Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99572Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 趙啟超 | zh_TW |
| dc.contributor.advisor | Chi-Chao Chao | en |
| dc.contributor.author | 林昀 | zh_TW |
| dc.contributor.author | Yun Lin | en |
| dc.date.accessioned | 2025-09-16T16:09:24Z | - |
| dc.date.available | 2025-09-17 | - |
| dc.date.copyright | 2025-09-16 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | Agrawal, M., Garg, K., Samala, R., Rajan, R., Naik, V., & Singh, M. (2021). Outcome and Complications of MR Guided Focused Ultrasound for Essential Tremor: A Systematic Review and Meta-Analysis. Front Neurol, 12, 654711. https://doi.org/10.3389/fneur.2021.654711
Bhatia, K. P., Bain, P., Bajaj, N., Elble, R. J., Hallett, M., Louis, E. D., Raethjen, J., Stamelou, M., Testa, C. M., & Deuschl, G. (2018). Consensus Statement on the classification of tremors. from the task force on tremor of the International Parkinson and Movement Disorder Society. Mov Disord, 33(1), 75-87. https://doi.org/10.1002/mds.27121 Blumenfeld, H. (2010). Neuroanatomy through clinical cases (Second Edition ed.). Sinauer Associates, Inc. Boutet, A., Ranjan, M., Zhong, J., Germann, J., Xu, D., Schwartz, M. L., Lipsman, N., Hynynen, K., Devenyi, G. A., Chakravarty, M., Hlasny, E., Llinas, M., Lozano, C. S., Elias, G. J. B., Chan, J., Coblentz, A., Fasano, A., Kucharczyk, W., Hodaie, M., & Lozano, A. M. (2018). Focused ultrasound thalamotomy location determines clinical benefits in patients with essential tremor. Brain, 141(12), 3405-3414. https://doi.org/10.1093/brain/awy278 Buijink, A. W. G., van Rootselaar, A. F., & Helmich, R. C. (2022). Connecting tremors - a circuits perspective. Curr Opin Neurol, 35(4), 518-524. https://doi.org/10.1097/WCO.0000000000001071 Chahine, L. M., & Ghosh, D. (2009). Essential tremor after ipsilateral cerebellar hemispherectomy: support for the thalamus as the central oscillator. J Child Neurol, 24(7), 861-864. https://doi.org/10.1177/0883073808329528 Chang, J. W., Park, C. K., Lipsman, N., Schwartz, M. L., Ghanouni, P., Henderson, J. M., Gwinn, R., Witt, J., Tierney, T. S., Cosgrove, G. R., Shah, B. B., Abe, K., Taira, T., Lozano, A. M., Eisenberg, H. M., Fishman, P. S., & Elias, W. J. (2018). A prospective trial of magnetic resonance-guided focused ultrasound thalamotomy for essential tremor: Results at the 2-year follow-up. Ann Neurol, 83(1), 107-114. https://doi.org/10.1002/ana.25126 Deuschl, G., Wenzelburger, R., Löffler, K., Raethjen, J., & Stolze, H. (2000). Essential tremor and cerebellar dysfunction clinical and kinematic analysis of intention tremor. Brain, 123 ( Pt 8), 1568-1580. https://doi.org/10.1093/brain/123.8.1568 Dupuis, M. J., Evrard, F. L., Jacquerye, P. G., Picard, G. R., & Lermen, O. G. (2010). Disappearance of essential tremor after stroke. Mov Disord, 25(16), 2884-2887. https://doi.org/10.1002/mds.23328 Dyke, J. P., Cameron, E., Hernandez, N., Dydak, U., & Louis, E. D. (2017). Gray matter density loss in essential tremor: a lobule by lobule analysis of the cerebellum. Cerebellum Ataxias, 4, 10. https://doi.org/10.1186/s40673-017-0069-3 Gallea, C., Popa, T., García-Lorenzo, D., Valabregue, R., Legrand, A. P., Marais, L., Degos, B., Hubsch, C., Fernández-Vidal, S., Bardinet, E., Roze, E., Lehéricy, S., Vidailhet, M., & Meunier, S. (2015). Intrinsic signature of essential tremor in the cerebello-frontal network. Brain, 138(Pt 10), 2920-2933. https://doi.org/10.1093/brain/awv171 Giordano, M., Caccavella, V. M., Zaed, I., Foglia Manzillo, L., Montano, N., Olivi, A., & Polli, F. M. (2020). Comparison between deep brain stimulation and magnetic resonance-guided focused ultrasound in the treatment of essential tremor: a systematic review and pooled analysis of functional outcomes. J Neurol Neurosurg Psychiatry, 91(12), 1270-1278. https://doi.org/10.1136/jnnp-2020-323216 Gironell, A., Ribosa-Nogué, R., Gich, I., Marin-Lahoz, J., & Pascual-Sedano, B. (2015). Severity stages in essential tremor: a long-term retrospective study using the glass scale. Tremor Other Hyperkinet Mov (N Y), 5, 299. https://doi.org/10.7916/d8dv1hqc Govindan, R. B., Raethjen, J., Arning, K., Kopper, F., & Deuschl, G. (2006). Time delay and partial coherence analyses to identify cortical connectivities. Biol Cybern, 94(4), 262-275. https://doi.org/10.1007/s00422-005-0045-5 Halpern, C. H., Santini, V., Lipsman, N., Lozano, A. M., Schwartz, M. L., Shah, B. B., Elias, W. J., Cosgrove, G. R., Hayes, M. T., McDannold, N., Aldrich, C., Eisenberg, H. M., Gandhi, D., Taira, T., Gwinn, R., Ro, S., Witt, J., Jung, N. Y., Chang, J. W.,…Ghanouni, P. (2019). Three-year follow-up of prospective trial of focused ultrasound thalamotomy for essential tremor. Neurology, 93(24), e2284-e2293. https://doi.org/10.1212/wnl.0000000000008561 Hedera, P., Cibulčík, F., & Davis, T. L. (2013). Pharmacotherapy of essential tremor. J Cent Nerv Syst Dis, 5, 43-55. https://doi.org/10.4137/jcnsd.S6561 Hellriegel, H., Schulz, E. M., Siebner, H. R., Deuschl, G., & Raethjen, J. H. (2012). Continuous theta-burst stimulation of the primary motor cortex in essential tremor. Clin Neurophysiol, 123(5), 1010-1015. https://doi.org/10.1016/j.clinph.2011.08.033 Hellwig, B., Häussler, S., Schelter, B., Lauk, M., Guschlbauer, B., Timmer, J., & Lücking, C. H. (2001). Tremor-correlated cortical activity in essential tremor. Lancet, 357(9255), 519-523. https://doi.org/10.1016/s0140-6736(00)04044-7 Hua, S. E., Lenz, F. A., Zirh, T. A., Reich, S. G., & Dougherty, P. M. (1998). Thalamic neuronal activity correlated with essential tremor. J Neurol Neurosurg Psychiatry, 64(2), 273-276. https://doi.org/10.1136/jnnp.64.2.273 Iacopino, D. G., Gagliardo, C., Giugno, A., Giammalva, G. R., Napoli, A., Maugeri, R., Graziano, F., Valentino, F., Cosentino, G., D'Amelio, M., Bartolotta, T. V., Catalano, C., Fierro, B., Midiri, M., & Lagalla, R. (2018). Preliminary experience with a transcranial magnetic resonance-guided focused ultrasound surgery system integrated with a 1.5-T MRI unit in a series of patients with essential tremor and Parkinson's disease. Neurosurg Focus, 44(2), E7. https://doi.org/10.3171/2017.11.Focus17614 Jankovic, J., Cardoso, F., Grossman, R. G., & Hamilton, W. J. (1995). Outcome after stereotactic thalamotomy for parkinsonian, essential, and other types of tremor. Neurosurgery, 37(4), 680-686; discussion 686-687. https://doi.org/10.1227/00006123-199510000-00011 Kim, M., Jung, N. Y., Park, C. K., Chang, W. S., Jung, H. H., & Chang, J. W. (2017). Comparative Evaluation of Magnetic Resonance-Guided Focused Ultrasound Surgery for Essential Tremor. Stereotact Funct Neurosurg, 95(4), 279-286. https://doi.org/10.1159/000478866 Klaming, R., & Annese, J. (2014). Functional anatomy of essential tremor: lessons from neuroimaging. AJNR Am J Neuroradiol, 35(8), 1450-1457. https://doi.org/10.3174/ajnr.A3586 Klebe, S., Stolze, H., Grensing, K., Volkmann, J., Wenzelburger, R., & Deuschl, G. (2005). Influence of alcohol on gait in patients with essential tremor. Neurology, 65(1), 96-101. https://doi.org/10.1212/01.wnl.0000167550.97413.1f Klein, J. C., Lorenz, B., Kang, J. S., Baudrexel, S., Seifried, C., van de Loo, S., Steinmetz, H., Deichmann, R., & Hilker, R. (2011). Diffusion tensor imaging of white matter involvement in essential tremor. Hum Brain Mapp, 32(6), 896-904. https://doi.org/10.1002/hbm.21077 Krauss, J., Upadhyay, N., Purrer, V., Borger, V., Daamen, M., Maurer, A., Schmeel, C., Radbruch, A., Wüllner, U., & Boecker, H. (2025). Beyond the cerebello-thalamo-cortical tract: Remote structural changes after VIM-MRgFUS in essential tremor. Parkinsonism Relat Disord, 132, 107318. https://doi.org/10.1016/j.parkreldis.2025.107318 Lin, C. H., Chen, C. M., Lu, M. K., Tsai, C. H., Chiou, J. C., Liao, J. R., & Duann, J. R. (2013). VBM Reveals Brain Volume Differences between Parkinson's Disease and Essential Tremor Patients. Front Hum Neurosci, 7, 247. https://doi.org/10.3389/fnhum.2013.00247 Lingford-Hughes, A., & Kalk, N. (2012). 2 - Clinical neuroanatomy. In P. Wright, J. Stern, & M. Phelan (Eds.), Core Psychiatry (Third Edition) (pp. 13-34). W.B. Saunders. https://doi.org/https://doi.org/10.1016/B978-0-7020-3397-1.00002-1 Louis, E. D., Agnew, A., Gillman, A., Gerbin, M., & Viner, A. S. (2011). Estimating annual rate of decline: prospective, longitudinal data on arm tremor severity in two groups of essential tremor cases. J Neurol Neurosurg Psychiatry, 82(7), 761-765. https://doi.org/10.1136/jnnp.2010.229740 Louis, E. D., Ford, B., & Barnes, L. F. (2000). Clinical subtypes of essential tremor. Arch Neurol, 57(8), 1194-1198. https://doi.org/10.1001/archneur.57.8.1194 Mostile, G., & Jankovic, J. (2010). Alcohol in essential tremor and other movement disorders. Mov Disord, 25(14), 2274-2284. https://doi.org/10.1002/mds.23240 Muthuraman, M., Heute, U., Arning, K., Anwar, A. R., Elble, R., Deuschl, G., & Raethjen, J. (2012). Oscillating central motor networks in pathological tremors and voluntary movements. What makes the difference? Neuroimage, 60(2), 1331-1339. https://doi.org/10.1016/j.neuroimage.2012.01.088 Nicoletti, G., Manners, D., Novellino, F., Condino, F., Malucelli, E., Barbiroli, B., Tonon, C., Arabia, G., Salsone, M., Giofre, L., Testa, C., Lanza, P., Lodi, R., & Quattrone, A. (2010). Diffusion tensor MRI changes in cerebellar structures of patients with familial essential tremor. Neurology, 74(12), 988-994. https://doi.org/10.1212/WNL.0b013e3181d5a460 Nicoletti, V., Cecchi, P., Pesaresi, I., Frosini, D., Cosottini, M., & Ceravolo, R. (2020). Cerebello-thalamo-cortical network is intrinsically altered in essential tremor: evidence from a resting state functional MRI study. Sci Rep, 10(1), 16661. https://doi.org/10.1038/s41598-020-73714-9 Nieuwhof, F., Toni, I., Dirkx, M. F., Gallea, C., Vidailhet, M., Buijink, A. W. G., van Rootselaar, A. F., van de Warrenburg, B. P. C., & Helmich, R. C. (2022). Cerebello-thalamic activity drives an abnormal motor network into dystonic tremor. Neuroimage Clin, 33, 102919. https://doi.org/10.1016/j.nicl.2021.102919 Pan, M. K., & Kuo, S. H. (2022). Essential tremor: Clinical perspectives and pathophysiology. J Neurol Sci, 435, 120198. https://doi.org/10.1016/j.jns.2022.120198 Park, Y. S., Jung, N. Y., Na, Y. C., & Chang, J. W. (2019). Four-year follow-up results of magnetic resonance-guided focused ultrasound thalamotomy for essential tremor. Mov Disord, 34(5), 727-734. https://doi.org/10.1002/mds.27637 Pascual-Leone, A., Valls-Solé, J., Toro, C., Wassermann, E. M., & Hallett, M. (1994). Resetting of essential tremor and postural tremor in Parkinson's disease with transcranial magnetic stimulation. Muscle Nerve, 17(7), 800-807. https://doi.org/10.1002/mus.880170716 Pedrosa, D. J., Reck, C., Florin, E., Pauls, K. A., Maarouf, M., Wojtecki, L., Dafsari, H. S., Sturm, V., Schnitzler, A., Fink, G. R., & Timmermann, L. (2012). Essential tremor and tremor in Parkinson's disease are associated with distinct 'tremor clusters' in the ventral thalamus. Exp Neurol, 237(2), 435-443. https://doi.org/10.1016/j.expneurol.2012.07.002 Pietracupa, S., Bologna, M., Bharti, K., Pasqua, G., Tommasin, S., Elifani, F., Paparella, G., Petsas, N., Grillea, G., Berardelli, A., & Pantano, P. (2019). White matter rather than gray matter damage characterizes essential tremor. Eur Radiol, 29(12), 6634-6642. https://doi.org/10.1007/s00330-019-06267-9 Pineda-Pardo, J. A., Martínez-Fernández, R., Rodríguez-Rojas, R., Del-Alamo, M., Hernández, F., Foffani, G., Dileone, M., Máñez-Miró, J. U., De Luis-Pastor, E., Vela, L., & Obeso, J. A. (2019). Microstructural changes of the dentato-rubro-thalamic tract after transcranial MR guided focused ultrasound ablation of the posteroventral VIM in essential tremor. Hum Brain Mapp, 40(10), 2933-2942. https://doi.org/10.1002/hbm.24569 Pollok, B., Gross, J., Dirks, M., Timmermann, L., & Schnitzler, A. (2004). The cerebral oscillatory network of voluntary tremor. J Physiol, 554(Pt 3), 871-878. https://doi.org/10.1113/jphysiol.2003.051235 Prasad, S., Pandey, U., Saini, J., Ingalhalikar, M., & Pal, P. K. (2019). Atrophy of cerebellar peduncles in essential tremor: a machine learning-based volumetric analysis. Eur Radiol, 29(12), 7037-7046. https://doi.org/10.1007/s00330-019-06269-7 Prasad, S., Rastogi, B., Shah, A., Bhalsing, K. S., Ingalhalikar, M., Saini, J., Yadav, R., & Pal, P. K. (2018). DTI in essential tremor with and without rest tremor: Two sides of the same coin? Mov Disord, 33(11), 1820-1821. https://doi.org/10.1002/mds.27459 Raethjen, J., & Deuschl, G. (2012). The oscillating central network of Essential tremor. Clin Neurophysiol, 123(1), 61-64. https://doi.org/10.1016/j.clinph.2011.09.024 Raethjen, J., Govindan, R. B., Kopper, F., Muthuraman, M., & Deuschl, G. (2007). Cortical involvement in the generation of essential tremor. J Neurophysiol, 97(5), 3219-3228. https://doi.org/10.1152/jn.00477.2006 Rea, P. (2015). Essential Clinical Anatomy of the Nervous System. Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-802030-2.00010-8 Revuelta, G., McGill, C., Jensen, J. H., & Bonilha, L. (2019). Characterizing Thalamo-Cortical Structural Connectivity in Essential Tremor with Diffusional Kurtosis Imaging Tractography. Tremor Other Hyperkinet Mov (N Y), 9. https://doi.org/10.7916/tohm.v0.690 Saini, J., Bagepally, B. S., Bhatt, M. D., Chandran, V., Bharath, R. D., Prasad, C., Yadav, R., & Pal, P. K. (2012). Diffusion tensor imaging: tract based spatial statistics study in essential tremor. Parkinsonism Relat Disord, 18(5), 477-482. https://doi.org/10.1016/j.parkreldis.2012.01.006 Schelter, B., Timmer, J., & Eichler, M. (2009). Assessing the strength of directed influences among neural signals using renormalized partial directed coherence. J Neurosci Methods, 179(1), 121-130. https://doi.org/10.1016/j.jneumeth.2009.01.006 Schlesinger, I., Sinai, A., & Zaaroor, M. (2017). MRI-Guided Focused Ultrasound in Parkinson's Disease: A Review. Parkinsons Dis, 2017, 8124624. https://doi.org/10.1155/2017/8124624 Sharma, S., & Pandey, S. (2020). Treatment of essential tremor: current status. Postgrad Med J, 96(1132), 84-93. https://doi.org/10.1136/postgradmedj-2019-136647 Sinai, A., Nassar, M., Eran, A., Constantinescu, M., Zaaroor, M., Sprecher, E., & Schlesinger, I. (2020). Magnetic resonance-guided focused ultrasound thalamotomy for essential tremor: a 5-year single-center experience. J Neurosurg, 133(2), 417-424. https://doi.org/10.3171/2019.3.Jns19466 Stolze, H., Petersen, G., Raethjen, J., Wenzelburger, R., & Deuschl, G. (2001). The gait disorder of advanced essential tremor. Brain, 124(Pt 11), 2278-2286. https://doi.org/10.1093/brain/124.11.2278 Tantik Pak, A., Şengül, Y., Otcu Temur, H., & Alkan, A. (2021). Impaired integrity of commissural and association fibers in essential tremor patients: Evidence from a diffusion tensor imaging study. Turk J Med Sci, 51(1), 328-334. https://doi.org/10.3906/sag-2004-305 Thaler, C., Tian, Q., Wintermark, M., Ghanouni, P., Halpern, C. H., Henderson, J. M., Airan, R. D., Zeineh, M., Goubran, M., Leuze, C., Fiehler, J., Butts Pauly, K., & McNab, J. A. (2023). Changes in the Cerebello-Thalamo-Cortical Network After Magnetic Resonance-Guided Focused Ultrasound Thalamotomy. Brain Connect, 13(1), 28-38. https://doi.org/10.1089/brain.2021.0157 Tikoo, S., Pietracupa, S., Tommasin, S., Bologna, M., Petsas, N., Bharti, K., Berardelli, A., & Pantano, P. (2020). Functional disconnection of the dentate nucleus in essential tremor. J Neurol, 267(5), 1358-1367. https://doi.org/10.1007/s00415-020-09711-9 Welton, T., Cardoso, F., Carr, J. A., Chan, L. L., Deuschl, G., Jankovic, J., & Tan, E. K. (2021). Essential tremor. Nat Rev Dis Primers, 7(1), 83. https://doi.org/10.1038/s41572-021-00314-w Wills, A. J., Jenkins, I. H., Thompson, P. D., Findley, L. J., & Brooks, D. J. (1994). Red nuclear and cerebellar but no olivary activation associated with essential tremor: a positron emission tomographic study. Ann Neurol, 36(4), 636-642. https://doi.org/10.1002/ana.410360413 Wong, J. K., Hess, C. W., Almeida, L., Middlebrooks, E. H., Christou, E. A., Patrick, E. E., Shukla, A. W., Foote, K. D., & Okun, M. S. (2020). Deep brain stimulation in essential tremor: targets, technology, and a comprehensive review of clinical outcomes. Expert Rev Neurother, 20(4), 319-331. https://doi.org/10.1080/14737175.2020.1737017 Younger, E., Ellis, E. G., Parsons, N., Pantano, P., Tommasin, S., Caeyenberghs, K., Benito-León, J., Romero, J. P., Joutsa, J., & Corp, D. T. (2023). Mapping Essential Tremor to a Common Brain Network Using Functional Connectivity Analysis. Neurology, 101(15), e1483-e1494. https://doi.org/10.1212/wnl.0000000000207701 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99572 | - |
| dc.description.abstract | 原發性顫抖(Essential tremor)是一種常見的神經科疾病,雖然對健康不致於造成重大危害,但卻足以造成日常生活相當具體的不便,在部分病人也連帶產生社交退縮等心理影響。目前對於原發性顫抖的治療分為藥物及手術兩種方式,藥物治療雖然簡便,但在不少病人身上卻難以達到理想的效果。磁振導航聚焦超音波丘腦燒灼術(MRgFUS thalamotomy)是一種非侵襲性的手術方式,藉由非侵入性的方式在丘腦精準地形成病灶以治療顫抖,目前已經是不少病人替代服藥的治療方式。
要了解原發性顫抖為何能從磁振導航聚焦超音波丘腦燒灼術獲得治療效益,牽涉到對於疾病生理的了解。本研究試圖透過原發性顫抖患者與對照組、原發性顫抖患者磁振導航聚焦超音波丘腦燒灼術術前與術後早期、術後晚期不同時間的比較,探討疾病本身以及聚焦超音波丘腦燒灼對於腦內結構的影響。我們發現原發性顫抖病人與對照組相比,其胼胝體的體積有所不同;另外,經手術治療後,發現病人胼胝體(corpus callosum)及小腦腳出現微結構以及巨觀的體積改變,暗示了疾病的改善伴隨了跨大腦半球訊息傳導的變化,也呼應了目前對於原發性顫抖是一種「神經網絡疾病」(network disease)的觀點。 本研究受限於樣本數及影像分析技術本身的限制,難以完全揭示原發性顫抖的病態生理以及接受丘腦燒灼術後腦部構造與功能的完整變化,尚待其他更完備之研究進行驗證。 | zh_TW |
| dc.description.abstract | Essential tremor (ET) is a common neurological disorder. Although it does not pose a major threat to overall health, it can cause significant inconvenience in daily life and, in some patients, lead to psychological effects such as social withdrawal. Current treatment strategies for ET include both pharmacological and surgical approaches. While medications are convenient, they often fail to produce satisfactory results in many patients. Magnetic Resonance-guided Focused Ultrasound (MRgFUS) thalamotomy is a non-invasive surgical technique that precisely targets and ablates regions in the thalamus to alleviate tremor, and it has become an alternative treatment for patients who do not respond well to medication.
Understanding why MRgFUS thalamotomy benefits patients with ET requires insight into the disease’s underlying pathophysiology. This study compares ET patients with healthy controls, as well as pre- and post-operative imaging (early and late phases) of ET patients undergoing MRgFUS thalamotomy, to investigate the structural brain changes associated with both the disease itself and the surgical intervention. We found that compared to healthy controls, ET patients exhibited differences in the volume of the corpus callosum and cerebellar peduncles. Furthermore, both microstructural and macrostructural changes in the corpus callosum and cerebellar peduncles were observed following MRgFUS thalamotomy, suggesting that improvements in tremor may be accompanied by alterations in interhemispheric communication. These findings support the current view that ET may be a "network disease." However, this study is limited by its small sample size and inherent constraints of neuroimaging techniques, and it may not fully capture the pathological mechanisms of ET or the comprehensive structural and functional changes following thalamotomy. Further studies with larger cohorts and advanced imaging methods are warranted to validate these findings. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:09:24Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-16T16:09:24Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ii
中文摘要 iii Abstract iv 圖次 5 表次 6 一、緒論 Introduction 11 1. Essential Tremor (ET) 11 2. Pathophysiology of ET 12 2.1 The cerebello-thalamo-cortical loop 12 2.2 The Cerebellum as the Hub of ET Tremor Network 13 2.3 Ventral Intermediate (Vim) Nucleus 15 2.4 Thalamo-cortical Oscillations 15 3. Functional Organization of Cerebellar Peduncles and Their Major Afferent and Efferent Pathways 17 4. MR-guided Focused Ultrasound (MRgFUS) Vim thalamotomy in the treatment of ET 18 5. Hypothesis and Goals of this Study 20 5.1 Regions of Interest for Cross-sectional and Longitudinal analysis 21 5.2 Clinical and Neuroimaging Correlates of Baseline Tremor Severity and Treatment Outcome 23 二、研究方法與材料 Methods and Materials 24 1. Study Population 24 1.1 Patient Recruitment 24 1.2 Postoperative Data Stratification 25 1.3 Healthy Control Recruitment 25 2. Tremor Evaluation 26 2.1 Fahn–Tolosa–Marin Tremor Rating Scale (FTM-TRS) 26 2.2 Selected Tremor Subscores for Treated and Untreated Hands (sel_Rt, sel_Lt) 27 3 MRI Processing 28 3.1 MRI Specifications 28 3.2 MRI Data Processing 29 3.2.1 Mask Editing 29 3.2.2 Diffusion Tensor Imaging (DTI) 30 3.2.3 Voxel-Based Morphometry (VBM) 30 4. Statistical Analysis 31 4.1 Longitudinal Change in Tremor Severity After MRgFUS Vim Thalamotomy 31 4.1.1 Longitudinal Analysis of Change in FTM-TRS Part A Total Score 33 4.1.2 Longitudinal Analysis of FTM-TRS Selected Item Scores for the Treated Hand 34 4.1.3 Longitudinal Analysis of Change in FTM-TRS Selected Item Scores for the Treated Hand 34 4.2 Sensitivity Analysis 35 5. Cross-Sectional Comparison (ET vs. HC) 36 6. Longitudinal Comparison (ET After vs. Before MRgFUS) 37 7. Clinical Correlation 37 7.1 Association Between Tremor Severity and Clinical Characteristics 37 7.1.1 Demographic and Clinical Predictors 38 7.1.2 Association Between Baseline Regional Volume and Tremor Severity 38 7.1.3 Association Between Baseline DTI Metrics and Tremor Severity 39 7.2 Predictors of Outcome Following MRgFUS Thalamotomy 39 7.2.1 Clinical Predictors of Treatment Response 39 7.2.2 Intraoperative MRgFUS Parameters 40 7.2.3 Baseline ROI Volume and Treatment Response 40 三、研究結果 Results 41 1. Longitudinal change in tremor severity after MRgFUS Vim thalamotomy 41 1.1 Longitudinal Analysis of FTM-TRS Part A Total Score Change 41 1.2 Longitudinal Analysis of FTM-TRS Selected Item Scores of the Treated Hand 42 1.3 Longitudinal Analysis of Change in FTM-TRS Selected Item Scores of the Treated Hand 43 1.4 Sensitivity Analysis 44 2. Cross-Sectional Comparison (ET vs. HC) 45 2.1 DTI 45 2.2 VBM 46 3. Longitudinal Comparison (ET After vs. Before MRgFUS) 47 3.1 DTI 47 In the longitudinal comparison between ET patients and their baseline scans, no significant DTI changes were observed in the early post-treatment phase for ROIs associated with the non-treated hand, treated hand, or corpus callosum. In the late post-treatment phase, a significant reduction in FA was detected in the right inferior cerebellar peduncle (R_ICP, JHU atlas) associated with the treated hand (Coef = –0.037, p = 0.0315), while no significant changes were observed in the ROIs corresponding to the non-treated hand or corpus callosum (Table 16.1-16.3, 18.1- 18.3). 47 3.2 VBM 47 4. Summary of the cross-sectional and longitudinal analysis 48 5. Clinical correlation 48 5.1 Association Between Tremor Severity and Clinical Characteristics 48 5.1.1 Age at Onset, Family History, Disease Duration, age at operation, SDR (skull density ratio) 48 5.1.2 Baseline volume of ROIs 48 5.1.3 Baseline DTI scalar values of ROIs 49 5.2 Predictors of Outcome Following MRgFUS thalamotomy 49 5.2.1 Association Between Improvement of TRS score (In Percentage) and Clinical Characteristics 49 5.2.2 Association Between Improvement of TRS score (In Percentage) and MRgFUS Parameters 50 5.2.3 Association Between Improvement of TRS score (In Percentage) and ROI Volume 50 5.3 Summary of Predictors Associated with Tremor Improvement in Treated and Non-Treated Hands 51 四、討論 Discussion 52 1. Longitudinal change in tremor severity after MRgFUS Vim thalamotomy 52 2. DTI and VBM: Cross-sectional and Longitudinal Comparisons 52 3. Clinical Correlation 55 五、本研究的限制 Limitations 61 參考文獻 References 63 附錄 74 | - |
| dc.language.iso | en | - |
| dc.subject | 核磁共振影像 | zh_TW |
| dc.subject | 原發性顫抖 | zh_TW |
| dc.subject | 像素型態測量學 | zh_TW |
| dc.subject | 擴散張量影像 | zh_TW |
| dc.subject | Fahn-Tolosa-Marin震顫評定量表 | zh_TW |
| dc.subject | Essential tremor | en |
| dc.subject | Diffusion tensor imaging | en |
| dc.subject | Magnetic resonance imaging | en |
| dc.subject | Fahn-Tolosa-Marin Rating Scale | en |
| dc.subject | Voxel-based morphometry | en |
| dc.title | 原發性震顫患者接受磁振導航聚焦超音波丘腦燒灼術後之短期與長期腦部結構變化 | zh_TW |
| dc.title | Short- and Long-Term Structural Changes in Essential Tremor Following MRgFUS Thalamotomy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 呂明桂 | zh_TW |
| dc.contributor.coadvisor | Ming-Kuei Lu | en |
| dc.contributor.oralexamcommittee | 段正仁;謝松蒼 | zh_TW |
| dc.contributor.oralexamcommittee | Jeng-Ren Duann;Sung-Tsang Hsieh | en |
| dc.subject.keyword | 原發性顫抖,核磁共振影像,擴散張量影像,像素型態測量學,Fahn-Tolosa-Marin震顫評定量表, | zh_TW |
| dc.subject.keyword | Essential tremor,Magnetic resonance imaging,Diffusion tensor imaging,Voxel-based morphometry,Fahn-Tolosa-Marin Rating Scale, | en |
| dc.relation.page | 175 | - |
| dc.identifier.doi | 10.6342/NTU202504209 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床醫學研究所 | - |
| dc.date.embargo-lift | 2025-09-17 | - |
| Appears in Collections: | 臨床醫學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf | 3.21 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
