Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99554Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 張曉華 | zh_TW |
| dc.contributor.advisor | Hsiao-Hua Chang | en |
| dc.contributor.author | 洪歆雅 | zh_TW |
| dc.contributor.author | Hsin-Ya Hung | en |
| dc.date.accessioned | 2025-09-16T16:05:56Z | - |
| dc.date.available | 2025-09-17 | - |
| dc.date.copyright | 2025-09-16 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-24 | - |
| dc.identifier.citation | Amaravadi, R. K., & Winkler, J. D. (2012). Lys05: A new lysosomal autophagy inhibitor. Autophagy, 8(9), 1383–1384. https://doi.org/10.4161/auto.20958
Ashrafi, G., & Schwarz, T. L. (2013). The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death & Differentiation, 20(1), 31–42. https://doi.org/10.1038/cdd.2012.81 Bulté, D., Rigamonti, C., Romano, A., & Mortellaro, A. (2023). Inflammasomes: Mechanisms of action and involvement in human diseases. Cells, 12(13), 1766. https://doi.org/10.3390/cells1213176 Carrilho, E., Cardoso, M., Ferreira, M. M., Marto, C. M., Paula, A., & Coelho, A. S. (2019). 10-MDP Based Dental Adhesives: Adhesive Interface Characterization and Adhesive Stability—A Systematic Review. Materials, 12(5), 790. https://doi.org/10.3390/ma12050790 Castino, R., Bellio, N., Follo, C., Murphy, D., & Isidoro, C. (2010). Inhibition of PI3k class III–dependent autophagy prevents apoptosis and necrosis by oxidative stress in dopaminergic neuroblastoma cells. Toxicological Sciences, 117(1), 152-162. https://doi.org/10.1093/toxsci/kfq170 Chang, H. H., Guo, M. K., Kasten, F. H., Chang, M. C., Huang, G. F., Wang, Y. L., Wang, R. S., & Jeng, J. H. (2005). Stimulation of glutathione depletion, ROS production and cell cycle arrest of dental pulp cells and gingival epithelial cells by HEMA. Biomaterials, 26(7), 745–753. https://doi.org/10.1016/j.biomaterials.2004.03.021 Chang, H.-H., Chang, M.-C., Huang, G.-F., Wang, Y.-L., Chan, C.-P., Wang, T.-M., Lin, P.-S., & Jeng, J.-H. (2012). Effect of triethylene glycol dimethacrylate on the cytotoxicity, cyclooxygenase-2 expression and prostanoids production in human dental pulp cells. International Endodontic Journal, 45(9), 848–858. https://doi.org/10.1111/j.1365-2591.2012.02042.x Chang, H.-H., Chang, M.-C., Wang, H.-H., Huang, G.-F., Lee, Y.-L., Wang, Y.-L., Chan, C.-P., Yeung, S.-Y., Tseng, S.-K., & Jeng, J.-H. (2014a). Urethane dimethacrylate induces cytotoxicity and regulates cyclooxygenase-2, hemeoxygenase and carboxylesterase expression in human dental pulp cells. Acta Biomaterialia, 10(2), 722–731. https://doi.org/10.1016/j.actbio.2013.10.006 Chang, M.-C., Chen, J.-H., Lee, H.-N., Chen, S.-Y., Zhong, B.-H., Dhingra, K., Pan, Y.-H., Chang, H.-H., Chen, Y.-J., & Jeng, J.-H. (2023). Inducing cathepsin L expression/production, lysosomal activation, and autophagy of human dental pulp cells by dentin bonding agents, camphorquinone and BisGMA and the related mechanisms. Biomaterials Advances, 145, 213253. https://doi.org/10.1016/j.bioadv.2022.21325 Chang, M.-C., Chen, L.-I., Chan, C.-P., Lee, J.-J., Wang, T.-M., Yang, T.-T., Lin, P.- S., Lin, H.-J., Chang, H.-H., & Jeng, J.-H. (2010). The role of reactive oxygen species and hemeoxygenase-1 expression in the cytotoxicity, cell cycle alteration and apoptosis of dental pulp cells induced by BisGMA. Biomaterials, 31(31), 8164–8171. https://doi.org/10.1016/j.biomaterials.2010.07.049 Chang, M.-C., Lin, L.-D., Chan, C.-P., Chang, H.-H., Chen, L.-I., Lin, H.-J., & Jeng, J.-H. (2009). The effect of BisGMA on cyclooxygenase-2 expression, PGE2 production and cytotoxicity via reactive oxygen species- and MEK/ERK- dependent and -independent pathways. Biomaterials, 30(21), 4070–4077. https://doi.org/10.1016/j.biomaterials.2009.04.034 Chen, Y.-N., Ding, X., Li, D.-M., Lu, Q.-Y., Liu, S., Li, Y.-Y., Di, Y.-T., Fang, X., & Hao, X.-J. (2021). Jatrophane diterpenoids from the seeds of Euphorbia peplus with potential bioactivities in lysosomal-autophagy pathway. Natural Products and Bioprospecting, 11(3), 357–364. https://doi.org/10.1007/s13659-021-00301- 4 Cooper, K. L., Liu, K. J., & Hudson, L. G. (2007). Contributions of reactive oxygen species and mitogen-activated protein kinase signaling in arsenite-stimulated hemeoxygenase-1 production. Toxicology and Applied Pharmacology, 218(2), 119–127. https://doi.org/10.1016/j.taap.2006.09.020 Deretic, V. (2021). Autophagy in inflammation, infection, and immunometabolism. Immunity, 54(3), 437–453. https://doi.org/10.1016/j.immuni.2021.01.018 Eckhardt, A., Gerstmayr, N., Hiller, K. A., Bolay, C., Waha, C., Spagnuolo, G., Camargo, C., Schmalz, G., & Schweikl, H. (2009). TEGDMA-induced oxidative DNA damage and activation of ATM and MAP kinases. Biomaterials, 30(11), 2006–2014. https://doi.org/10.1016/j.biomaterials.2008.12.045 Galluzzi, L., Bravo-San Pedro, J. M., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., ... Kroemer, G. (2015). Essential versus accessory aspects of cell death: Recommendations of the NCCD 2015. Cell Death & Differentiation, 22(1), 58–73. https://doi.org/10.1038/cdd.2014.137 Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P., Alnemri, E. S., Altucci, L., Amelio, I., Andrews, D. W., Annicchiarico- Petruzzelli, M., Antonov, A. V., Arama, E., Baehrecke, E. H., Barlev, N. A., Bazan, N. G., Bernassola, F., Bertrand, M. J. M., Bianchi, K., ... Kroemer, G. (2018). Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, 25(3), 486–541. https://doi.org/10.1038/s41418-017-0012-4 Gao, Y., You, X., Liu, Y., Gao, F., Zhang, Y., Yang, J., & Yang, C. (2020). Induction of autophagy protects human dental pulp cells from lipopolysaccharide-induced pyroptotic cell death. Experimental and Therapeutic Medicine, 19(3), 2202– 2210. https://doi.org/10.3892/etm.2020.8475 Giannini, M., Makishi, P., Ayres, A. P., Vermelho, P. M., Fronza, B. M., Nikaido, T., & Tagami, J. (2015). Self-etch adhesive systems: A literature review. Brazilian Dental Journal, 26(1), 3–10. https://doi.org/10.1590/0103-6440201302441 Guo, L., Zhang, B., Zhang, X., Qiu, C., & Li, Y. (2023). Activation of mitophagy in inflamed odontoblasts. International Endodontic Journal, 56(7), 789–802. https://doi.org/10.1111/iej.13886 Haelterman, N. A., Yoon, W. H., Sandoval, H., Jaiswal, M., Shulman, J. M., & Bellen, H. J. (2014). A mitocentric view of Parkinson's disease. Annual review of neuroscience, 37(1), 137-159. https://doi.org/10.1146/annurev-neuro-071013- 014317 Hou, H., Zhang, Y., Huang, Y., Yi, Q., Lv, L., Zhang, T., ... & Shi, Q. (2012). Inhibitors of phosphatidylinositol 3′-kinases promote mitotic cell death in HeLa cells. PloS one, 7(4), e35665. https://doi.org/10.1371/journal.pone.0035665 Huang, M., Zhan, C., Yang, X., & Hou, J. (2020). Regulated cell death in pulpitis. Journal of Endodontics, 46(10), 1403–1413. https://doi.org/10.1016/j.joen.2020.07.006 Inoue, S., Koshiro, K., Yoshida, Y., De Munck, J., Nagakane, K., Suzuki, K., Sano, H., & Van Meerbeek, B. (2005). Hydrolytic stability of self-etch adhesives bonded to dentin. Journal of Dental Research, 84(12), 1160–1164. https://doi.org/10.1177/154405910508401213 Juliana, C., Fernandes-Alnemri, T., Wu, J., Datta, P., Solorzano, L., Yu, J.-W., Meng, R., Quong, A. A., Latz, E., Scott, C. P., & Alnemri, E. S. (2010). Anti- inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. Journal of Biological Chemistry, 285(13), 9792–9802. https://doi.org/10.1074/jbc.M109.082305 Landuyt, K. L. V., Snauwaert, J., Munck, J. D., Peumans, M., Yoshida, Y., Poitevin, A., Coutinho, E., Suzuki, K., Lambrechts, P., & Meerbeek, B. V. (2007). Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials, 28(26), 3757–3785. https://doi.org/10.1016/j.biomaterials.2007.04.044 Liang, C., Feng, P., Ku, B., Dotan, I., Canaani, D., Oh, B. H., & Jung, J. U. (2006). Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nature Cell Biology, 8(7), 688–699. https://doi.org/10.1038/ncb1426 Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., & Levine, B. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402(6762), 672–676. https://doi.org/10.1038/45257 Liu, F., Yang, Y., Peng, W., Zhao, N., Chen, J., Xu, Z., Cui, Y., & Qian, K. (2023). Mitophagy-promoting miR-138-5p promoter demethylation inhibits pyroptosis in sepsis-associated acute lung injury. Inflammation Research, 72(2), 329–346. https://doi.org/10.1007/s00011-022-01675-y Lu, F., Lan, Z., Xin, Z., He, C., Guo, Z., Xia, X., & Hu, T. (2020). Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases. Journal of Cellular Physiology, 235(4), 3207–3221. https://doi.org/10.1002/jcp.29268 Mahapatra, K. K., Mishra, S. R., Behera, B. P., Patil, S., Gewirtz, D. A., & Bhutia, S. K. (2021). The lysosome as an imperative regulator of autophagy and cell death. Cellular and Molecular Life Sciences, 78(19), 7435–7449. https://doi.org/10.1007/s00018-021-03988-3 Majno, G., & Joris, I. (1995). Apoptosis, oncosis, and necrosis: An overview of cell death. The American Journal of Pathology, 146(1), 3–15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC187 Martelli, A. M., Chiarini, F., Evangelisti, C., Cappellini, A., Buontempo, F., Bressanin, D., ... & McCubrey, J. A. (2012). Two hits are better than one: targeting both phosphatidylinositol 3-kinase and mammalian target of rapamycin as a therapeutic strategy for acute leukemia treatment. Oncotarget, 3(4), 371.https://doi.org/10.18632/oncotarget.477 McAfee, Q., Zhang, Z., Samanta, A., Levi, S. M., Ma, X.-H., Piao, S., Lynch, J. P., Uehara, T., Sepulveda, A. R., Davis, L. E., Winkler, J. D., & Amaravadi, R. K. (2012). Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proceedings of the National Academy of Sciences of the United States of America, 109(21), 8253– 8258. https://doi.org/10.1073/pnas.1118193109 Miller, S., Tavshanjian, B., Oleksy, A., Perisic, O., Houseman, B. T., Shokat, K. M., & Williams, R. L. (2010). Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science, 327(5973), 1638-1642. https://doi.org/10.1126/science.1184429 Min, K.-S., Chang, H.-S., Bae, J.-M., Park, S.-H., Hong, C.-U., & Kim, E.-C. (2007). The induction of heme oxygenase-1 modulates bismuth oxide-induced cytotoxicity in human dental pulp cells. Journal of Endodontics, 33(11), 1342– 1346. https://doi.org/10.1016/j.joen.2007.07.012 Min, K.-S., Lee, H.-J., Kim, S.-H., Lee, S.-K., Kim, H.-R., Pae, H.-O., Chung, H.-T., Shin, H.-I., Lee, S.-K., & Kim, E.-C. (2008). Hydrogen peroxide induces heme oxygenase-1 and dentin sialophosphoprotein mRNA in human pulp cells. Journal of Endodontics, 34(8), 983–989. https://doi.org/10.1016/j.joen.2008.05.012 Mizushima, N. (2007). Autophagy: Process and function. Genes & Development, 21(22), 2861–2873. https://doi.org/10.1101/gad.1599207 Nakagawa, K., Saita, M., Ikeda, T., Hirota, M., Park, W., Lee, M. C., & Ogawa, T. (2015). Biocompatibility of 4-META/MMA-TBB resin used as a dental luting agent. The Journal of Prosthetic Dentistry, 114(1), 114–121. https://doi.org/10.1016/j.prosdent.2014.11.010 Qu, X., Zou, Z., Sun, Q., Luby-Phelps, K., Cheng, P., Hogan, R. N., & Levine, B. (2007). Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell, 128(5), 931–946. https://doi.org/10.1016/j.cell.2006.12.044 Saadane, A., Masters, S., DiDonato, J., Li, J., & Berger, M. (2007). Parthenolide inhibits IκB kinase, NF-κB activation, and inflammatory response in cystic fibrosis cells and mice. American Journal of Respiratory Cell and Molecular Biology, 36(6), 728–736. https://doi.org/10.1165/rcmb.2006-0323OC Scherz-Shouval, R., & Elazar, Z. (2011). Regulation of autophagy by ROS: physiology and pathology. Trends in Biochemical Sciences, 36(1), 30–38. https://doi.org/10.1016/j.tibs.2010.07.007 Schweichel, J. U., & Merker, H. J. (1973). The morphology of various types of cell death in prenatal tissues. Teratology, 7(3), 253–266. https://doi.org/10.1002/tera.1420070306 Seglen, P. O., & Gordon, P. B. (1982). 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proceedings of the National Academy of Sciences, 79(6), 1889-1892. https://doi.org/10.1073/pnas.79.6.1889 Sharma, B. R., Karki, R., & Kanneganti, T.-D. (2019). Role of AIM2 inflammasome in inflammatory diseases, cancer and infection. European Journal of Immunology, 49(2), 1998–2011. https://doi.org/10.1002/eji.201848070 Sheehan, M., Wong, H. R., Hake, P. W., Malhotra, V., O'Connor, M., & Zingarelli, B. (2002). Parthenolide, an inhibitor of the nuclear factor-κB pathway, ameliorates cardiovascular derangement and outcome in endotoxic shock in rodents. Molecular Pharmacology, 61(5), 953–963. https://doi.org/10.1124/mol.61.5.953 Wu, Y. T., Tan, H. L., Shui, G., Bauvy, C., Huang, Q., Wenk, M. R., Ong, C. N., Codogno, P., & Shen, H. M. (2010). Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. Journal of Biological Chemistry, 285(14), 10850– 10861. https://doi.org/10.1074/jbc.M109.080796 Yang, C., & Wang, X. (2021). Lysosome biogenesis: Regulation and functions. Journal of Cell Biology, 220(6), e202102001. https://doi.org/10.1083/jcb.202102001 Yang, S. F., Fan, W. G., Li, Y. Y., Liu, Q., He, H. W., & Huang, F. (2021). Autophagy in tooth: Physiology, disease and therapeutic implication. Cell Biochemistry and Function, 39(6), 702–712. https://doi.org/10.1002/cbf.3636 Yang, Y. P., Hu, L. F., Zheng, H. F., Mao, C. J., Hu, W. D., Xiong, K. P., ... & Liu, C. F. (2013). Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacologica Sinica, 34(5), 625-635. https://doi.org/10.1038/aps.2013.5 Yang, Y. P., Liang, Z. Q., Gu, Z. L., & Qin, Z. H. (2005). Molecular mechanism and regulation of autophagy 1. Acta Pharmacologica Sinica, 26(12), 1421-1434. https://doi.org/10.1111/j.1745-7254.2005.00235.x Yasuda, Y., Inuyama, H., Maeda, H., Akamine, A., Nör, J. E., & Saito, T. (2008). Cytotoxicity of one-step dentin-bonding agents toward dental pulp and odontoblast-like cells. Journal of Oral Rehabilitation, 35(12), 940–946. https://doi.org/10.1111/j.1365-2842.2008.01885.x Yoshihara, K., Hayakawa, S., Nagaoka, N., Okihara, T., Yoshida, Y., & Van Meerbeek, B. (2018). Etching Efficacy of Self-Etching Functional Monomers. Journal of Dental Research, 97(9), 1010–1016. https://doi.org/10.1177/0022034518763606 Yu, S., Liu, X.-M., Liu, Y., Tang, L., Lei, S., Geng, C., Yuan, Z., & Chen, X. (2024). Inflammatory microenvironment of moderate pulpitis enhances the osteo- /odontogenic potential of dental pulp stem cells by autophagy. International Endodontic Journal, 57(10), 1465–1477. https://doi.org/10.1111/iej.14108 Zhang, L., & Chen, Z. (2018). Autophagy in the dentin-pulp complex against inflammation. Oral Diseases, 24(1–2), 11–13. https://doi.org/10.1111/odi.12749 Zhang, Y., Wang, J., Wang, Y., & Liu, Q. (2023). Autophagy inhibitors for cancer therapy: Small molecules and nanomedicines. Pharmacology & Therapeutics, 248, 108393. https://doi.org/10.1016/j.pharmthera.2023.108393 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99554 | - |
| dc.description.abstract | 4-甲基丙烯酰氧基偏苯三酸酐 (4-methacryloxyethyl trimellitic anhydride, 4-META) 是一種常見的功能性單體 (functional monomer),被廣泛使用在牙科樹脂黏著劑 (resin adhesive) 中。然而,這些樹脂材料可能因鍵結不穩定、聚合不完全,或於口腔環境中長時間水解等因素,於填充牙齒中或是接觸牙齒表面時,經由牙本質小管滲入牙髓中,進而對牙髓細胞造成潛在的傷害。我們過去的研究結果顯示,4-META 會使人類牙髓細胞中活性氧生成量增加,氧化壓力上升,細胞週期調控失序,細胞存活率降低以及促發炎因子生成。然 而,4-META 對牙髓細胞的毒性及其促發炎反應機制尚未被釐清,細胞因應的調節防護作用也有待瞭解。細胞自噬 (autophagy) 被認為是細胞面對外在毒性或壓力刺激時的重要自我防 禦與存活的機制之一;細胞焦亡(pyroptosis) 是一種具高度調控性的細胞死亡方式,與促發炎反應密切相關。近年來,這兩種機制在多種疾病模型中均展現出調控細胞命運與組織損傷 的重要角色。因此,本研究旨在於探討細胞自噬及細胞焦亡對於 4-META 誘導之人類牙髓 細胞毒性及促發炎反應扮演之角色,我們期望進一步釐清4-META 之細胞毒性的作用機 轉,並為未來開發生物相容性更高的牙科修復材料提供依據及潛在應用方向 | zh_TW |
| dc.description.abstract | 4-Methacryloxyethyl trimellitic anhydride (4-META) is a widely used functional monomer in dental resin adhesives. However, these resin-based materials may release residual monomers due to unstable bonding, incomplete polymerization, or long-term hydrolysis under the moist environment of the oral cavity. These monomers can diffuse through dentinal tubules into the pulp tissue and potentially cause cytotoxic effects on dental pulp cells. Our previous studies have shown that 4- META increases intracellular reactive oxygen species (ROS), elevates oxidative stress, disrupts cell cycle regulation, decreases cell viability, and promotes the expression of pro-inflammatory cytokines in human dental pulp cells. However, the precise mechanisms underlying the cytotoxic and pro- inflammatory effects of 4-META remain unclear, and the potential cellular protective responses also warrant further investigation. Autophagy is regarded as an essential adaptive mechanism for cellular defense and survival under toxic or stress-inducing conditions. Pyroptosis, a highly regulated form of programmed cell death, is closely associated with inflammatory responses. In recent years, both autophagy and pyroptosis have been recognized as key regulators of cell fate and tissue injury in various disease models. Therefore, this study aims to investigate the roles of autophagy and pyroptosis in 4-META-induced cytotoxicity and inflammation in human dental pulp cells. We hope to elucidate the underlying mechanisms of 4-META toxicity and provide a scientific basis for developing dental restorative materials with improved biocompatibility. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:05:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-16T16:05:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii Abstract iv 目次 vi 圖次 xi 表次 xiii 第一章 文獻回顧 1 1.1 序言 1 1.2 4-甲基丙烯酰氧基偏苯三酸酐 (4-methacryloxyethyl trimellitic anhydride, 4-META) 1 1.2.1 4-甲基丙烯酰氧基偏苯三酸酐介紹 1.2.2 4-META 的細胞毒性 1.3 細胞死亡 (Cell Death) 3 1.4 細胞自噬 (Autophagy) 4 1.5 細胞自噬重要相關分子 5 1.5.1 LC3-II 1.5.2 Beclin-1 1.5.3 p62 1.5.4 ATG5、ATG12 1.5.5 Cathepsin B 1.6 細胞焦亡 (Pyroptosis) 7 1.7 細胞焦亡重要相關分子 8 1.7.1 NOD-like receptor family pyrin domain-containing 3 (NLRP3) 1.7.2 NOD-like receptor family pyrin domain-containing 7 (NLRP7) 1.7.3 Absent in Melanoma 2 (AIM2) 1.7.4 caspase-1 1.7.5 Gasdermin D (GSDMD) 1.7.6 Interleukin-1β (IL-1β)、Interleukin-18 (IL18) 1.8 氧化壓力重要相關分子 11 1.8.1 Nuclear factor erythroid 2-related factor (Nrf2) 1.8.2 血鐵質氧化酶-1 (Heme oxygenase-1, HO-1) 1.9 發炎反應重要相關分子 12 1.9.1 環氧化酶 (Cyclooxygenase-2, COX-2) 1.9.2 Interleukin-6 (IL-6) 1.9.3 Interleukin-8 (IL-8) 第二章 實驗目的與假說 14 第三章 材料與方法 15 3.1 材料準備 15 3.1.1 樣本試劑 3.1.2 儀器設備 3.2 人類牙髓細胞 (human dental pulp cells, hDPCs) 培養 17 3.3 即時定量聚合酶連鎖反應 (Real-time quantitative PCR) 18 3.3.1 核糖核酸的萃取 (RNA extraction) 3.3.2 核糖核酸的定量 (RNA quantification) 3.3.3 反轉錄 (RNA transcription) 3.3.4 即時定量聚合酶連鎖反應 (Real-time quantitative PCR) 3.4 西方點墨法 (Western blot) 21 3.4.1 蛋白質萃取 (protein extraction) 3.4.2 蛋白質定量 (protein quantification) 3.4.3 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE) 3.4.4 轉漬 (Transfer gel) 3.4.5 阻斷及抗體雜合 (Blocking and antibody hybridization) 3.4.6 化學冷光影像擷取 (Chemiluminescence photography) 3.5 免疫螢光分析法 (Immunofluorescence assay) 24 3.5.1 細胞培養 3.5.2 免疫螢光染色 (Immunofluorescence staining) 3.6 細胞存活率分析:MTT assay 25 3.7 紅色溶酶體追蹤染劑 (Lysotracker Red Staining) 26 3.7.1 細胞培養 3.7.2 工作溶液配置 3.7.3 紅色溶酶體追蹤染劑 (Lysotracker Red staining) 3.8 統計分析 27 第四章 實驗結果 28 4.1 4-META 濃度對於細胞自噬之影響 28 4.1.1 對於 LC3-II 基因及蛋白質表現之影響 4.1.2 對於 Beclin-1 基因及蛋白質表現之影響 4.1.3 對於 p62 基因及蛋白質表現之影響 4.1.4 對於 ATG5 基因及蛋白質表現之影響 4.1.5 對於 ATG12 基因及蛋白質表現之影響 4.1.6 對於 Cathepsin B 基因及蛋白質表現之影響 4.2 加入 3-methyladenine 後 4-META 濃度對於人類牙髓細胞的存活率之影響:MTT assay 29 4.3 加入 3-methyladenine 後 4-META 濃度對於人類牙髓細胞形態之影響 30 4.4 加入 Lys05 後 4-META 濃度對於人類牙髓細胞的存活率之影響:MTT assay 30 4.5 加入 Lys05 後 4-META 濃度對於人類牙髓細胞形態之影響 31 4.6 4-META 濃度對於溶酶體活性之影響 31 4.7 加入 Lys05 後 4-META 濃度對於溶酶體活性之影響 31 4.8 4-META 濃度對於細胞焦亡之影響 31 4.8.1 對於 NLRP3 基因及蛋白質表現之影響 4.8.2 對於 NLRP7 基因及蛋白質表現之影響 4.8.3 對於 AIM2 基因及蛋白質表現之影響 4.8.4 對於 caspase-1 基因及蛋白質表現之影響 4.8.5 對於 GSDMD 基因及蛋白質表現之影響 4.8.6 對於 IL-1β 基因及蛋白質表現之影響 4.8.7 對於 IL-18 基因及蛋白質表現之影響 4.9加入 MCC950 後 4-META 濃度對於人類牙髓細胞的存活率之影響: MTT assay 33 4.10 加入 MCC950 後 4-META 濃度對於人類牙髓細胞形態之影響 33 4.11 加入 parthenolide 後 4-META 濃度對於人類牙髓細胞的存活率之 影響:MTT assay 34 4.12 加入 parthenolide 後 4-META 濃度對於人類牙髓細胞形態之影響 34 4.13 加入 Lys05 後 4-META 濃度對於發炎作用及氧化壓力之影響 35 4.14 加入 parthenolide 後 4-META 濃度對於發炎作用之影響 36 第五章 討論 38 5.1 與細胞自噬之關係 38 5.2 與細胞焦亡之關係 40 5.3 與發炎作用之關係 41 5.4 與氧化壓力之關係 42 5.5 與溶酶體之關係 43 第六章 結論 45 參考文獻 46 表格 54 附圖 62 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 4-甲基丙烯酰氧基偏苯三酸酐 | zh_TW |
| dc.subject | 人類牙髓細胞 | zh_TW |
| dc.subject | 細胞毒性 | zh_TW |
| dc.subject | 細胞自噬 | zh_TW |
| dc.subject | 細胞焦亡 | zh_TW |
| dc.subject | 發炎反應 | zh_TW |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | pyroptosis | en |
| dc.subject | human dental pulp cells | en |
| dc.subject | cytotoxicity | en |
| dc.subject | oxidative stress | en |
| dc.subject | inflammation | en |
| dc.subject | autophagy | en |
| dc.subject | 4-META | en |
| dc.title | 4-META對人類牙髓細胞的影響:自噬與焦亡作用的相關探討 | zh_TW |
| dc.title | Exploring the Effects of 4-META on Human Dental Pulp Cells: The Roles of Autophagy and Pyroptosis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 鄭景暉 | zh_TW |
| dc.contributor.coadvisor | Jiiang-Huei Jeng | en |
| dc.contributor.oralexamcommittee | 王彥雄;李苑玲;張美姬 | zh_TW |
| dc.contributor.oralexamcommittee | Yan-Hsiung Wang;Yuan-Ling Lee;Mei-Chi Chang | en |
| dc.subject.keyword | 4-甲基丙烯酰氧基偏苯三酸酐,人類牙髓細胞,細胞毒性,細胞自噬,細胞焦亡,發炎反應,氧化壓力, | zh_TW |
| dc.subject.keyword | 4-META,human dental pulp cells,cytotoxicity,autophagy,pyroptosis,inflammation,oxidative stress, | en |
| dc.relation.page | 118 | - |
| dc.identifier.doi | 10.6342/NTU202502127 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-24 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床牙醫學研究所 | - |
| dc.date.embargo-lift | 2025-09-17 | - |
| Appears in Collections: | 臨床牙醫學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Access limited in NTU ip range | 6.55 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
