Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99559
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾琬瑜zh_TW
dc.contributor.advisorWan-Yu Tsengen
dc.contributor.author鄭宇翔zh_TW
dc.contributor.authorYu Hsiang Chengen
dc.date.accessioned2025-09-16T16:07:02Z-
dc.date.available2025-09-17-
dc.date.copyright2025-09-16-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation1. Buonocore, M.G., A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res, 1955. 34(6): p. 849-53.
2. Van Meerbeek, B., et al., Buonocore memorial lecture. Adhesion to enamel and dentin: current status and future challenges. Oper Dent, 2003. 28(3): p. 215-35.
3. Perdigão, J., New developments in dental adhesion. Dent Clin North Am, 2007. 51(2): p. 333-57, viii.
4. Breschi, L., et al., Dental adhesion review: aging and stability of the bonded interface. Dent Mater, 2008. 24(1): p. 90-101.
5. Van Meerbeek, B., et al., State of the art of self-etch adhesives. Dent Mater, 2011. 27(1): p. 17-28.
6. Hashimoto, M., et al., In vivo degradation of resin-dentin bonds in humans over 1 to 3 years. J Dent Res, 2000. 79(6): p. 1385-91.
7. Yoshida, Y., et al., Comparative study on adhesive performance of functional monomers. J Dent Res, 2004. 83(6): p. 454-8.
8. Inoue, S., et al., Microtensile bond strength of eleven contemporary adhesives to dentin. J Adhes Dent, 2001. 3(3): p. 237-45.
9. Mine, A., et al., TEM characterization of a silorane composite bonded to enamel/dentin. Dent Mater, 2010. 26(6): p. 524-32.
10. Muñoz, M.A., et al., In vitro longevity of bonding properties of universal adhesives to dentin. Oper Dent, 2015. 40(3): p. 282-92.
11. Yoshida, Y., et al., Self-assembled Nano-layering at the Adhesive interface. J Dent Res, 2012. 91(4): p. 376-81.
12. Rosales, J.I., et al., Acid-etching and Hydration Influence on Dentin Roughness and Wettability. Journal of Dental Research, 1999. 78(9): p. 1554-1559.
13. Yoshida, Y., et al., Comparative Study on Adhesive Performance of Functional Monomers. Journal of Dental Research, 2004. 83(6): p. 454-458.
14. Van Landuyt, K.L., et al., Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials, 2007. 28(26): p. 3757-85.
15. Omura, I., et al., Adhesive compositions. 1985, Google Patents.
16. Carrilho, E., et al., 10-MDP Based Dental Adhesives: Adhesive Interface Characterization and Adhesive Stability-A Systematic Review. Materials (Basel), 2019. 12(5).
17. Fukegawa, D., et al., Chemical interaction of phosphoric acid ester with hydroxyapatite. J Dent Res, 2006. 85(10): p. 941-4.
18. Nishitani, Y., et al., Effects of resin hydrophilicity on dentin bond strength. J Dent Res, 2006. 85(11): p. 1016-21.
19. 汪佑寶, 10-MDP對人類牙髓細胞之影響:細胞自噬與細胞焦亡之角色探討. 2024, 國立臺灣大學. p. 1-105.
20. 蔡孟嵐, 10-(2-甲基丙烯酰氧基)磷酸單癸酯對於人類牙髓細胞之毒性效應及相關機制, in 臨床牙醫學研究所. 2022, 國立臺灣大學.
21. Cavallaro-Mota, F.D., et al., Assessment of 10-MDP and GPDM monomers on viability and inflammatory response in human dental pulp stem cells. Dent Mater, 2025. 41(1): p. 1-6.
22. Kim, E.C., et al., Effect of the Acidic Dental Resin Monomer 10-methacryloyloxydecyl Dihydrogen Phosphate on Odontoblastic Differentiation of Human Dental Pulp Cells. Basic Clin Pharmacol Toxicol, 2015. 117(5): p. 340-9.
23. 廖育緯, 單瓶式牙科黏著劑透過人類牙本質及聚氨酯泡棉屏障實驗對單體濃度與生物相容性之探討, in 臨床牙醫學研究所. 2022, 國立臺灣大學. p. 1-82.
24. Zhou, L., et al., Effects of 10-MDP calcium salt on osteoblasts and fibroblasts. Dent Mater, 2024. 40(9): p. 1322-1331.
25. Nakabayashi, N. and K. Takarada, Effect of HEMA on bonding to dentin. Dent Mater, 1992. 8(2): p. 125-30.
26. Perdigao, J., et al., In vitro Bond Strengths and SEM Evaluation of Dentin Bonding Systems to Different Dentin Substrates. Journal of Dental Research, 1994. 73(1): p. 44-55.
27. Attal, J.P., E. Asmussen, and M. Degrange, Effects of surface treatment on the free surface energy of dentin. Dent Mater, 1994. 10(4): p. 259-64.
28. Asmussen, E. and S. Uno, Adhesion of restorative resins to dentin: chemical and physicochemical aspects. Oper Dent, 1992. Suppl 5: p. 68-74.
29. Ahmed, M.H., et al., Acrylamide monomers in universal adhesives. Dent Mater, 2023. 39(3): p. 246-259.
30. Gallorini, M., A. Cataldi, and V. di Giacomo, HEMA-induced cytotoxicity: oxidative stress, genotoxicity and apoptosis. Int Endod J, 2014. 47(9): p. 813-8.
31. 陳郁仁, 甲基丙烯酸 2-羥乙酯對牙髓細胞之毒性機制及其預防方法探討, in 臨床牙醫學研究所. 2019, 國立臺灣大學. p. 1-71.
32. 胡裕仁, 甲基丙烯酸羥乙酯單體的毒性研究與分析, in 臨床牙醫學研究所. 2014, 國立臺灣大學. p. 1-87.
33. Ginzkey, C., et al., Assessment of HEMA and TEGDMA induced DNA damage by multiple genotoxicological endpoints in human lymphocytes. Dent Mater, 2015. 31(8): p. 865-76.
34. Xu, S., et al., Resin monomers induce apoptosis of the pulp-dentin complex through the mitochondrial pathway. J Toxicol Sci, 2024. 49(12): p. 531-541.
35. Kouros, P., et al., Pulp response to dentine adhesives: A study on mature human pulps. Eur J Dent, 2013. 7(Suppl 1): p. S026-s032.
36. Wawrzynkiewicz, A., et al., The Toxicity of Universal Dental Adhesives: An In Vitro Study. Polymers (Basel), 2021. 13(16).
37. Hebling, J., E.M. Giro, and C.A. Costa, Human pulp response after an adhesive system application in deep cavities. J Dent, 1999. 27(8): p. 557-64.
38. Schneider, L.F., L.M. Cavalcante, and N. Silikas, Shrinkage Stresses Generated during Resin-Composite Applications: A Review. J Dent Biomech, 2010. 2010.
39. Massaro, H., et al., Solvent and HEMA Increase Adhesive Toxicity and Cytokine Release from Dental Pulp Cells. Materials (Basel), 2019. 12(17).
40. Al-Saud, L.M., A.H. Aodah, and O.A. Abu Asab, Do Self-adhesive Resin Composites Release More Monomers? A Comparative High-performance Liquid Chromatographic Analysis. J Adhes Dent, 2022. 24: p. 301-311.
41. Syed, M., R. Chopra, and V. Sachdev, Allergic Reactions to Dental Materials-A Systematic Review. J Clin Diagn Res, 2015. 9(10): p. Ze04-9.
42. Aljohani, A., et al., Allergic Contact Dermatitis From Dental Bonding Materials Containing Methacrylate: A Report of Two Cases. Cureus, 2025. 17(5): p. e84395.
43. Obayashi, N., et al., A case report of allergic reaction with acute facial swelling: a rare complication of dental acrylic resin. J Int Med Res, 2023. 51(7): p. 3000605231187819.
44. Gerzina, T.M. and W.R. Hume, Effect of hydrostatic pressure on the diffusion of monomers through dentin in vitro. J Dent Res, 1995. 74(1): p. 369-73.
45. Williams, D.W., et al., 2-Hydroxyethyl methacrylate inhibits migration of dental pulp stem cells. J Endod, 2013. 39(9): p. 1156-60.
46. Chang, H.H., et al., Effect of triethylene glycol dimethacrylate on the cytotoxicity, cyclooxygenase-2 expression and prostanoids production in human dental pulp cells. Int Endod J, 2012. 45(9): p. 848-58.
47. Seo, H., et al., Comprehensive assessment of the estrogenic activity of resin composites. Chemosphere, 2023. 343: p. 140104.
48. Thomas, M., et al., Comparative evaluation of genotoxicity and cytotoxicity of flowable, bulk-fill flowable, and nanohybrid composites in human gingival cells using cytome assay: An in vivo study. J Conserv Dent, 2023. 26(2): p. 182-187.
49. Gupta, S.K., et al., Release and toxicity of dental resin composite. Toxicol Int, 2012. 19(3): p. 225-34.
50. Brzović Rajić, V., et al., Cytotoxicity and Genotoxicity of Resin Based Dental Materials in Human Lymphocytes In Vitro. Acta Clin Croat, 2018. 57(2): p. 278-285.
51. Mousavinasab, S.M., Biocompatibility of composite resins. Dent Res J (Isfahan), 2011. 8(Suppl 1): p. S21-9.
52. 梁庭珊, 牙科黏著劑於聚氨酯泡棉之單體通透濃度及細胞毒性測試, in 臨床牙醫學研究所. 2017, 國立臺灣大學. p. 1-99.
53. Barkhordarian, A., et al., Epigenetic regulation of osteogenesis: human embryonic palatal mesenchymal cells. Bioinformation, 2011. 5(7): p. 278-81.
54. Cossarizza, A., et al., Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur J Immunol, 2019. 49(10): p. 1457-1973.
55. Vermes, I., et al., A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods, 1995. 184(1): p. 39-51.
56. Nicholls, D.G., Mitochondrial membrane potential and aging. Aging Cell, 2004. 3(1): p. 35-40.
57. Gerencser, A.A., et al., Quantitative measurement of mitochondrial membrane potential in cultured cells: calcium-induced de- and hyperpolarization of neuronal mitochondria. J Physiol, 2012. 590(12): p. 2845-71.
58. Ma, Y., et al., 10-MDP in dentin bonding: a novel role in pulp protection via modulation of dental pulp stem cell behavior. Clin Oral Investig, 2025. 29(6): p. 326.
59. Gallorini, M., et al., Activation of the Nrf2-regulated antioxidant cell response inhibits HEMA-induced oxidative stress and supports cell viability. Biomaterials, 2015. 56: p. 114-28.
60. Orimoto, A., C. Kitamura, and K. Ono, 2-hydroxyethyl methacrylate-derived reactive oxygen species stimulate ATP release via TRPA1 in human dental pulp cells. Sci Rep, 2022. 12(1): p. 12343.
61. Modena, K., et al., Dental Pulp Fibroblasts Response after Stimulation with HEMA and Adhesive System. Braz Dent J, 2018. 29(5): p. 419-426.
62. Samuelsen, J.T., et al., Biotransformation enzymes and lung cell response to 2-hydroxyethyl-methacrylate. J Biomed Mater Res A, 2012. 100(2): p. 462-9.
63. Kaur, G. and J.M. Dufour, Cell lines: Valuable tools or useless artifacts. Spermatogenesis, 2012. 2(1): p. 1-5.
64. Huang, Z., et al., Exosomes Derived from Human Palatal Mesenchymal Cells Mediate Intercellular Communication During Palatal Fusion by Promoting Oral Epithelial Cell Migration. Int J Nanomedicine, 2024. 19: p. 3109-3121.
65. Karaöz, E., et al., Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochem Cell Biol, 2011. 136(4): p. 455-73.
66. Assadian, H., et al., Comparative evaluation of the effects of three hydraulic calcium silicate cements on odontoblastic differentiation of human dental pulp stem cells: an in vitro study. J Appl Oral Sci, 2022. 30: p. e20220203.
67. Dhevi, G.R.I., P. Arangannal, and J. Jeevarathan, Comparative Analysis of Cytotoxicity and Odontogenic Differentiation of Novel Bioceramic Material on Human Dental Pulp Stem Cells - An In Vitro Study. J Pharm Bioallied Sci, 2024. 16(Suppl 4): p. S3951-s3955.
68. Li, J., et al., Improved Cell Properties of Human Dental Pulp Stem Cells (hDPSCs) Isolated and Expanded in a GMP Compliant and Xenogeneic Serum-free Medium. In Vivo, 2023. 37(6): p. 2564-2576.
69. Grawish, M.E., Human dental pulp stem/stromal cells in clinical practice. World J Stem Cells, 2024. 16(2): p. 54-57.
70. Jiao, Y., et al., Protection against HEMA-Induced Mitochondrial Injury In Vitro by Nrf2 Activation. Oxid Med Cell Longev, 2019. 2019: p. 3501059.
71. Xiao, J., et al., NOD2 is involved in regulating odontogenic differentiation of DPSCs suppressed by MDP through NF-κB/p65 signaling. Cytotechnology, 2022. 74(2): p. 259-270.
72. Yu, F., et al., Aberrant NF-κB activation in odontoblasts orchestrates inflammatory matrix degradation and mineral resorption. Int J Oral Sci, 2022. 14(1): p. 6.
73. Lee, C.Y., et al., Cytotoxicity and Apoptotic Mechanism of 2-Hydroxyethyl Methacrylate via Genotoxicity and the Mitochondrial-Dependent Intrinsic Caspase Pathway and Intracellular Reactive Oxygen Species Accumulation in Macrophages. Polymers (Basel), 2022. 14(16).
74. Chang, H.H., et al., Stimulation of glutathione depletion, ROS production and cell cycle arrest of dental pulp cells and gingival epithelial cells by HEMA. Biomaterials, 2005. 26(7): p. 745-53.
75. Ansteinsson, V., et al., DNA-damage, cell-cycle arrest and apoptosis induced in BEAS-2B cells by 2-hydroxyethyl methacrylate (HEMA). Mutat Res, 2011. 723(2): p. 158-64.
76. Paranjpe, A., et al., N-acetylcysteine protects dental pulp stromal cells from HEMA-induced apoptosis by inducing differentiation of the cells. Free Radic Biol Med, 2007. 43(10): p. 1394-408.
77. Matsuyama, S. and J.C. Reed, Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death & Differentiation, 2000. 7(12): p. 1155-1165.
78. Youle, R.J. and A.M. van der Bliek, Mitochondrial fission, fusion, and stress. Science, 2012. 337(6098): p. 1062-5.
79. Kroemer, G., L. Galluzzi, and C. Brenner, Mitochondrial membrane permeabilization in cell death. Physiol Rev, 2007. 87(1): p. 99-163.
80. Zorov, D.B., M. Juhaszova, and S.J. Sollott, Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev, 2014. 94(3): p. 909-50.
81. Green, D.R. and J.C. Reed, Mitochondria and apoptosis. Science, 1998. 281(5381): p. 1309-12.
82. Fulda, S., et al., Cellular stress responses: cell survival and cell death. Int J Cell Biol, 2010. 2010: p. 214074.
83. Crowley, L.C., M.E. Christensen, and N.J. Waterhouse, Measuring Mitochondrial Transmembrane Potential by TMRE Staining. Cold Spring Harb Protoc, 2016. 2016(12).
84. Barteneva, N.S., et al., Mitochondrial staining allows robust elimination of apoptotic and damaged cells during cell sorting. J Histochem Cytochem, 2014. 62(4): p. 265-75.
85. Prokhorova, E.A., et al., Role of the nucleus in apoptosis: signaling and execution. Cell Mol Life Sci, 2015. 72(23): p. 4593-612.
86. Teti, G., et al., HEMA but not TEGDMA induces autophagy in human gingival fibroblasts. Front Physiol, 2015. 6: p. 275.
87. Schweikl, H., et al., 2-Hydroxyethyl methacrylate-induced apoptosis through the ATM- and p53-dependent intrinsic mitochondrial pathway. Biomaterials, 2014. 35(9): p. 2890-904.
88. Childs, B.G., et al., Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep, 2014. 15(11): p. 1139-53.
89. Zorova, L.D., et al., Mitochondrial membrane potential. Anal Biochem, 2018. 552: p. 50-59.
90. Gottlieb, E., et al., Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death & Differentiation, 2003. 10(6): p. 709-717.
91. Dinkova-Kostova, A.T. and A.Y. Abramov, The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med, 2015. 88(Pt B): p. 179-188.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99559-
dc.description.abstract牙科黏著劑是現代復形治療不可或缺的材料,尤其在以複合樹脂為主的修復臨床中,黏著劑的選擇與應用對治療成敗有著關鍵性的影響。牙科黏著系統歷經多代演進,從早期多瓶、分步驟的設計,發展到近年強調「一瓶到底」與多功能應用的單瓶式系統。這些單瓶式黏著劑大多整合了酸蝕劑、底劑與黏結樹脂,並以10-MDP(10-Methacryloyloxydecyl dihydrogen phosphate)及HEMA(2-Hydroxyethyl methacrylate)等功能性單體為主要成分,以提升其物理性質與長期穩定性。然而,這些功能性單體除了賦予材料良好的黏著強度與臨床操作便利性外,其生物相容性問題也逐漸受到重視。
在本研究中,針對不同濃度的10-MDP與HEMA長期暴露於人類胚胎上顎間質細胞(HEPM)所造成的生物學影響進行評估。細胞實驗包括Alamar Blue assay 觀察細胞存活率、免疫螢光試驗觀察細胞形態、流式細胞儀檢測細壞死及凋亡情況,粒線體膜電位盒量測膜電位改變。
結果發現,在初期(1至7天)暴露下,不論單體濃度高低,細胞的代謝活性與對照組相近,顯示短期內細胞粒線體功能與能量代謝尚能維持正常。然而,隨著暴露時間延長至14至28天,特別是在高濃度組(如400 μM HEMA + 200 μM 10-MDP),細胞的代謝活性明顯下降,細胞存活率大幅減少,凋亡及壞死細胞比例則顯著上升,呈現濃度與時間依賴性的毒性反應。進一步以粒線體膜電位檢測發現,初期高濃度單體組合會出現粒線體膜電位上升,反應細胞為了應對化學壓力而暫時增強能量代謝,試圖維持存活。但隨著暴露時間拉長,膜電位波動加劇,最終在高濃度組出現顯著下降,顯示粒線體功能受損,與細胞凋亡訊號啟動密切相關。細胞形態學觀察亦顯示,高濃度單體暴露下,細胞密度下降、骨架結構拉長且排列異常,細胞核出現濃縮與不規則形態,貼附與存活能力明顯降低。
這些現象與國內外文獻一致,均指出10-MDP與HEMA的細胞毒性具濃度與時間依賴性,且累積性損傷效果明顯。雖然10-MDP與HEMA提升了黏著劑的臨床性能,但其潛在細胞毒性不容忽視,特別是在深層修復或大量暴露情境下。以本實驗結果來看,HEMA在200 μM而10-MDP在100 μM到200 μM的範圍應較不會造成明顯細胞毒性。
未來材料設計應兼顧黏著強度與生物安全性,改良單體組成、降低未聚合單體釋放。總結來說,高濃度及長期暴露於10-MDP與HEMA會對HEPM細胞造成明顯的細胞毒性,表現為細胞活性下降、凋亡壞死比例上升與粒線體功能障礙。這些現象提醒臨床應謹慎選擇與應用含有這些單體的黏著劑,以確保修復治療的長期安全與成功。
zh_TW
dc.description.abstractDental adhesives are indispensable materials in contemporary restorative dentistry, particularly in clinical procedures that utilize composite resins as the primary restorative material. Over the years, dental adhesive systems have undergone multiple generations of evolution, progressing from early multi-bottle, multi-step designs to the recent development of single-bottle systems that emphasize streamlined application and multifunctionality. These single-bottle adhesives typically integrate etchants, primers, and bonding resins, with functional monomers such as 10-MDP and HEMA serving as major components to enhance physical properties and long-term stability. However, alongside the improved bond strength and clinical convenience provided by these functional monomers, increasing attention has been paid to their biocompatibility.
In this study, the biological effects of prolonged exposure to various concentrations of 10-MDP and HEMA on human embryonic palatal mesenchymal (HEPM) cells were evaluated. Cellular experiments included the Alamar Blue assay to assess cell viability, immunofluorescence staining to observe cell morphology, flow cytometry to detect cell necrosis and apoptosis, and measurement of mitochondrial membrane potential to monitor changes in mitochondrial function.
The results demonstrated that during the initial exposure period (days 1–7). Regardless of monomer concentration, cellular metabolic activity remained comparable to the control group, indicating that mitochondrial function and energy metabolism were largely unaffected in the short term. However, as the exposure period extended to 14–28 days, a marked decrease in metabolic activity was observed, accompanied by a substantial reduction in cell viability and a significant increase in the proportion of apoptotic and necrotic cells. These findings revealed a concentration- and time-dependent cytotoxic response. Further analysis of mitochondrial membrane potential showed that, in the early phase, the combinations of high-concentration monomer combinations led to an increase in membrane potential, reflecting a compensatory enhancement of energy metabolism in response to chemical stress. However, with prolonged exposure, fluctuations in membrane potential intensified, ultimately leading to a significant decline in the high-concentration groups. This indicates mitochondrial dysfunction closely associated with the activation of apoptotic signaling pathways. The results of morphological observations also revealed that high-concentration monomer exposure resulted in decreased cell density, elongated and abnormally arranged cytoskeletal structures, and condensed or irregularly shaped nuclei, all indicative of compromised cell adhesion and viability.
These phenomena are consistent with findings in the literature, which collectively indicate that the cytotoxicity of 10-MDP and HEMA is both concentration- and time-dependent, with pronounced cumulative damage. Although 10-MDP and HEMA improve the clinical performance of dental adhesives, their potential cytotoxicity cannot be overlooked, particularly in deep restorations or scenarios involving extensive exposure. The design of future materials should be committed to balancing adhesive strength and biological safety by optimizing monomer composition and reducing the release of unpolymerized monomers. In summary, high concentrations and prolonged exposure to 10-MDP and HEMA result in significant cytotoxic effects on HEPM cells, manifested as decreased cell activity, increased rates of apoptosis and necrosis, and mitochondrial dysfunction. These findings underscore the importance of prudent clinical selection and application of adhesives containing these monomers to ensure the long-term safety and success of restorative treatments.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:07:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-16T16:07:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
ABSTRACT iv
目次 vi
圖次 ix
第一章 文獻回顧 1
1.1 序言 1
1.2 牙科黏著劑介紹 2
1.3 功能性單體 3
1.3.1 10-MDP 10-(2-甲基丙烯酰氧基)磷酸單癸酯 4
1.3.2 HEMA(2-甲基丙烯酸羥乙酯) 6
1.4 黏著劑單體的生物挑戰 8
1.4.1黏著劑的生物相容性 8
1.4.2單體的生物影響 9
第二章 研究動機與目的 12
2.1研究動機 12
2.2 研究目的 12
第三章 實驗材料及方法 13
3.1 各項名詞與縮寫 13
3.2 實驗流程圖 14
3.3 實驗材料製備 15
3.4 實驗細胞與培養環境 15
3.5 Alamar Blue Assay 16
3.5.1說明 16
3.5.2實驗步驟 17
3.6 流式細胞儀 19
3.6.1 說明 19
3.6.2實驗步驟 21
3.7粒線體膜電位測量 23
3.7.1 說明 23
3.7.2實驗步驟 24
3.8 免疫螢光染色試驗(Immunofluorescence assay) 26
3.8.1說明 26
3.8.2 實驗步驟 26
3.9 倒立相位差顯微鏡 28
3.9.1說明 28
3.9.2實驗步驟 28
3.10統計分析 29
第四章 實驗結果 30
4.1 細胞活性分析(Cell Viability) 30
4.2 流式細胞儀 33
4.3 粒線體膜電位 41
4.4 免疫螢光染色試驗(IFA) 44
4.5 倒立相位差顯微鏡 48
第五章 討論 52
5.1 實驗設計 52
5.1.1單體與濃度 52
5.1.2 HEPM細胞 53
5.2 細胞實驗 54
5.2.1 細胞活性 54
5.2.2 凋亡與壞死分析 56
5.2.3 粒線體膜電位分析 59
5.2.4 細胞形態觀察 63
5.3 綜合探討 65
第六章 結論與未來方向 68
6.1結論 68
6.2 未來方向 69
參考文獻 70
-
dc.language.isozh_TW-
dc.subject10-(2-甲基丙烯酰氧基)磷酸單癸酯zh_TW
dc.subject甲基丙烯酸羥乙酯zh_TW
dc.subject細胞凋亡zh_TW
dc.subject生物相容性zh_TW
dc.subject粒線體膜電位zh_TW
dc.subject上顎間質細胞zh_TW
dc.subjectApoptosis and Necrosisen
dc.subject10-MDPen
dc.subjectHEPMen
dc.subjectMitochondrial Membrane Potentialen
dc.subjectCell viabilityen
dc.subjectHEMAen
dc.title低濃度樹脂單體10-MDP與HEMA對於HEPM細胞凋亡及壞死機制之探討zh_TW
dc.titleAssessment of the Mechanism for Apoptosis and Necrosis in HEPM Cells Induced by Low Concentration Resin Monomers 10-MDP and HEMAen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳敏慧;陳克恭zh_TW
dc.contributor.oralexamcommitteeMin Hue Chen;Ker-Kong Chenen
dc.subject.keyword10-(2-甲基丙烯酰氧基)磷酸單癸酯,甲基丙烯酸羥乙酯,細胞凋亡,生物相容性,粒線體膜電位,上顎間質細胞,zh_TW
dc.subject.keyword10-MDP,HEMA,Apoptosis and Necrosis,Cell viability,Mitochondrial Membrane Potential,HEPM,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202503350-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-04-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床牙醫學研究所-
dc.date.embargo-lift2025-09-17-
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved