Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99574
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor施金元zh_TW
dc.contributor.advisorJin-Yuan Shihen
dc.contributor.author林彥廷zh_TW
dc.contributor.authorYen-Ting Linen
dc.date.accessioned2025-09-16T16:09:47Z-
dc.date.available2025-09-17-
dc.date.copyright2025-09-16-
dc.date.issued2025-
dc.date.submitted2025-07-02-
dc.identifier.citation[1] Bosniak MA. The current radiological approach to renal cysts. Radiology. 1986;158:1-10. https://doi.org/10.1148/radiology.158.1.3510019.
[2] Lin YT, Wang YF, Yang JC, Yu CJ, Wu SG, Shih JY, et al. Development of renal cysts after crizotinib treatment in advanced ALK-positive non-small-cell lung cancer. J Thorac Oncol. 2014;9:1720-5. https://doi.org/10.1097/JTO.0000000000000326.
[3] National Cancer Institute. NCI Dictionary of Cancer Terms: Cancer. https://doi.org/https://www.cancer.gov/publications/dictionaries/cancer-terms/def/cancer. 22 February 2025
[4] National Cancer Institute. NCI Dictionary of Cancer Terms: Lung Cancer. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/lung-cancer. 22 February 2025
[5] 衛生福利部國民健康署。中華民國111年癌症登記報告。https://www.hpa.gov.tw/Pages/List.aspx?nodeid=269. 2024. [assessed 05 January 2025]
[6] 衛生福利部統計處。111年國人死因統計結果。https://www.mohw.gov.tw/cp-16-74869-1.html. 2023. [assessed 08 January 2025]
[7] Yang CY, Lin YT, Lin LJ, Chang YH, Chen HY, Wang YP, et al. Stage Shift Improves Lung Cancer Survival: Real-World Evidence. J Thorac Oncol. 2023;18:47-56. https://doi.org/10.1016/j.jtho.2022.09.005.
[8] Tseng CH, Tsuang BJ, Chiang CJ, Ku KC, Tseng JS, Yang TY, et al. The Relationship Between Air Pollution and Lung Cancer in Nonsmokers in Taiwan. J Thorac Oncol. 2019;14:784-92. https://doi.org/10.1016/j.jtho.2018.12.033.
[9] National Lung Screening Trial Research T, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395-409. https://doi.org/10.1056/NEJMoa1102873.
[10] de Koning HJ, van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA, et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N Engl J Med. 2020;382:503-13. https://doi.org/10.1056/NEJMoa1911793.
[11] Chang GC, Chiu CH, Yu CJ, Chang YC, Chang YH, Hsu KH, et al. Low-dose CT screening among never-smokers with or without a family history of lung cancer in Taiwan: a prospective cohort study. Lancet Respir Med. 2024;12:141-52. https://doi.org/10.1016/S2213-2600(23)00338-7.
[12] 衛生福利部國民健康署。肺癌防治手冊專業版。https://health99.hpa.gov.tw/material/6742. 2020. [assessed 23 February 2025]
[13] Hecht SS. Research opportunities related to establishing standards for tobacco products under the Family Smoking Prevention and Tobacco Control Act. Nicotine Tob Res. 2012;14:18-28. https://doi.org/10.1093/ntr/ntq216.
[14] Hecht SS. Lung carcinogenesis by tobacco smoke. Int J Cancer. 2012;131:2724-32. https://doi.org/10.1002/ijc.27816.
[15] Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455:1069-75. https://doi.org/10.1038/nature07423.
[16] Pleasance ED, Stephens PJ, O'Meara S, McBride DJ, Meynert A, Jones D, et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature. 2010;463:184-90. https://doi.org/10.1038/nature08629.
[17] Chen RJ, Chang LW, Lin P, Wang YJ. Epigenetic effects and molecular mechanisms of tumorigenesis induced by cigarette smoke: an overview. J Oncol. 2011;2011:654931. https://doi.org/10.1155/2011/654931.
[18] Nitadori J, Inoue M, Iwasaki M, Otani T, Sasazuki S, Nagai K, et al. Association between lung cancer incidence and family history of lung cancer: data from a large-scale population-based cohort study, the JPHC study. Chest. 2006;130:968-75. https://doi.org/10.1378/chest.130.4.968.
[19] Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, et al. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343:78-85. https://doi.org/10.1056/NEJM200007133430201.
[20] Kanwal M, Ding XJ, Cao Y. Familial risk for lung cancer. Oncol Lett. 2017;13:535-42. https://doi.org/10.3892/ol.2016.5518.
[21] Carmelli D, Swan GE, Robinette D, Fabsitz R. Genetic influence on smoking--a study of male twins. N Engl J Med. 1992;327:829-33. https://doi.org/10.1056/NEJM199209173271201.
[22] Mossman BT, Churg A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med. 1998;157:1666-80. https://doi.org/10.1164/ajrccm.157.5.9707141.
[23] Zanella CL, Posada J, Tritton TR, Mossman BT. Asbestos causes stimulation of the extracellular signal-regulated kinase 1 mitogen-activated protein kinase cascade after phosphorylation of the epidermal growth factor receptor. Cancer Res. 1996;56:5334-8. http://www.ncbi.nlm.nih.gov/pubmed/8968079.
[24] Anttila S, P.E.H N. Lung Cancer: Mechanisms of Carcinogenesis. London: Springer; 2014.
[25] Nelson HH, Kelsey KT. The molecular epidemiology of asbestos and tobacco in lung cancer. Oncogene. 2002;21:7284-8. https://doi.org/10.1038/sj.onc.1205804.
[26] Henderson DW, Rodelsperger K, Woitowitz HJ, Leigh J. After Helsinki: a multidisciplinary review of the relationship between asbestos exposure and lung cancer, with emphasis on studies published during 1997-2004. Pathology. 2004;36:517-50. http://www.ncbi.nlm.nih.gov/pubmed/15841689.
[27] Haugen A, Harris C. Asbestos carcinogenesis: asbestos interactions and epithelial lesions in cultured human tracheobronchial tissues and cells. Recent Results Cancer Res. 1982;82:32-42. http://www.ncbi.nlm.nih.gov/pubmed/7111841.
[28] Shimada T. Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet. 2006;21:257-76. http://www.ncbi.nlm.nih.gov/pubmed/16946553.
[29] Some Industrial Chemicals. Lyon (FR)2018.
[30] Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1-40. https://doi.org/10.1016/j.cbi.2005.12.009.
[31] Nakamuro K, Sayato Y. Comparative studies of chromosomal aberration induced by trivalent and pentavalent arsenic. Mutat Res. 1981;88:73-80. http://www.ncbi.nlm.nih.gov/pubmed/7207493.
[32] Taeger D, Johnen G, Wiethege T, Tapio S, Mohner M, Wesch H, et al. Major histopathological patterns of lung cancer related to arsenic exposure in German uranium miners. Int Arch Occup Environ Health. 2009;82:867-75. https://doi.org/10.1007/s00420-008-0386-1.
[33] Chen CL, Hsu LI, Chiou HY, Hsueh YM, Chen SY, Wu MM, et al. Ingested arsenic, cigarette smoking, and lung cancer risk: a follow-up study in arseniasis-endemic areas in Taiwan. JAMA. 2004;292:2984-90. https://doi.org/10.1001/jama.292.24.2984.
[34] Joseph P. Mechanisms of cadmium carcinogenesis. Toxicol Appl Pharmacol. 2009;238:272-9. https://doi.org/10.1016/j.taap.2009.01.011.
[35] Achanzar WE, Webber MM, Waalkes MP. Altered apoptotic gene expression and acquired apoptotic resistance in cadmium-transformed human prostate epithelial cells. Prostate. 2002;52:236-44. https://doi.org/10.1002/pros.10106.
[36] Nickens KP, Patierno SR, Ceryak S. Chromium genotoxicity: A double-edged sword. Chem Biol Interact. 2010;188:276-88. https://doi.org/10.1016/j.cbi.2010.04.018.
[37] Chromium, nickel and welding. IARC Monogr Eval Carcinog Risks Hum. 1990;49:1-648. http://www.ncbi.nlm.nih.gov/pubmed/2232124.
[38] Costa M. Molecular mechanisms of nickel carcinogenesis. Annu Rev Pharmacol Toxicol. 1991;31:321-37. https://doi.org/10.1146/annurev.pa.31.040191.001541.
[39] Arita A, Costa M. Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics. 2009;1:222-8. https://doi.org/10.1039/b903049b.
[40] Cameron KS, Buchner V, Tchounwou PB. Exploring the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity: a literature review. Rev Environ Health. 2011;26:81-92. http://www.ncbi.nlm.nih.gov/pubmed/21905451.
[41] Govindarajan B, Klafter R, Miller MS, Mansur C, Mizesko M, Bai X, et al. Reactive oxygen-induced carcinogenesis causes hypermethylation of p16(Ink4a) and activation of MAP kinase. Mol Med. 2002;8:1-8. http://www.ncbi.nlm.nih.gov/pubmed/11984000.
[42] Brugge D, de Lemos JL, Oldmixon B. Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: a review. Rev Environ Health. 2005;20:177-93. http://www.ncbi.nlm.nih.gov/pubmed/16342416.
[43] Jostes RF. Genetic, cytogenetic, and carcinogenic effects of radon: a review. Mutat Res. 1996;340:125-39. http://www.ncbi.nlm.nih.gov/pubmed/8692177.
[44] Ward JF. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol. 1988;35:95-125. http://www.ncbi.nlm.nih.gov/pubmed/3065826.
[45] Taylor JA, Watson MA, Devereux TR, Michels RY, Saccomanno G, Anderson M. p53 mutation hotspot in radon-associated lung cancer. Lancet. 1994;343:86-7. http://www.ncbi.nlm.nih.gov/pubmed/7903781.
[46] Su S, Jin Y, Zhang W, Yang L, Shen Y, Cao Y, et al. Aberrant promoter methylation of p16(INK4a) and O(6)-methylguanine-DNA methyltransferase genes in workers at a Chinese uranium mine. J Occup Health. 2006;48:261-6. http://www.ncbi.nlm.nih.gov/pubmed/16902270.
[47] Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947-57. https://doi.org/10.1056/NEJMoa0810699.
[48] Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12:735-42. https://doi.org/10.1016/S1470-2045(11)70184-X.
[49] Yang JC, Wu YL, Schuler M, Sebastian M, Popat S, Yamamoto N, et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015. https://doi.org/10.1016/S1470-2045(14)71173-8.
[50] Wu YL, Cheng Y, Zhou X, Lee KH, Nakagawa K, Niho S, et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol. 2017;18:1454-66. https://doi.org/10.1016/S1470-2045(17)30608-3.
[51] Mok TS, Wu YL, Ahn MJ, Garassino MC, Kim HR, Ramalingam SS, et al. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N Engl J Med. 2017;376:629-40. https://doi.org/10.1056/NEJMoa1612674.
[52] Hsu KH, Ho CC, Hsia TC, Tseng JS, Su KY, Wu MF, et al. Identification of five driver gene mutations in patients with treatment-naive lung adenocarcinoma in Taiwan. PLoS One. 2015;10:e0120852. https://doi.org/10.1371/journal.pone.0120852.
[53] Kohno T, Nakaoku T, Tsuta K, Tsuchihara K, Matsumoto S, Yoh K, et al. Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer. Transl Lung Cancer Res. 2015;4:156-64. https://doi.org/10.3978/j.issn.2218-6751.2014.11.11.
[54] Ji H, Li D, Chen L, Shimamura T, Kobayashi S, McNamara K, et al. The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell. 2006;9:485-95. https://doi.org/10.1016/j.ccr.2006.04.022.
[55] Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359:1367-80. https://doi.org/10.1056/NEJMra0802714.
[56] Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561-6. https://doi.org/10.1038/nature05945.
[57] Heuckmann JM, Balke-Want H, Malchers F, Peifer M, Sos ML, Koker M, et al. Differential protein stability and ALK inhibitor sensitivity of EML4-ALK fusion variants. Clin Cancer Res. 2012;18:4682-90. https://doi.org/10.1158/1078-0432.CCR-11-3260.
[58] Ou SH, Bartlett CH, Mino-Kenudson M, Cui J, Iafrate AJ. Crizotinib for the treatment of ALK-rearranged non-small cell lung cancer: a success story to usher in the second decade of molecular targeted therapy in oncology. Oncologist. 2012;17:1351-75. https://doi.org/10.1634/theoncologist.2012-0311.
[59] Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa K, Mekhail T, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371:2167-77. https://doi.org/10.1056/NEJMoa1408440.
[60] Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim DW, et al. Alectinib versus Crizotinib in Untreated ALK-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 2017;377:829-38. https://doi.org/10.1056/NEJMoa1704795.
[61] Soria JC, Tan DSW, Chiari R, Wu YL, Paz-Ares L, Wolf J, et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet. 2017;389:917-29. https://doi.org/10.1016/S0140-6736(17)30123-X.
[62] Shaw AT, Bauer TM, de Marinis F, Felip E, Goto Y, Liu G, et al. First-Line Lorlatinib or Crizotinib in Advanced ALK-Positive Lung Cancer. N Engl J Med. 2020;383:2018-29. https://doi.org/10.1056/NEJMoa2027187.
[63] Notterman D, Young S, Wainger B, Levine AJ. Prevention of mammalian DNA reduplication, following the release from the mitotic spindle checkpoint, requires p53 protein, but not p53-mediated transcriptional activity. Oncogene. 1998;17:2743-51. https://doi.org/10.1038/sj.onc.1202210.
[64] Nishio M, Koshikawa T, Kuroishi T, Suyama M, Uchida K, Takagi Y, et al. Prognostic significance of abnormal p53 accumulation in primary, resected non-small-cell lung cancers. J Clin Oncol. 1996;14:497-502. https://doi.org/10.1200/JCO.1996.14.2.497.
[65] D'Amico D, Carbone D, Mitsudomi T, Nau M, Fedorko J, Russell E, et al. High frequency of somatically acquired p53 mutations in small-cell lung cancer cell lines and tumors. Oncogene. 1992;7:339-46. http://www.ncbi.nlm.nih.gov/pubmed/1312696.
[66] Hassin O, Oren M. Drugging p53 in cancer: one protein, many targets. Nat Rev Drug Discov. 2023;22:127-44. https://doi.org/10.1038/s41573-022-00571-8.
[67] Nicholson AG, Tsao MS, Beasley MB, Borczuk AC, Brambilla E, Cooper WA, et al. The 2021 WHO Classification of Lung Tumors: Impact of Advances Since 2015. J Thorac Oncol. 2022;17:362-87. https://doi.org/10.1016/j.jtho.2021.11.003.
[68] Yang CY, Yang JC, Yang PC. Precision Management of Advanced Non-Small Cell Lung Cancer. Annu Rev Med. 2020;71:117-36. https://doi.org/10.1146/annurev-med-051718-013524.
[69] Travis WD. Pathology of lung cancer. Clin Chest Med. 2011;32:669-92. https://doi.org/10.1016/j.ccm.2011.08.005.
[70] Huang J, Osarogiagbon RU, Giroux DJ, Nishimura KK, Bille A, Cardillo G, et al. The International Association for the Study of Lung Cancer Staging Project for Lung Cancer: Proposals for the Revision of the N Descriptors in the Forthcoming Ninth Edition of the TNM Classification for Lung Cancer. J Thorac Oncol. 2024;19:766-85. https://doi.org/10.1016/j.jtho.2023.10.012.
[71] Detterbeck FC, Woodard GA, Bader AS, Dacic S, Grant MJ, Park HS, et al. The Proposed Ninth Edition TNM Classification of Lung Cancer. Chest. 2024;166:882-95. https://doi.org/10.1016/j.chest.2024.05.026.
[72] National Comprehensive Cancer Network N. NCCN Clinical Practice Guidelines in Oncology. Non-small Cell Lung Cancer. 2025 Version 3.2025.
[73] Forde PM, Spicer J, Lu S, Provencio M, Mitsudomi T, Awad MM, et al. Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer. N Engl J Med. 2022;386:1973-85. https://doi.org/10.1056/NEJMoa2202170.
[74] Felip E, Altorki N, Zhou C, Csoszi T, Vynnychenko I, Goloborodko O, et al. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial. Lancet. 2021;398:1344-57. https://doi.org/10.1016/S0140-6736(21)02098-5.
[75] O'Brien M, Paz-Ares L, Marreaud S, Dafni U, Oselin K, Havel L, et al. Pembrolizumab versus placebo as adjuvant therapy for completely resected stage IB-IIIA non-small-cell lung cancer (PEARLS/KEYNOTE-091): an interim analysis of a randomised, triple-blind, phase 3 trial. Lancet Oncol. 2022;23:1274-86. https://doi.org/10.1016/S1470-2045(22)00518-6.
[76] Wakelee H, Liberman M, Kato T, Tsuboi M, Lee SH, Gao S, et al. Perioperative Pembrolizumab for Early-Stage Non-Small-Cell Lung Cancer. N Engl J Med. 2023;389:491-503. https://doi.org/10.1056/NEJMoa2302983.
[77] Heymach JV, Harpole D, Mitsudomi T, Taube JM, Galffy G, Hochmair M, et al. Perioperative Durvalumab for Resectable Non-Small-Cell Lung Cancer. N Engl J Med. 2023;389:1672-84. https://doi.org/10.1056/NEJMoa2304875.
[78] Wu YL, Tsuboi M, He J, John T, Grohe C, Majem M, et al. Osimertinib in Resected EGFR-Mutated Non-Small-Cell Lung Cancer. N Engl J Med. 2020;383:1711-23. https://doi.org/10.1056/NEJMoa2027071.
[79] Wu YL, Dziadziuszko R, Ahn JS, Barlesi F, Nishio M, Lee DH, et al. Alectinib in Resected ALK-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 2024;390:1265-76. https://doi.org/10.1056/NEJMoa2310532.
[80] Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N Engl J Med. 2017;377:1919-29. https://doi.org/10.1056/NEJMoa1709937.
[81] Lu S, Kato T, Dong X, Ahn MJ, Quang LV, Soparattanapaisarn N, et al. Osimertinib after Chemoradiotherapy in Stage III EGFR-Mutated NSCLC. N Engl J Med. 2024;391:585-97. https://doi.org/10.1056/NEJMoa2402614.
[82] Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458:719-24. https://doi.org/10.1038/nature07943.
[83] National Cancer Institute. NCI Dictionary of Cancer Terms: Driver Mutation. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/driver-mutation. [assessed 28 February 2025]
[84] Yang JC, Schuler M, Popat S, Miura S, Heeke S, Park K, et al. Afatinib for the Treatment of NSCLC Harboring Uncommon EGFR Mutations: A Database of 693 Cases. J Thorac Oncol. 2020;15:803-15. https://doi.org/10.1016/j.jtho.2019.12.126.
[85] Wu JY, Yu CJ, Chang YC, Yang CH, Shih JY, Yang PC. Effectiveness of tyrosine kinase inhibitors on "uncommon" epidermal growth factor receptor mutations of unknown clinical significance in non-small cell lung cancer. Clin Cancer Res. 2011;17:3812-21. https://doi.org/10.1158/1078-0432.CCR-10-3408.
[86] Lin YT, Liu YN, Wu SG, Yang JC, Shih JY. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor-sensitive Exon 19 Insertion and Exon 20 Insertion in Patients With Advanced Non-Small-cell Lung Cancer. Clin Lung Cancer. 2017;18:324-32 e1. https://doi.org/10.1016/j.cllc.2016.12.014.
[87] Lin YT, Shih JY. Not All EGFR Exon 20 Insertions Are Created Equal. JTO Clin Res Rep. 2020;1:100069. https://doi.org/10.1016/j.jtocrr.2020.100069.
[88] Takeda M, Shimokawa M, Nakamura A, Nosaki K, Watanabe Y, Kato T, et al. A phase II study (WJOG12819L) to assess the efficacy of osimertinib in patients with EGFR mutation-positive NSCLC in whom systemic disease (T790M-negative) progressed after treatment with first- or second-generation EGFR TKIs and platinum-based chemotherapy. Lung Cancer. 2023;177:44-50. https://doi.org/10.1016/j.lungcan.2023.01.011.
[89] Janne PA, Yang JC, Kim DW, Planchard D, Ohe Y, Ramalingam SS, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med. 2015;372:1689-99. https://doi.org/10.1056/NEJMoa1411817.
[90] Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228-47. https://doi.org/10.1016/j.ejca.2008.10.026.
[91] Park K, Tan EH, O'Byrne K, Zhang L, Boyer M, Mok T, et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol. 2016;17:577-89. https://doi.org/10.1016/S1470-2045(16)30033-X.
[92] Hata AN, Niederst MJ, Archibald HL, Gomez-Caraballo M, Siddiqui FM, Mulvey HE, et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat Med. 2016;22:262-9. https://doi.org/10.1038/nm.4040.
[93] Joo JW, Hong MH, Shim HS. Clinical characteristics of T790M-positive lung adenocarcinoma after resistance to epidermal growth factor receptor-tyrosine kinase inhibitors with an emphasis on brain metastasis and survival. Lung Cancer. 2018;123:12-7. https://doi.org/10.1016/j.lungcan.2018.04.013.
[94] Huang YH, Hsu KH, Tseng JS, Chen KC, Hsu CH, Su KY, et al. The Association of Acquired T790M Mutation with Clinical Characteristics after Resistance to First-Line Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor in Lung Adenocarcinoma. Cancer Res Treat. 2018. https://doi.org/10.4143/crt.2017.512.
[95] Lin YT, Chen JS, Liao WY, Ho CC, Hsu CL, Yang CY, et al. Clinical outcomes and secondary epidermal growth factor receptor (EGFR) T790M mutation among first-line gefitinib, erlotinib and afatinib-treated non-small cell lung cancer patients with activating EGFR mutations. Int J Cancer. 2019;144:2887-96. https://doi.org/10.1002/ijc.32025.
[96] Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, et al. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med. 2018;142:321-46. https://doi.org/10.5858/arpa.2017-0388-CP.
[97] Kohsaka S, Nagano M, Ueno T, Suehara Y, Hayashi T, Shimada N, et al. A method of high-throughput functional evaluation of EGFR gene variants of unknown significance in cancer. Sci Transl Med. 2017;9. https://doi.org/10.1126/scitranslmed.aan6566.
[98] Wu SG, Chang YL, Hsu YC, Wu JY, Yang CH, Yu CJ, et al. Good response to gefitinib in lung adenocarcinoma of complex epidermal growth factor receptor (EGFR) mutations with the classical mutation pattern. Oncologist. 2008;13:1276-84. https://doi.org/10.1634/theoncologist.2008-0093.
[99] Malapelle U, Sirera R, Jantus-Lewintre E, Reclusa P, Calabuig-Farinas S, Blasco A, et al. Profile of the Roche cobas(R) EGFR mutation test v2 for non-small cell lung cancer. Expert Rev Mol Diagn. 2017;17:209-15. https://doi.org/10.1080/14737159.2017.1288568.
[100] Jenkins S, Chih-Hsin Yang J, Janne PA, Thress KS, Yu K, Hodge R, et al. EGFR Mutation Analysis for Prospective Patient Selection in Two Phase II Registration Studies of Osimertinib. J Thorac Oncol. 2017;12:1247-56. https://doi.org/10.1016/j.jtho.2017.05.002.
[101] Lin YT, Tsai TH, Wu SG, Liu YN, Yu CJ, Shih JY. Complex EGFR mutations with secondary T790M mutation confer shorter osimertinib progression-free survival and overall survival in advanced non-small cell lung cancer. Lung Cancer. 2020;145:1-9. https://doi.org/10.1016/j.lungcan.2020.04.022.
[102] Gelatti ACZ, Drilon A, Santini FC. Optimizing the sequencing of tyrosine kinase inhibitors (TKIs) in epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC). Lung Cancer. 2019;137:113-22. https://doi.org/10.1016/j.lungcan.2019.09.017.
[103] McGranahan N, Swanton C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell. 2017;168:613-28. https://doi.org/10.1016/j.cell.2017.01.018.
[104] Bonanno L, Dal Maso A, Pavan A, Zulato E, Calvetti L, Pasello G, et al. Liquid biopsy and non-small cell lung cancer: are we looking at the tip of the iceberg? Br J Cancer. 2022;127:383-93. https://doi.org/10.1038/s41416-022-01777-8.
[105] Lin YT, Ho CC, Hsu WH, Liao WY, Yang CY, Yu CJ, et al. Tissue or liquid rebiopsy? A prospective study for simultaneous tissue and liquid NGS after first-line EGFR inhibitor resistance in lung cancer. Cancer Med. 2023;13. https://doi.org/10.1002/cam4.6870.
[106] Zhang L, Jiang T, Li X, Wang Y, Zhao C, Zhao S, et al. Clinical features of Bim deletion polymorphism and its relation with crizotinib primary resistance in Chinese patients with ALK/ROS1 fusion-positive non-small cell lung cancer. Cancer. 2017;123:2927-35. https://doi.org/10.1002/cncr.30677.
[107] Lara-Mejia L, Cardona AF, Mas L, Martin C, Samtani S, Corrales L, et al. Impact of concurrent genomic alterations on clinical outcomes in patients with ALK-rearranged non-small cell lung cancer. J Thorac Oncol. 2023. https://doi.org/10.1016/j.jtho.2023.08.007.
[108] Bayliss R, Choi J, Fennell DA, Fry AM, Richards MW. Molecular mechanisms that underpin EML4-ALK driven cancers and their response to targeted drugs. Cell Mol Life Sci. 2016;73:1209-24. https://doi.org/10.1007/s00018-015-2117-6.
[109] Mitiushkina NV, Tiurin VI, Iyevleva AG, Kholmatov MM, Filippova EA, Moiseyenko FV, et al. Variability in lung cancer response to ALK inhibitors cannot be explained by the diversity of ALK fusion variants. Biochimie. 2018. https://doi.org/10.1016/j.biochi.2018.07.018.
[110] Chang JW, Huang CJ, Huang WK, Wang YC, Hsieh JJ, Chang YY, et al. Genomic and tumour microenvironmental biomarkers of immune checkpoint inhibitor response in advanced Taiwanese melanoma. Clin Transl Immunology. 2023;12:e1465. https://doi.org/10.1002/cti2.1465.
[111] Lin YT, Chen CY, Shih JY. Real-World Crizotinib Use for Anaplastic Lymphoma Kinase (ALK)-Positive Advanced Non-Small Cell Lung Cancer under First-Year National Health Insurance Coverage in Taiwan. Thorac Med. 2018;33:1-13.
[112] Zhu VW, Lin YT, Kim DW, Loong HH, Nagasaka M, To H, et al. An International Real-World Analysis of the Efficacy and Safety of Lorlatinib Through Early or Expanded Access Programs in Patients With Tyrosine Kinase Inhibitor-Refractory ALK-Positive or ROS1-Positive NSCLC. J Thorac Oncol. 2020;15:1484-96. https://doi.org/10.1016/j.jtho.2020.04.019.
[113] Lin YT, Liu YN, Shih JY. The Impact of Clinical Factors, ALK Fusion Variants, and BIM Polymorphism on Crizotinib-Treated Advanced EML4-ALK Rearranged Non-small Cell Lung Cancer. Front Oncol. 2019;9:880. https://doi.org/10.3389/fonc.2019.00880.
[114] Woo CG, Seo S, Kim SW, Jang SJ, Park KS, Song JY, et al. Differential protein stability and clinical responses of EML4-ALK fusion variants to various ALK inhibitors in advanced ALK-rearranged non-small cell lung cancer. Ann Oncol. 2017;28:791-7. https://doi.org/10.1093/annonc/mdw693.
[115] Solomon BJ, Liu G, Felip E, Mok TSK, Soo RA, Mazieres J, et al. Lorlatinib Versus Crizotinib in Patients With Advanced ALK-Positive Non-Small Cell Lung Cancer: 5-Year Outcomes From the Phase III CROWN Study. J Clin Oncol. 2024;42:3400-9. https://doi.org/10.1200/JCO.24.00581.
[116] Parikh K, Dimou A, Leventakos K, Mansfield AS, Shanshal M, Wan Y, et al. Impact of EML4-ALK Variants and Co-Occurring TP53 Mutations on Duration of First-Line ALK Tyrosine Kinase Inhibitor Treatment and Overall Survival in ALK Fusion-Positive NSCLC: Real-World Outcomes From the GuardantINFORM database. J Thorac Oncol. 2024;19:1539-49. https://doi.org/10.1016/j.jtho.2024.07.009.
[117] Kron A, Alidousty C, Scheffler M, Merkelbach-Bruse S, Seidel D, Riedel R, et al. Impact of TP53 mutation status on systemic treatment outcome in ALK-rearranged non-small-cell lung cancer. Ann Oncol. 2018;29:2068-75. https://doi.org/10.1093/annonc/mdy333.
[118] Miller DM, Thomas SD, Islam A, Muench D, Sedoris K. c-Myc and cancer metabolism. Clin Cancer Res. 2012;18:5546-53. https://doi.org/10.1158/1078-0432.CCR-12-0977.
[119] Rihawi K, Alfieri R, Fiorentino M, Fontana F, Capizzi E, Cavazzoni A, et al. MYC Amplification as a Potential Mechanism of Primary Resistance to Crizotinib in ALK-Rearranged Non-Small Cell Lung Cancer: A Brief Report. Transl Oncol. 2019;12:116-21. https://doi.org/10.1016/j.tranon.2018.09.013.
[120] Solomon BJ, Besse B, Bauer TM, Felip E, Soo RA, Camidge DR, et al. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol. 2018;19:1654-67. https://doi.org/10.1016/S1470-2045(18)30649-1.
[121] Lin YT, Yu CJ, Yang JC, Shih JY. Anaplastic Lymphoma Kinase (ALK) Kinase Domain Mutation Following ALK Inhibitor(s) Failure in Advanced ALK Positive Non-Small-Cell Lung Cancer: Analysis and Literature Review. Clin Lung Cancer. 2016;17:e77-e94. https://doi.org/10.1016/j.cllc.2016.03.005.
[122] Yoda S, Lin JJ, Lawrence MS, Burke BJ, Friboulet L, Langenbucher A, et al. Sequential ALK Inhibitors Can Select for Lorlatinib-Resistant Compound ALK Mutations in ALK-Positive Lung Cancer. Cancer Discov. 2018;8:714-29. https://doi.org/10.1158/2159-8290.CD-17-1256.
[123] Lin YT, Chiang CL, Hung JY, Lee MH, Su WC, Wu SY, et al. Resistance profiles of anaplastic lymphoma kinase tyrosine kinase inhibitors in advanced non-small-cell lung cancer: a multicenter study using targeted next-generation sequencing. Eur J Cancer. 2021;156:1-11. https://doi.org/10.1016/j.ejca.2021.06.043.
[124] Hendriks LE, Kerr KM, Menis J, Mok TS, Nestle U, Passaro A, et al. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2023;34:339-57. https://doi.org/10.1016/j.annonc.2022.12.009.
[125] Ho CC, Liao WY, Lin CA, Shih JY, Yu CJ, Yang JC. Acquired BRAF V600E Mutation as Resistant Mechanism after Treatment with Osimertinib. J Thorac Oncol. 2017;12:567-72. https://doi.org/10.1016/j.jtho.2016.11.2231.
[126] Dagogo-Jack I, Yoda S, Lennerz JK, Langenbucher A, Lin JJ, Rooney MM, et al. MET Alterations Are a Recurring and Actionable Resistance Mechanism in ALK-Positive Lung Cancer. Clin Cancer Res. 2020;26:2535-45. https://doi.org/10.1158/1078-0432.CCR-19-3906.
[127] Gouji T, Takashi S, Mitsuhiro T, Yukito I. Crizotinib can overcome acquired resistance to CH5424802: is amplification of the MET gene a key factor? J Thorac Oncol. 2014;9:e27-8. https://doi.org/10.1097/JTO.0000000000000113.
[128] Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E, Tiseo M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer. 2019;121:725-37. https://doi.org/10.1038/s41416-019-0573-8.
[129] Leonetti A, Verze M, Minari R, Perrone F, Gnetti L, Bordi P, et al. Resistance to osimertinib in advanced EGFR-mutated NSCLC: a prospective study of molecular genotyping on tissue and liquid biopsies. Br J Cancer. 2023. https://doi.org/10.1038/s41416-023-02475-9.
[130] Liam CK, Ahmad AR, Hsia TC, Zhou J, Kim DW, Soo RA, et al. Randomized Trial of Tepotinib Plus Gefitinib versus Chemotherapy in EGFR-Mutant NSCLC with EGFR Inhibitor Resistance Due to MET Amplification: INSIGHT Final Analysis. Clin Cancer Res. 2023;29:1879-86. https://doi.org/10.1158/1078-0432.CCR-22-3318.
[131] Hartmaier RJ, Markovets AA, Ahn MJ, Sequist LV, Han JY, Cho BC, et al. Osimertinib + Savolitinib to Overcome Acquired MET-Mediated Resistance in Epidermal Growth Factor Receptor-Mutated, MET-Amplified Non-Small Cell Lung Cancer: TATTON. Cancer Discov. 2023;13:98-113. https://doi.org/10.1158/2159-8290.CD-22-0586.
[132] Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A. 2007;104:20932-7. https://doi.org/10.1073/pnas.0710370104.
[133] Liu YN, Tsai MF, Wu SG, Chang TH, Tsai TH, Gow CH, et al. Acquired resistance to EGFR tyrosine kinase inhibitors is mediated by the reactivation of STC2/JUN/AXL signaling in lung cancer. Int J Cancer. 2019;145:1609-24. https://doi.org/10.1002/ijc.32487.
[134] Cai L, Qin X, Xu Z, Song Y, Jiang H, Wu Y, et al. Comparison of Cytotoxicity Evaluation of Anticancer Drugs between Real-Time Cell Analysis and CCK-8 Method. ACS Omega. 2019;4:12036-42. https://doi.org/10.1021/acsomega.9b01142.
[135] Grugan KD, Dorn K, Jarantow SW, Bushey BS, Pardinas JR, Laquerre S, et al. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs. 2017;9:114-26. https://doi.org/10.1080/19420862.2016.1249079.
[136] Neijssen J, Cardoso RMF, Chevalier KM, Wiegman L, Valerius T, Anderson GM, et al. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J Biol Chem. 2021;296:100641. https://doi.org/10.1016/j.jbc.2021.100641.
[137] Wei B, Kang J, Kibukawa M, Arreaza G, Maguire M, Chen L, et al. Evaluation of the TruSight Oncology 500 Assay for Routine Clinical Testing of Tumor Mutational Burden and Clinical Utility for Predicting Response to Pembrolizumab. J Mol Diagn. 2022;24:600-8. https://doi.org/10.1016/j.jmoldx.2022.01.008.
[138] Yun J, Lee SH, Kim SY, Jeong SY, Kim JH, Pyo KH, et al. Antitumor Activity of Amivantamab (JNJ-61186372), an EGFR-cMet Bispecific Antibody, in Diverse Models of EGFR Exon 20 Insertion-Driven NSCLC. Cancer Discov. 2020. https://doi.org/10.1158/2159-8290.CD-20-0116.
[139] Wang K, Du R, Roy-Chowdhuri S, Li ZT, Hong L, Vokes N, et al. Brief Report: Clinical Response, Toxicity, and Resistance Mechanisms to Osimertinib Plus MET Inhibitors in Patients With EGFR-Mutant MET-Amplified NSCLC. JTO Clin Res Rep. 2023;4:100533. https://doi.org/10.1016/j.jtocrr.2023.100533.
[140] Yao Z, Gao Y, Su W, Yaeger R, Tao J, Na N, et al. RAF inhibitor PLX8394 selectively disrupts BRAF dimers and RAS-independent BRAF-mutant-driven signaling. Nat Med. 2019;25:284-91. https://doi.org/10.1038/s41591-018-0274-5.
[141] Desai J, Gan H, Barrow C, Jameson M, Atkinson V, Haydon A, et al. Phase I, Open-Label, Dose-Escalation/Dose-Expansion Study of Lifirafenib (BGB-283), an RAF Family Kinase Inhibitor, in Patients With Solid Tumors. J Clin Oncol. 2020;38:2140-50. https://doi.org/10.1200/JCO.19.02654.
[142] Suzuki R, Kitamura Y, Nakamura Y, Akashi H, Ogawa Y, Kawada H, et al. Anti-tumor activities of the new oral pan-RAF inhibitor, TAK-580, used as monotherapy or in combination with novel agents in multiple myeloma. Oncotarget. 2020;11:3984-97. https://doi.org/10.18632/oncotarget.27775.
[143] Sullivan RJ, Hollebecque A, Flaherty KT, Shapiro GI, Rodon Ahnert J, Millward MJ, et al. A Phase I Study of LY3009120, a Pan-RAF Inhibitor, in Patients with Advanced or Metastatic Cancer. Mol Cancer Ther. 2020;19:460-7. https://doi.org/10.1158/1535-7163.MCT-19-0681.
[144] Moores SL, Chiu ML, Bushey BS, Chevalier K, Luistro L, Dorn K, et al. A Novel Bispecific Antibody Targeting EGFR and cMet Is Effective against EGFR Inhibitor-Resistant Lung Tumors. Cancer Res. 2016;76:3942-53. https://doi.org/10.1158/0008-5472.CAN-15-2833.
[145] Seo AN, Yang JM, Kim H, Jheon S, Kim K, Lee CT, et al. Clinicopathologic and prognostic significance of c-MYC copy number gain in lung adenocarcinomas. Br J Cancer. 2014;110:2688-99. https://doi.org/10.1038/bjc.2014.218.
[146] Llombart V, Mansour MR. Therapeutic targeting of "undruggable" MYC. EBioMedicine. 2022;75:103756. https://doi.org/10.1016/j.ebiom.2021.103756.
[147] Garralda E, Beaulieu ME, Moreno V, Casacuberta-Serra S, Martinez-Martin S, Foradada L, et al. MYC targeting by OMO-103 in solid tumors: a phase 1 trial. Nat Med. 2024;30:762-71. https://doi.org/10.1038/s41591-024-02805-1.
[148] Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell. 2010;141:69-80. https://doi.org/10.1016/j.cell.2010.02.027.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99574-
dc.description.abstract2009年的IPASS study確認了表皮生長因子接受體酪胺酸酶抑制劑(epidermal growth factor receptor tyrosine kinase inhibitor, EGFR TKI) gefitinib比傳統化療更能控制具有EGFR基因突變的肺癌,開啟了肺癌精準醫療的時代。在台灣,約有一半的肺癌病患具有EGFR突變,遠較西方國家的15-25%為高。目前EGFR的標靶藥物已有一代gefitinib和erlotinib、二代afatinib和dacomitinib及三代的osimertinib。EGFR T790M突變是最常見的第一代和第二代EGFR TKI之抗藥機轉,由於第三代的osimertinib對EGFR T790M特別有效,因此找到具有EGFR T790M的患者就十分重要。我們發現使用第一代或第二代EGFR TKI的時間較長的患者,發生EGFR T790M的機會也較高,而uncommon EGFR mutation的患者發生EGFR T790M突變的機率較低。然而,並不是所有EGFR T790M的患者,使用osimertinib的效果都一樣的好。我們發現osimertinib對complex EGFR mutations with T790M之非小細胞肺癌治療效果不佳:腫瘤反應率只有27%,中位數無惡化存活期(progression-free survival, PFS)只有2.9個月。Osimertinib是否也為這群病患的治療首選,值得存疑。在次世代定序(next generation sequencing, NGS)的年代,腫瘤產生抗藥性後,再次切片用腫瘤組織檢測NGS,或是直接抽血檢測NGS即可,是一個重要的臨床問題。我們前瞻性的在台大醫院研究接受過EGFR TKI抗藥的肺癌病患,同時以腫瘤組織檢體和血液檢體進行NGS檢測。我們發現已接受組織再切片的病患中,仍有30%無法產出組織NGS的報告。在同時有組織及血液NGS報告的患者中,有50%的第一代或第二代EGFR TKI抗藥性的患者產生了EGFR T790M突變:其中48%的T790M只在組織中被檢測到而17%的T790M只在血液中被檢測到。無論從組織中檢測到EGFR T790M突變,或是從血液中檢測到EGFR T790M突變,對後續的osimertinib治療的效果都很好。因此,如果能同時進行組織和血液的NGS檢驗,會發現更多對下一線osimertinib治療有效的患者。利用NGS做檢驗除了EGFR突變以外還可以檢測其他的驅動基因突變,如MET基因擴增(MET amplification)。EGFR TKI抗藥後的MET amplification已在多個臨床試驗中顯示可以被EGFR TKI及MET TKI的合併治療控制。我們的研究中發現10%的病患在EGFR TKI抗藥後產生MET amplification。在EGFR TKI抗藥後使用NGS檢測相較於傳統的EGFR單基因檢測,能夠找到更多能繼續接受標靶治療的患者。

然而,這些病患接受了第二線的MET TKI合併治療後,往往最後仍再次產生抗藥性。對合併兩種TKIs後產生抗藥性的機轉,目前仍不清楚。我們收集台大醫院及台大癌醫使用EGFR TKI後,產生MET amplification,再合併EGFR TKI及MET TKI治療後,再產生抗藥性的病患。我們發現在7位雙重抗藥後的病患中,有3位出現BRAF fusion;有1位出現EGFR T790M;另有1位病患出現了ALK fusion。我們從接受osimertinib後產生抗藥性的病患胸水中培養出具有MET amplification之EGFR TKI抗藥肺癌細胞株(PE5345),以及病患在同時使用osimertinib及MET TKI – capmatinib治療後,再產生抗藥性的肺癌細胞株(PE5867)。另外,在實驗室中使用一系列逐漸增加藥物濃度治療PE5345後,我們培養出另一株對osimertinib + capmatinib合併治療後有抗藥性的肺癌細胞株(PE5345 os/cp R)。我們發現,PE5867及PE5345 os/cp R這兩株對osimertinib + capmatinib合併治療有抗藥性的細胞株,它們的MET amplification都減少了。然而兩株細胞的抗藥機轉不同。PE5345是經由BRAF fusions,造成下游ERK活化而產生抗藥性。此抗藥性可以被osimertinib合併MEK抑制劑trametinib逆轉;而PE5345 os/cp R細胞的抗藥性可能是EGFR及ERBB2 amplification及overexpression造成抗藥性,而使用afatinib可以抑制這株細胞的生長。腫瘤的異質性在後線腫瘤的治療,扮演重要的角色。使用EGFR TKI合併MET TKI後再產生抗藥性後,而有些患者的抗藥機轉仍可以被標靶治療克服。EGFR及MET雙特異性抗體(bispecific antibody) – amivantamab,對具有MET amplification的PE5345,以及對osimertinib合併capmatinib有抗藥性的PE5867及PE5345 os/cp R細胞,都有很強的抗體依賴性細胞媒介細胞毒性作用(antibody-dependent cell-mediated cytotoxicity, ADCC)。Amivantamab對具有MET amplification的EGFR TKI抗藥細胞,及使用過EGFR及MET抑制劑後仍再次產生抗藥性的雙重抗藥性肺癌,都顯示出治療的潛力。

除了EGFR以外,異生性淋巴癌激酶(anaplastic lymphoma kinase, ALK)的融合基因(ALK fusion)是肺癌另一個重要的驅動基因。目前ALK已有很好的標靶藥物—異生性淋巴癌激酶酪胺酸酶抑制劑(ALK TKI):一代crizotinib、二代alectinib、ceritinib和brigatinib及三代的lorlatinib可以控制腫瘤,然而哪些因素會影響ALK TKI的效果,仍不太清楚。有文獻報導指出較長的ALK fusion,如第一型和第二型的EML4-ALK fusion,可能對crizotinib的治療效果較佳,而較短的EML4-ALK fusion,如第三型,對crizotinib的治療效果較差。然而,我們分析台大醫院使用crizotinib治療的病患,並沒有看到crizotinib的治療效果和不同型的ALK fusion的相關性。我們和台北榮總及高醫合作,進行了前瞻性的世代研究:將ALK fusion的肺癌病患治療前的腫瘤組織,進行NGS檢驗。我們發現ALK fusion的種類,也和alectinib的治療效果無關。而治療前腫瘤裡發現MYC amplification的話,alectinib治療的效果會較差。然而儘管ALK TKI治療效果很好,但大部分的患者終究會再產生抗藥性。我們和全國7間醫學中心合作,分析使用ALK TKI後產生抗藥性的機轉。我們發現抗藥性的ALK mutations出現在大約1/4的病患。而對lorlatinib有抗藥性的compound ALK mutations在crizotinib, ceritinib及alectinib 治療失敗後都有可能出現。在ALK TKI治療產生抗藥性時,分析抗藥性的機轉可能有助於後線藥物的治療選擇。

在台灣,大多數的肺癌具有驅動基因突變。如何精準的使用標靶藥物治療,是非常重要的課題。我這幾年的研究證實了真實世界中EGFR及ALK標靶藥物的治療效果;藉由了解EGFR及ALK標靶藥物抗藥性的機轉,可以發現不同抗藥性機轉的腫瘤需要給予不同的藥物治療;在合併使用EGFR抑制劑及MET抑制劑後仍再產生的抗藥性的腫瘤,仍然有機會可以再次使用標靶治療。藉由分析病患腫瘤的驅動基因,抗藥性的原因,抗藥後再次產生抗藥性的機轉,我們能讓精準醫療更精準,以改善肺癌病患的預後。
zh_TW
dc.description.abstractIn 2009, the IPASS study demonstrated the superiority of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) gefitinib over chemotherapy in treating patients with EGFR mutant [EGFR(+)] non-small cell lung cancer (NSCLC), marking the advent of precision medicine in this field. In Taiwan, approximately half of NSCLC patients exhibit EGFR mutations, a prevalence notably higher than the 15-25% observed in Caucasian populations. Currently, several generations of EGFR TKIs have been approved for advanced EGFR(+) NSCLC, including first-generation (gefitinib and erlotinib), second-generation (afatinib and dacomitinib), and third-generation (osimertinib) inhibitors. The EGFR T790M mutation is the major resistance mechanism for the first and second-generation TKIs, with osimertinib effectively targeting this mutation. Therefore, identifying patients with the EGFR T790M mutation is critical.

Our analysis of patients at National Taiwan University Hospital (NTUH) revealed that those who received first or second-generation EGFR TKIs longer are more likely to develop an EGFR T790M mutation upon acquiring resistance, whereas patients with uncommon EGFR mutations are less likely to acquire the T790M mutation. However, not all patients with EGFR T790M respond to osimertinib well. We found the response rate (RR) and progression-free survival (PFS) of osimertinib in patients with complex EGFR mutations with T790M was only 27% and 2.9 months. Whether osimertinib is the treatment of choice becomes questionable. In the era of next-generation sequencing (NGS), we can sequence dosens to hundards cancer-related gene at a time. After EGFR TKI resistance, NGS can be conducted on tumor tissue (tissue rebiopsy) or plasma (liquid rebiopsy), though the superiority of one method over the other remains debated. In our prospective study of patients who developed resistance to EGFR TKIs, we performed both tissue and liquid rebiopsies concurrently. NGS analysis was not possible in 30% patients received tissue rebiopsy. In patients with tissue and liquid rebiopsy NGS results, EGFR T790M was detected in 50% patients resistant to first or second-generation EGFR TKI. Among them, 48% was detected only by tissue rebiopsy and 17% was detected solely by liquid rebiopsy. Additionally, MET amplification was found in 10% of total patients. To do tissue and liquid NGS in parallel after EGFR-TKI resistance may find more patients with targetable cancers.

MET amplification following resistance to EGFR TKI therapy can be counteracted by incorporating a MET inhibitor; however, resistance can still develop despite such combination treatments. In our review of patients who developed resistance after combining EGFR inhibitors with MET inhibitors, we identified acquired BRAF fusions, the EGFR T790M mutation, and EML-ALK fusions as mechanisms of resistance. We established a patient-derived EGFR L858R and MET amplification cell line (PE5345) and its paired cell line (PE5867) after clinical resistance to osimertinib combined with capmatinib. In addition, PE5345 was exposed to progressively increasing concentrations of osimertinib and capmatinib over seven months, resulting in a drug-tolerant cell line (PE5345 os/cp R) in our laboratory. Both PE5867 and PE5345 os/cp R lost MET amplification. PE5867 acquired GTF2I-BRAF fusions, and resistance was reversed with a combination of osimertinib and trametinib. The drug-tolerant PE5345 os/cp R exhibited EGFR and ERBB2 amplifications, and was inhibited by afatinib in vitro. Moreover, amivantamab significantly induced antibody-dependent cell-mediated cytotoxicity (ADCC) against PE5345, PE5867, and PE5345 os/cp R. Resistance following dual inhibition is heterogeneous, and targeting the newly emerged resistant mechanisms may overcome resistance associated with dual inhibition.

ALK fusion is another targetable driver in NSCLC, accounting for 5-10% of NSCLC patients. First-generation ALK TKI crizotinib, second-generation ALK TKI alectinib, ceritinib and brigatinib and third-generation ALK TKI lorlatinib are approved to treat advanced NSCLC with ALK fusion [ALK(+)].However, factors associated with ALK TKI efficacy are not well-known. While some studies have suggested an association between ALK fusion variants and TKI efficacy, our analysis of data from patients at NTUH did not reveal a correlation between ALK fusion variants and progression-free survival (PFS) to crizotinib. We initiated a prospective multicenter study to evaluate the association between cancer genetic alterations including ALK fusion variants and co-occuring mutations, and alectinib PFS. Similar to our findings with crizotinib, ALK fusion variants were not associated with alectinib PFS; however, the presence of MYC amplification was correlated with shorter PFS on alectinib. In spite of initial good ALK TKI reponse, however, the majority of patients ultimately developed resistance following ALK TKI treatment. We led a multicenter prospective study utilizing NGS to analyze resistance mechanisms to ALK TKIs. We found that ALK kinase domain mutations could be detected in approximately one-fourth of the patients. Compound ALK mutations, which may contribute to lorlatinib resistance, could occur in lung cancers resistant to crizotinib, ceritinib, and alectinib.

In Taiwan, the majority of lung cancers have oncogenic driver mutations. Precision medicine is a crucial issue. My research over the past few years has confirmed the effectiveness of EGFR and ALK targeted therapies in real-world settings. By understanding the mechanisms of resistance to EGFR and ALK inhibitors, we can identify tumors with different resistance mechanisms that require distinct treatment approaches. Moreover, even tumors that develop resistance after combination therapy with EGFR and MET inhibitors still have the potential to benefit from further targeted treatments. By analyzing the driver genes of patients’ tumors, the reasons for resistance, and the mechanisms involved in the re-emergence of resistance, we can enhance the precision of precision medicine to improve the prognosis for lung cancer patients.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:09:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-16T16:09:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目 次
口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 vi

第一章 緒論 1
1. 緣起 1
2. 肺癌 3
2.1 什麼是肺癌? 3
2.2 肺癌的流行病學 3
2.3 肺癌的致病機轉 5
2.4 肺癌的分類 9
2.5 肺癌的分期 10
2.6 肺癌的治療 12
3. 標靶治療:未解決的問題 13

第二章 真實世界中EGFR TKI的效果 16
1. 簡要總結 16
2. 研究目的 16
3. 研究方法 16
4. 結果 17
4.1 第一線使用gefitinib、erlotinib或afatinib是不同族群的病患 17
4.2 不同族群的病患第一線使用gefitinib、erlotinib或afatinib治療效果都很優異 18
4.3 影響第一線EGFR TKI無惡化存活期(PFS)的因素 19
4.4 影響第一線EGFR TKI總存活期(OS)的因素 20
4.5 治療後產生EGFR T790M的病患特性 21
5. 討論與結論 22

第三章 EGFR TKI的抗藥機轉:EGFR T790M及非EGFR突變的抗藥機轉 24
1. 簡要總結 24
2. 研究目的 24
3. 研究方法 25
3.1 評估不同EGFR突變產生EGFR T790M後,Osimertinib的治療效果 25
3.2 同時使用tissue rebiopsy NGS以及liquid rebiopsy NGS評估一線EGFR TKI的抗藥機轉 26
4. 結果 26
4.1 評估不同EGFR突變產生EGFR T790M後,Osimertinib的治療效果 26
4.2 評估在一線EGFR TKI產生抗藥性後,使用tissue rebiopsy NGS以及liquid rebiopsy NGS評估抗藥機轉 32
5. 討論與結論 37

第四章 真實世界中ALK TKI的效果 40
1. 簡要總結 40
2. 研究目的 40
3. 研究方法 40
3.1 真實世界的crizotinib 40
3.2 真實世界的alectinib:腫瘤基因變異與alectinib的預後 41
4. 結果 42
4.1 真實世界的crizotinib 42
4.2 真實世界的alectinib:腫瘤基因變異與alectinib的預後 51
5. 討論與結論,及真實世界的lorlatinib 56

第五章 對第三代ALK TKI lorlatinib有抗藥性的compound ALK mutations在crizotinib、ceritinib及alectinib抗藥後都有可能會發生 61
1. 簡要總結 61
2. 研究目的 61
3. 研究方法 61
3.1 病患及腫瘤治療 61
3.2 次世代定序(next generation sequencing, NGS) 62
4. 結果 62
4.1 臨床病患 62
4.2 Crizotinib的抗藥機轉 63
4.3 Ceritinib的抗藥機轉 64
4.4 Alectinib的抗藥機轉 64
4.5 Brigatinib的抗藥機轉 65
4.6 Lorlatinib的抗藥機轉 65
4.7 組織檢測與血液檢測的一致性 67
5. 結論與討論 68

第六章 抗藥之後的再抗藥:BRAF融合基因可能是EGFR TKI合併MET TKI治療後再產生抗藥性的的重要抗藥機轉 69
1. 簡要總結 69
2. 研究目的 69
3. 研究方法 70
3.1 臨床病患 70
3.2 肺癌細胞培養 70
3.3 EGFR及MET基因分析 71
3.4 西方墨點法(Western blot) 71
3.5 細胞存活性測定(Cell viability assay) 71
3.6 抗體依賴的細胞媒介的細胞毒性作用(Antibody-dependent cell-mediated cytotoxicity, ADCC assay) 71
3.7 次世代定序(Next-generation sequence, NGS) 71
4. 結果 72
4.1 臨床病患 72
4.2 對雙重EGFR及MET抑制劑抗藥的肺癌細胞株 74
4.3 對雙重EGFR及MET抑制劑抗藥的肺癌細胞株的抗藥機轉 75
4.4 以次世代定序探索PE5867及PE5345 os/cp R的抗藥機轉 76
4.5 Amivantamab對PE5345、PE5867及PE5345 os/cp R細胞的效果 78
5. 結論與討論 80

第七章 未來的展望 82

參考文獻 84
附錄 105
個人著作目錄 108
-
dc.language.isozh_TW-
dc.subjectEGFRzh_TW
dc.subject抗藥性zh_TW
dc.subject肺癌zh_TW
dc.subjectMETzh_TW
dc.subjectALKzh_TW
dc.subject酪胺酸酶抑制劑zh_TW
dc.subjectlung canceren
dc.subjectMETen
dc.subjectALKen
dc.subjectdrug resistanceen
dc.subjecttyrosine kinase inhibitoren
dc.subjectEGFRen
dc.title讓精準醫療更精準:非小細胞肺癌標靶治療及其抗藥性的研究zh_TW
dc.titleMaking Precision Medicine More Precise: A Study of Targeted Therapy and Its Resistance in Non-Small Cell Lung Canceren
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.coadvisor蔡幸真zh_TW
dc.contributor.coadvisorHsing-Chen Tsaien
dc.contributor.oralexamcommittee林家齊;廖唯昱;楊宗穎;蔡孟峯zh_TW
dc.contributor.oralexamcommitteeChia-Chi Lin;Wei-Yu Liao;Tsung-Ying Yang;Meng-Feng Tsaien
dc.subject.keyword肺癌,EGFR,ALK,MET,酪胺酸酶抑制劑,抗藥性,zh_TW
dc.subject.keywordlung cancer,EGFR,ALK,MET,tyrosine kinase inhibitor,drug resistance,en
dc.relation.page110-
dc.identifier.doi10.6342/NTU202501441-
dc.rights.note未授權-
dc.date.accepted2025-07-03-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床醫學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
7.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved