請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9956
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 久米朋宣(Tomonori Kume) | |
dc.contributor.author | Tseng Han | en |
dc.contributor.author | 曾涵 | zh_TW |
dc.date.accessioned | 2021-05-20T20:51:47Z | - |
dc.date.available | 2011-08-28 | |
dc.date.available | 2021-05-20T20:51:47Z | - |
dc.date.copyright | 2011-08-22 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-22 | |
dc.identifier.citation | Adu-Bredu, S., and A. Hagihara. 1996. Sapwood Amount and its Predictive Equations for Young Hinoki Cypress (Chamaecyparis obtusa) Trees. 名古屋大学農学部演習林報告 15:11-21.
Čermak, J., J. Kučera, and N. Nadezhdina. 2004. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees-Struct. Funct. 18(5):529-546. Clearwater, M.J., F.C. Meinzer, J.L. Andrade, G. Goldstein, and N.M. Holbrook. 1999. Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiol. 19(10):681-687. Cohen, Y., S. Cohen, T. Cantuarias-Aviles, and G. Schiller. 2008. Variations in the radial gradient of sap velocity in trunks of forest and fruit trees. Plant and Soil 305(1-2):49-59. Delzon, S., M. Sartore, A. Granier, and D. Loustau. 2004. Radial profiles of sap flow with increasing tree size in maritime pine. Tree Physiol. 24(11):1285. Ford, C.R., R.M. Hubbard, B.D. Kloeppel, and J.M. Vose. 2007. A comparison of sap flux-based evapotranspiration estimates with catchment-scale water balance. Agric. For. Meteorol. 145(3-4):176-185. Gong, D.Z., S.Z. Kang, L.M. Yao, and L. Zhang. 2007. Estimation of evapotranspiration and its components from an apple orchard in northwest China using sap flow and water balance methods. Hydrol. Process. 21(7):931-938. Granier, A. 1987. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 3(4):309-319. Granier, A., T. Anfodillo, M. Sabatti, H. Cochard, E. Dreyer, M. Tomasi, R. Valentini, and N. Breda. 1994. Axial and radial water flow in the trunks of oak trees: a quantitative and qualitative analysis. Tree Physiol. 14(12):1383-1396. Granier, A., P. Biron, N. Breda, J.Y. Pontailler, and B. Saugier. 1996. Transpiration of trees and forest stands: Short and longterm monitoring using sapflow methods. Glob. Change Biol. 2(3):265-274. Hogg, E.H., T.A. Black, G. den Hartog, H.H. Neumann, R. Zimmermann, P.A. Hurdle, P.D. Blanken, Z. Nesic, P.C. Yang, R.M. Staebler, K.C. McDonald, and R. Oren. 1997. A comparison of sap flow and eddy fluxes of water vapor from a boreal deciduous forest. J. Geophys. Res.-Atmos. 102(D24):28929-28937. Kume, T., K. Tsuruta, H. Komatsu, T. Kumagai, N. Higashi, Y. Shinohara, and K. Otsuki. 2009. Effects of sample size on sap flux-based stand-scale transpiration estimates. Tree Physiol. Lu, P., W.J. Muller, and E.K. Chacko. 2000. Spatial variations in xylem sap flux density in the trunk of orchard-grown, mature mango trees under changing soil water conditions. Tree Physiol. 20(10):683-692. Nadezhdina, N., M.I. Ferreira, R. Silva, and C.A. Pacheco. 2008. Seasonal variation of water uptake of a Quercus suber tree in Central Portugal. Plant and Soil 305(1-2):105-119. Nadezhdina, N., V. Nadezhdin, M.I. Ferreira, and A. Pitacco. 2007. Variability with xylem depth in sap flow in trunks and branches of mature olive trees. Tree Physiol. 27(1):105-113. Oishi, A.C., R. Oren, and P.C. Stoy. 2008. Estimating components of forest evapotranspiration: A footprint approach for scaling sap flux measurements. Agric. For. Meteorol. 148(11):1719-1732. Oliveras, I., and P. Llorens. 2001. Medium-term sap flux monitoring in a Scots pine stand: analysis of the operability of the heat dissipation method for hydrological purposes. Tree Physiol. 21(7):473-480. Schiller, G., S. Cohen, E.D. Ungar, Y. Moshe, and N. Herr. 2007. Estimating water use of sclerophyllous species under East-Mediterranean climate - III. Tabor oak forest sap flow distribution and transpiration. Forest Ecology and Management 238(1-3):147-155. Schume, H., H. Hager, and G. Jost. 2005. Water and energy exchange above a mixed European Beech - Norway Spruce forest canopy: a comparison of eddy covariance against soil water depletion measurement. Theor. Appl. Climatol. 81(1-2):87-100. Smith, D.M., and S.J. Allen. 1996. Measurement of sap flow in plant stems. J. Exp. Bot. 47(305):1833-1844. Tateishi, M., T. Kumagai, Y. Utsumi, T. Umebayashi, Y. Shiiba, K. Inoue, K. Kaji, K. Cho, and K. Otsuki. 2008. Spatial variations in xylem sap flux density in evergreen oak trees with radial-porous wood: comparisons with anatomical observations. Trees-Struct. Funct. 22(1):23-30. Tsuruta, K., T. Kume, H. Komatsu, N. Higashi, T. Umebayashi, T. Kumagai, and K. Otsuki. 2010. Azimuthal variations of sap flux density within Japanese cypress xylem trunks and their effects on tree transpiration estimates. J. For. Res. 15(6):398-403. Williams, D.G., W. Cable, K. Hultine, J.C.B. Hoedjes, E.A. Yepez, V. Simonneaux, S. Er-Raki, G. Boulet, H.A.R. de Bruin, A. Chehbouni, O.K. Hartogensis, and F. Timouk. 2004. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agric. For. Meteorol. 125(3-4):241-258. Wilson, K.B., P.J. Hanson, P.J. Mulholland, D.D. Baldocchi, and S.D. Wullschleger. 2001. A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agric. For. Meteorol. 106(2):153-168. Wullschleger, S.D., and A.W. King. 2000. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees. Tree Physiol. 20(8):511-518. Wullschleger, S.D., F.C. Meinzer, and R.A. Vertessy. 1998. A review of whole-plant water use studies in trees. P. 499-512. Heron Publishing. Yoshikawa, K., M. Suzuki, H. Takizawa, T. Kobayashi, and M. Ueda. 2000. Relationship between Water Absorption and Sap Flow in Tree Trunk. 日本緑化工学会誌 25(3):176-183. 邓东周, 范志平, 王红, 孙学凯, 高俊刚, and 曾德慧. 2008. 林木蒸腾作用测定和估算方法. 生態學雜誌(27卷6期):8. 吳聲沅. 2008. 利用樹液探針研究環境參數對植物蒸散之影響, 中央大學. 81 p. 洪志凱. 2004. 樹液探針之發展與應用, 國立台灣科技大學, 台北. 106 p. 常建国, 李新平, 刘世荣, 吕皎, and 任庆福. 2009. 油松心边材量及年轮数的变异特征. 林業科學 45(11):76-82. 陳俐如. 2005. 鴛鴦湖地區台灣扁柏樹液流動之探討, 國立東華大學, 花蓮縣. 86 p. 陳信雄. 2006. 森林水文學. 熊伟, 王彦辉, 于澎涛, 刘海龙, 徐丽宏, 时忠杰, and 莫菲. 2008. 华北落叶松树干液流的个体差异和林分蒸腾估计的尺度上推. 林業科學 44(1):34-40. 瀧澤英紀, 窪田順平, and 塚本良則. 1996. 幹横断面における樹液流速分布. 日本林學會誌 78(2):190-194. 羅勻謙. 2004. 鴛鴦湖地區台灣扁柏森林生態系蒸散作用之研究 國立東華大學, 花蓮縣. 81 p. 藤山洋介, 廣瀬茂樹, 大槻恭一, and 小川滋. 2005. Granier法による樹液流測定に基づくヒノキ林における蒸散量の推定 : 御手洗試験流域における観測例. 九州大学農学部演習林報告 86:15-31 鶴田健二, 久米朋宣, 小松光, 東直子, 熊谷朝臣, and 大槻恭一. 2008. ヒノキ単木の樹高と蒸散量の関係. 水文・水資源学会 21(6). 赵平, 饶兴权, 马玲, 蔡锡安, and 曾小平. 2005. Granier树干液流测定系统在马占相思的水分利用研究中的应用. 熱帶亞熱帶植物學報 13(6):457-468. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9956 | - |
dc.description.abstract | 在森林生態系中,蒸散作用是水文循環中一個重要的過程。在森林中,樹液流測量法是一個測量單株樹木個體尺度蒸散量的可靠方法。雖然已有研究報告指出樹液流在個體內有顯著的空間分布差異,並在估算個體樹木蒸散時造成困難,但卻很少有研究詳細檢視這些空間分布差異在季節上的變化。因此,本研究在位於台灣中部的台大溪頭實驗林的柳杉人工林中實施樹液流測量,試圖釐清樹木個體之內在空間與時間上的變異。本研究使用Granier的熱擴散探針法,在兩顆較小、三棵中等、三棵較大的柳杉上進行測量。測量期間為2010年七月到2011年一月。所得的樹液流資料經過處理,分析樹液流流速與生物計量參數如胸高直徑(DBH)、樹高、邊材厚度及邊材面積之間的關係,並且分析於不同深度及方向所測得的樹液流流速之間的相關性。
研究結果,在樹液流徑向分布變異的分析中,可以得知在整個測量期間當中,於深度2–4 cm處所測得的樹液流流速,約為深度0–2 cm處所測得樹液流流速的50–60 %。而在樹液流的方位分布變異的分析則顯示,在不同方位之間樹液流流速有顯著的差異,一個方位的樹液流流速可能為另一方位的50–200 %。樹液流流速與方向並沒有相關性。但在不同方位所測得的流速,他們之間的關係在整個測量期間中大致上是固定的。另外,藉由一個簡單的計算過程和比較,可以得知樹液流在徑向分布變異與方位分布變異的季節性改變,有可能在估算個體樹木尺度的蒸散量時造成不顯著的影響。總體而言,本研究探討適當的設計,來測量柳杉的個體蒸散量。 | zh_TW |
dc.description.abstract | Transpiration is an important process in water cycle of forested ecosystem. To measure transpiration in forests, sap flow measurement method can be robust technique for individual tree-scale measurements. Although it have been reported that significant spatial variations in sap flow within-tree, which makes difficult to estimated individual tree-scale transpiration estimates, few studies have examined their seasonal change characteristics. Thus, this study was conducted to clarify within-tree special and temporal variations in sap flow in a Japanese cypress forest, Sitou NTU experimental forest located in Central Taiwan. In this study Granier's thermal dissipation technique is applied to two smaller sized, three middle sized and three larger sized trees, respectively. The measurement was carried out through 2010 July to 2011 January. Sap flow data is analyzed for the relationships between sap flux density and some biometric parameters such as DBH, tree height, sapwood thickness and sapwood area, and the correlation between sap flux density at different depth and azimuthal aspects.
Consequently, in radial profile analysis, we found inner sap flow velocities measured at depth of 2–4 cm was approximately 50–60 % of the outermost sap flux density measured at depth of 0–2 cm through the measurement period. In azimuthal variations analysis, we found significant azimuthal variations in sap flux density, and one aspect showed 50–200 % of other aspects. Dependency of sap flux density on direction cannot be found. However, the relationships between one aspect and the other aspects are mostly fairly consistent through the measurement period. We also showed seasonal change of the radial and azimuthal variations in sap flow could have insignificant impacts on accuracy of individual tree-scale transpiration estimates based on a simple numerical exercise. Overall, this study discussed appropriate design for individual-tree scale transpiration estimates for Japanese cypress trees. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:51:47Z (GMT). No. of bitstreams: 1 ntu-100-R98625026-1.pdf: 1137338 bytes, checksum: bc0cd56bec52332c2c124690b52c489f (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 致謝 I
摘要 II Abstract IV 目次Table of contents VI 表目錄 Table List VIII 圖目錄 Figure List IX Chapter 1 Introduction 12 Measuring and estimating transpiration 12 Sap flow measurement 15 Granier’s thermal dissipation technique 16 Scaling up 19 Variability of sapwood and sap flow 20 Sapwood variability 21 Sap flow variability 22 Radial variability of sap flow 23 Azimuthal variability of sap flow 25 Sources of error 26 Optimal sample size 27 The goal of this study 27 Chapter 2 Material & Method 29 Site 29 Experiment Plot and sample size 30 Biometric parameters measurement 30 Sap flow measurement 30 Data processing 34 Chapter 3 Results 35 Sample trees composition 35 Sap flow measurement 35 Relationships between sap flux and biometric parameters 39 Radial variation 39 Azimuthal variation 44 Seasonal changes of sap flux density variations 48 Seasonal changes of variation affecting transpiration estimates 54 Single tree transpiration 54 Transpiration estimates 56 Chapter 4 Discussion 63 Chapter 5 Conclusions 68 Reference 72 | |
dc.language.iso | en | |
dc.title | 利用樹液流法測量溪頭柳杉人工林之蒸散狀況及變異 | zh_TW |
dc.title | Transpiration Estimates and Spatial and Temporal Variability of Sap Flow in a Japanese Cedar Plantation in Sitou, Central Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 梁偉立(Wei-Li Liang),陳信雄(Hsin-Hsiung Chen) | |
dc.subject.keyword | 蒸發散,蒸散,樹液流測量,尺度放大,樹液流個體內變異, | zh_TW |
dc.subject.keyword | evapotranspiration,transpiration,sap flow measurement,scaling up,sap flow within tree variability, | en |
dc.relation.page | 74 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2011-08-22 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf | 1.11 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。