K6, MAP4K1, MAPK8, NEK3, PDK2, ROCK1, SCYL3, SIK2, SIK3, TRPM7 and ULK3). In both MDS and AML, higher kinase-based risk scores were significantly associated with adverse clinical and molecular feature, and multivariate analysis confirmed kinase-based risk scores as independent predictors of poor survival. Transcriptomic profiling revealed that KS-MDS-high patients exhibited enriched hematopoietic and leukemic stem cell (HSC/LSC) gene expression signatures. Drug sensitivity screening identified axitinib, a VEGFR inhibitor, and taselisib, a PI3K inhibitor, as compounds with selective activity against KS-MDS-high hematopoietic cell lines. In AML, transcriptomic analysis revealed significant enrichment of transcriptional signatures associated with KMT2A rearranged and NPM1-mutated AML in the KS-AML-high subgroup. Further functional studies revealed that the MAPK8 (JNK) inhibitor JNK-IN-8 showed dose-dependent inhibition of AML proliferation, induction of apoptosis, by downregulating c-JUN, c-MYC, and the cGAS-STING innate immune signaling pathway. Combined targeting of JNK and mitochondrial metabolism with venetoclax achieved dual inhibition of glycolysis and OXPHOS, indicating a strategy to overcome metabolic adaptability in AML. Conclusion This integrative kinome-focused analysis identifies novel kinase-based transcriptomic risk scores for MDS and AML, that could improve prognostic stratification beyond current clinical evaluation. Both scores reflect underlying stemness and adverse signaling programs, and guide the identification of candidate therapeutic compounds, including axitinib, taselisib, and JNK-IN-8. These findings establish kinase dysregulation as a central feature of high-risk myeloid neoplasms and highlight the promise of kinase-directed therapies to target both proliferative and metabolic vulnerabilities, and facilitate the development of biomarker-guided therapeutic strategies for these myeloid malignancies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:09:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-16T16:09:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iv 英文摘要 vi 目次 ix 圖次 xii 表次 xiv Chapter 1. Introduction 1 1.1 Overview of myeloid neoplasms 1 1.1.1 Molecular pathogenesis of myeloid neoplasms 1 1.1.2 CH 2 1.1.3 MDS 4 1.1.4 AML 5 1.2 The human kinome 7 1.3 Clinical use of kinase inhibitors in myeloid neoplasms is still limited 8 1.4 Aims of the study 9 Chapter 2. Materials and methods 11 2.1 Study participants 11 2.1.1 NTUH MDS cohort 11 2.1.2 NTUH AML cohort 11 2.1.3 NTUH healthy controls 12 2.2 External validation cohorts 12 2.2.1 External MDS cohorts 12 2.2.2 External AML cohorts 12 2.3 Cytogenetic and mutation analysis of patient samples 13 2.4 RNA-seq 13 2.5 Pharmacogenomic databases 14 2.6 Cell culture 14 2.7 Dose response experiments 14 2.8 Evaluation of apoptosis 15 2.9 Seahorse assay 16 2.10 Inference of metabolic activity by METAFlux 16 2.11 Statistical analysis 17 Chapter 3. Results 18 3.1 Kinome expression profiling in MDS 18 3.1.1 Identification of highly prognostic kinases in MDS 18 3.1.2 Analysis of laboratory and genetic characteristics 19 3.1.3 Analysis of clinical outcomes 21 3.1.4 External validation 23 3.1.5 Impact on clinical decision making of HSCT 23 3.1.6 Functional analysis 24 3.1.7 Drug sensitivity data mining infers novel therapies 24 3.2 Kinome expression profiling in AML 25 3.2.1 Identification of highly prognostic kinases in AML 25 3.2.2 Analysis of laboratory and genetic characteristics 26 3.2.3 Analysis of clinical outcomes 27 3.2.4 External validation 28 3.2.5 Impact on clinical decision making of HSCT 28 3.2.6 Functional analysis 29 3.2.7 Drug sensitivity data mining infers novel therapies 29 3.2.8 JNK inhibition represents a novel therapeutic approach in AML 31 3.2.8.1 JNK inhibition inhibited AML proliferation 31 3.2.8.2 JNK inhibition downregulates survival pathways in AML 31 3.2.8.3 JNK inhibition downregulates glycolytic activity in AML 32 3.2.8.4 JNK inhibition synergizes with AML therapies 32 Chapter 4. Discussion 34 Chapter 5. Prospects 48 參考文獻 52 附錄1. 圖 60 附錄2. 表 87 附錄3. 著作列表 109 | - |
| dc.language.iso | en | - |
| dc.subject | 激酶體 | zh_TW |
| dc.subject | 骨髓化生不良症候群 | zh_TW |
| dc.subject | 急性骨髓性白血病 | zh_TW |
| dc.subject | 預後 | zh_TW |
| dc.subject | 標靶治療 | zh_TW |
| dc.subject | Targeted therapy | en |
| dc.subject | Myelodysplastic syndrome | en |
| dc.subject | Acute myeloid leukemia | en |
| dc.subject | Prognosis | en |
| dc.subject | Kinome | en |
| dc.title | 分析骨髓系腫瘤激酶體基因表現以探索新穎治療 | zh_TW |
| dc.title | Kinome expression profiling infers novel therapeutic approaches in myeloid neoplasms | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 許家郎 | zh_TW |
| dc.contributor.coadvisor | Chia-Lang Hsu | en |
| dc.contributor.oralexamcommittee | 林家齊;田蕙芬;盧子彬;涂玉青 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Chi Lin;Hwei-Fang Tien;Tzu-Pin Lu;Yuh Ching Twu | en |
| dc.subject.keyword | 激酶體,骨髓化生不良症候群,急性骨髓性白血病,預後,標靶治療, | zh_TW |
| dc.subject.keyword | Kinome,Myelodysplastic syndrome,Acute myeloid leukemia,Prognosis,Targeted therapy, | en |
| dc.relation.page | 109 | - |
| dc.identifier.doi | 10.6342/NTU202501303 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-06-26 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床醫學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 6.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
