Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99550
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王姻麟zh_TW
dc.contributor.advisorYin-Lin Wangen
dc.contributor.author丁敏玹zh_TW
dc.contributor.authorMin-Hsuan Tingen
dc.date.accessioned2025-09-16T16:04:55Z-
dc.date.available2025-09-17-
dc.date.copyright2025-09-16-
dc.date.issued2025-
dc.date.submitted2025-07-24-
dc.identifier.citationAboelnour, A. A., El Malt, M. A., & Mohammed, E. A. (2023). Assessment of the Amount of Nickel and Chromium Released from Two Types of Stainless Steel Crowns. Al-Azhar Dental Journal for Girls, 10(2), 553-558.
Aggarwal, P., Goyel, V., Mathur, S., & Sachdev, V. (2022). Effect of stainless-steel crown and preformed zirconia crown on the periodontal health of endodontically treated primary molars correlating with IL-1β: an in vivo study. Journal of Clinical Pediatric Dentistry, 46(3), 199-203.
Alaki, S. M., Abdulhadi, B. S., AbdElBaki, M. A., & Alamoudi, N. M. (2020). Comparing zirconia to anterior strip crowns in primary anterior teeth in children: a randomized clinical trial. BMC Oral Health, 20, 1-11.
Alkarimi, H. A., Watt, R. G., Pikhart, H., Sheiham, A., & Tsakos, G. (2014). Dental caries and growth in school-age children. Pediatrics, 133(3), e616-e623.
Altoukhi, D. H., & El-Housseiny, A. A. (2020). Hall technique for carious primary molars: a review of the literature. Dentistry journal, 8(1), 11.
Bica, C., Pescaru, P., Stefanescu, A., Docan, M. O., Martha, K., Esian, D., & Cerghizan, D. (2017). Applicability of zirconia-prefabricated crowns in children with primary dentition. Rev Chim, 68(8), 1940-1943.
Borges, G. A., Costa, R. C., Nagay, B. E., Sacramento, C. M., Ruiz, K. G. S., Solano de Almeida, L., Rossino, L. S., Fortulan, C. A., Rangel, E. C., & Barão, V. A. (2023). Targeting biomechanical endurance of dental-implant abutments using a diamond-like carbon coating. ACS applied bio materials, 6(12), 5630-5643.
Carvalho, A. T. d., Carvalho, R. A. M., Silva, M. L. P. d., & Demarquette, N. R. (2006). Hydrophobic plasma polymerized hexamethyldisilazane thin films: characterization and uses. Materials Research, 9, 9-13.
Chen, K.-S., Chang, S.-J., Feng, C.-K., Lin, W.-L., & Liao, S.-C. (2018). Plasma deposition and UV light induced surface grafting polymerization of NIPAAm on stainless steel for enhancing corrosion resistance and its drug delivery property. Polymers, 10(9), 1009.
Cheng, F.-C., & Chiang, C.-P. (2022). The dental use by pediatric patients in the National Health Insurance of Taiwan in 2020. Journal of Dental Sciences, 17(2), 951-957.
Chevalier, J., Gremillard, L., & Deville, S. (2007). Low-temperature degradation of zirconia and implications for biomedical implants. Annu. Rev. Mater. Res., 37(1), 1-32.
Ermakova, E., Kolodin, A., Fedorenko, A., Yushina, I., Shayapov, V., Maksimovskiy, E., & Kosinova, M. (2023). Controlling of chemical bonding structure, wettability, optical characteristics of SiCN: H (SiC: H) films produced by PECVD using tetramethylsilane and ammonia mixture. Coatings, 13(2), 310.
Finucane, D. (2019). Restorative treatment of primary teeth: an evidence‐based narrative review. Australian Dental Journal, 64, S22-S36.
Fonseca, J., Apperley, D., & Badyal, J. (1993). Plasma polymerization of tetramethylsilane. Chemistry of materials, 5(11), 1676-1682.
Fridman, A. (2008). Plasma chemistry. Cambridge university press.
Han, Y., Yu, Q., Dong, X., Hou, J., & Han, J. (2022). Plasma SiOx: H nanocoatings to enhance the antibacterial and anti-inflammatory properties of biomaterials. International Journal of Nanomedicine, 381-394.
Innes, N., Evans, D., Bonifacio, C. C., Geneser, M., Hesse, D., Heimer, M., Kanellis, M., Machiulskiene, V., Narbutaité, J., & Olegário, I. C. (2017). The Hall Technique 10 years on: Questions and answers. British dental journal, 222(6), 478-483.
Keinan, D., Mass, E., & Zilberman, U. (2010). Absorption of nickel, chromium, and iron by the root surface of primary molars covered with stainless steel crowns. International journal of dentistry, 2010(1), 326124.
Khatri, A. (2017). Esthetic zirconia crown in pedodontics. Int J Pedod Rehabil, 2(1), 31-33.
Kim, M., & Lee, J. (1997). Characterization of amorphous SiC: H films deposited from hexamethyldisilazane. Thin Solid Films, 303(1-2), 173-179.
Lee, K. E., Kang, H. S., Shin, S. Y., Lee, T., Lee, H.-S., & Song, J. S. (2024). Comparison of three-dimensional printed resin crowns and preformed stainless steel crowns for primary molar restorations: A randomized controlled trial. J. Clin. Pediatr. Dent, 48, 59-67.
Liao, S.-C., Chang, C.-T., Chen, C.-Y., Lee, C.-H., & Lin, W.-L. (2020). Functionalization of pure titanium MAO coatings by surface modifications for biomedical applications. Surface and Coatings Technology, 394, 125812.
Liu, T., Xu, C., Hong, L., Garcia-Godoy, F., Hottel, T., Babu, J., & Yu, Q. (2017). Effects of trimethylsilane plasma coating on the hydrophobicity of denture base resin and adhesion of Candida albicans on resin surfaces. The Journal of prosthetic dentistry, 118(6), 765-770.
Ma, Y., Chen, M., Jones, J. E., Ritts, A. C., Yu, Q., & Sun, H. (2012). Inhibition of Staphylococcus epidermidis biofilm by trimethylsilane plasma coating. Antimicrobial agents and chemotherapy, 56(11), 5923-5937.
Medjdoub, M., Courant, J., Maher, H., & Post, G. (2001). Inductively coupled plasma—plasma enhanced chemical vapor deposition silicon nitride for passivation of InP based high electron mobility transistors (HEMTs). Materials Science and Engineering: B, 80(1-3), 252-256.
Monteiro, J. B., Prado, P. H. C. O., Zucco, G. R., Campos, T. M. B., Machado, J. P. B., Trava-Airoldi, V. J., & de Melo, R. M. (2023). High-translucency zirconia following chemical vapor deposition with SiH4: evidence of surface modifications and improved bonding. The Journal of Adhesive Dentistry, 25, b3801051.
Murali, G., Mungara, J., Vijayakumar, P., Kothimbakkam, S. S. K., & Akr, S. P. (2022). Clinical evaluation of pediatric posterior zirconia and stainless steel crowns: A comparative study. International journal of clinical pediatric dentistry, 15(1), 9.
Olegário, I. C., Bresolin, C. R., Pássaro, A. L., de Araujo, M. P., Hesse, D., Mendes, F. M., & Raggio, D. P. (2022). Stainless steel crown vs bulk fill composites for the restoration of primary molars post‐pulpectomy: 1‐year survival and acceptance results of a randomized clinical trial. International Journal of Paediatric Dentistry, 32(1), 11-21.
Park, S. Y., Kim, N., Kim, U. Y., Hong, S. I., & Sasabe, H. (1990). Plasma polymerization of hexamethyldisilazane. Polymer Journal, 22(3), 242-249.
Petit‐Etienne, C., Tatoulian, M., Mabille, I., Sutter, E., & Arefi‐Khonsari, F. (2007). Deposition of SiOχ‐Like Thin Films from a Mixture of HMDSO and Oxygen by Low Pressure and DBD Discharges to Improve the Corrosion Behaviour of Steel. Plasma Processes and Polymers, 4(S1), S562-S567.
Sajjanshetty, S. P., P. S.; Hugar, Deepa; Rajkumar, K. (2013). Pediatric Preformed Metal Crowns – An Update. Journal of Dental & Allied Sciences, 2(1), 29–32. https://www.researchgate.net/publication/285084161_Pediatric_Preformed_Metal_Crowns_-_An_Update
Sapir, S., & Shapira, J. (2001). Dentinogenesis imperfecta: an early treatment strategy. Pediatric dentistry, 23(3), 232-237.
Standard, I. (2009). Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity. Geneve, Switzerland: International Organization for Standardization, 10, 9781570203558.
Taran, P. K., & Kaya, M. S. (2018). A comparison of periodontal health in primary molars restored with prefabricated stainless steel and zirconia crowns. Pediatric dentistry, 40(5), 334-339.
Ting, W.-T., Chen, K.-S., & Wang, M.-J. (2021). Dense and anti-corrosion thin films prepared by plasma polymerization of hexamethyldisilazane for applications in metallic implants. Surface and Coatings Technology, 410, 126932.
Vyhmeister, E., Reyes-Bozo, L., Valdés-González, H., Salazar, J.-L., Muscat, A., Estévez, L. A., & Suleiman, D. (2014). In situ FTIR experimental results in the silylation of low-k films with hexamethyldisilazane dissolved in supercritical carbon dioxide. The Journal of Supercritical Fluids, 90, 134-143.
Xia, X., Chiang, C.-C., Gopalakrishnan, S. K., Kulkarni, A. V., Ren, F., Ziegler, K. J., & Esquivel-Upshaw, J. F. (2023). Properties of SiCN films relevant to dental implant applications. Materials, 16(15), 5318.
Yasuda, H. K. (2012). Plasma polymerization. Academic press.
Yeom, G. (2008). Plasma-enhanced chemical vapor deposition of SiO2 thin films at atmospheric pressure by using HMDS/Ar/O2. Journal of the Korean Physical Society, 53(2), 892-896.
Zhang, J., Guo, J., Zhao, Q., Yu, L., Ye, S., Yin, H., & Wang, Y. (2024). Formation of SiO2 thin films through plasma-enhanced chemical vapor deposition using SiH4/Ar/N2O. Thin Solid Films, 797, 140348.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99550-
dc.description.abstract本研究旨在開發以電漿輔助化學氣相沉積 (Plasma-Enhanced Chemical Vapor Deposition, PECVD) 技術,應用有機矽烷化合物於兒童乳牙用不鏽鋼成 型牙冠表面進行改質,以提升其生物相容性與抗菌性能。實驗採用兩種有機矽前驅物──四甲基矽烷 (Tetramethylsilane, TMS) 與六甲基二矽胺烷 (Hexamethyldisilazane, HMDSZ),於不同壓力與處理時間條件下,將奈米級類陶瓷薄膜沉積於不鏽鋼 試片及臨床牙冠樣品表面。
本研究分三階段進行。第一階段為成膜參數優化,針對不同壓力與時間條 件下所製備之薄膜,以傅立葉轉換紅外線光譜(FTIR)、水接觸角(WCA)、X光繞射(XRD)、掃描式電子顯微鏡(SEM)及能譜分析 (EDS)等物理性質評估。由實驗結果顯示,TMS以100 mTorr、15分鐘為最佳鍍膜 參數,WCA達107.3°;HMDSZ則以100 mTorr、5分鐘為最優,其WCA為 100.8°,皆展現出顯著疏水性。
第二階段以上述最佳參數組別進行生物學性能評估。細胞毒性試驗中,以NIH-3T3小鼠纖維母細胞為模型,鍍膜樣品顯示與對照氧化鋯冠相當的細胞活性,無明顯毒性反應。抗菌試驗使用大腸桿菌進行抑菌圈與SEM觀察,顯示鍍膜樣品具有減少菌體附著之效果。電化學極化測試結果顯示,HMDSZ 與 TMS 鍍膜樣品皆能有效提升不鏽鋼之抗蝕性能。HMDSZ 組具最高腐蝕電位,展現出優異的初期電位穩定性,能延緩腐蝕反應啟動;TMS 組則具最低腐蝕電流密度與較高極化電阻,顯示其阻隔效果良好,有助於長期抑制腐蝕進程。整體而言,兩種鍍膜皆展現良好防護效果,具備應用於生醫金屬表面改質之潛力。
第三階段將上述最佳參數應用於臨床市售不鏽鋼乳牙冠,經表面處理後進行SEM觀察。結果顯示膜層覆蓋均勻,無裂縫與剝離現象,證實PECVD鍍膜技術具備應用於複雜立體牙冠結構之可行性。
綜合以上結果,PECVD技術能在不改變不鏽鋼冠結構的前提下,賦予其優異的表面疏水性、抗菌性、生物相容性與耐腐蝕性,顯示其具備作為臨床不鏽鋼冠表面功能性改質的潛力。此研究提供一創新方向,有望改善兒童口腔修復材料之臨床表現與長期健康效益。
zh_TW
dc.description.abstractThis study aimed to develop a surface modification technique for preformed stainless steel crowns (SSCs) used in pediatric dentistry by employing plasma enhanced chemical vapor deposition (PECVD) with organosilicon precursors. The goal was to enhance the biocompatibility and antibacterial properties of SSCs, thereby mitigating gingival inflammation and reducing bacterial adhesion commonly observed in clinical applications. Two types of organosilicon precursors—tetramethylsilane (TMS) and hexamethyldisilazane (HMDSZ)—were selected to fabricate nanostructured ceramic-like films under varied pressure and treatment time conditions.
The study was conducted in three phases. In the first phase, optimization of deposition parameters was performed. Stainless steel specimens were coated with thin films under different PECVD conditions and evaluated through Fourier-transform infrared spectroscopy (FTIR), water contact angle (WCA) measurement, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). Results indicated that the optimal parameters for TMS were 100 mTorr and 15 minutes, yielding a WCA of 107.3°, while those for HMDSZ were 100 mTorr and 5 minutes, with a WCA of 100.8°, both showing significant hydrophobicity and surface morphology alterations.
In the second phase, the selected coatings were subjected to biological performance evaluations. Cytotoxicity tests using NIH-3T3 fibroblast cells revealed that coated specimens exhibited comparable biocompatibility to zirconia crowns, iii without apparent cytotoxic effects. Antibacterial tests using Escherichia coli demonstrated the presence of inhibition zones and reduced bacterial adhesion on coated surfaces. Electrochemical polarization tests revealed that both HMDSZ and TMS-coated samples exhibited improved corrosion resistance on stainless steel substrates. The HMDSZ coating demonstrated superior electrochemical stability, effectively delaying the onset of corrosion reactions. In contrast, the TMS coating showed excellent barrier properties, significantly reducing the corrosion rate over time. These findings suggest that both coatings hold strong potential for surface protection applications in biomedical metal devices.
In the third phase, the optimal PECVD conditions were applied to commercially available stainless steel pediatric crowns. Post-treatment SEM analyses showed uniform film coverage without cracks or delamination, confirming the feasibility of PECVD coatings on complex crown geometries.
In conclusion, the application of PECVD using TMS and HMDSZ precursors successfully imparted favorable surface characteristics—hydrophobicity, antibacterial activity, biocompatibility, and corrosion resistance—without compromising the structural integrity of SSCs. This technique offers a promising strategy for functional surface enhancement of pediatric crowns, with potential to improve clinical outcomes and long-term oral health in children.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-16T16:04:55Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-16T16:04:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
英文摘要 iii
第一章 研究背景與重要性 1
第二章 文獻分析 3
2.1 現今乳牙牙冠的性質比較 3
2.1.1 全樹脂冠(Composite Strip Crown) 3
2.1.2 不鏽鋼冠(Stainless Steel Crown, SSC) 4
2.1.3 氧化鋯冠(Zirconia Crown) 5
2.2 類陶瓷薄膜製程與應用 7
2.2.1 電漿輔助化學氣相沉積技術概述 7
2.2.2 HMDSZ與TMS為電漿聚合單體之特性 8
2.2.3 在牙科材料上的應用潛力與價值 8
第三章 研究目的 10
第四章 實驗材料與方法 11
4.1 實驗架構 11
4.2 實驗材料與儀器 12
4.2.1 實驗材料 12
4.2.2 實驗儀器 13
4.3 實驗方法 13
4.3.1 不鏽鋼片樣品製備 13
4.3.2 不鏽鋼片樣品表面濕潤性分析 14
4.3.3 不鏽鋼片樣品的結構分析 14
4.3.4 不鏽鋼片樣品的表面形貌分析 14
4.3.5 不鏽鋼片樣品的晶像分析 14
4.3.6 不鏽鋼片樣品的電化學極化曲線測試 15
4.3.7 不鏽鋼片樣品的體外細胞毒性測試 15
4.3.8 不鏽鋼片樣品的抗菌效果測試 16
4.3.9 不鏽鋼牙套樣品製備及表面性質分析 17
第五章 結果分析 18
5.1 不鏽鋼片樣品表面濕潤性分析 18
5.2 不鏽鋼片樣品的結構分析 18
5.3 不鏽鋼片樣品的表面形貌分析 20
5.4 不鏽鋼片樣品的晶像分析 21
5.5 不鏽鋼片樣品的電化學極化曲線測試 22
5.6 不鏽鋼片樣品的電化學體外細胞毒性測試 23
5.7 不鏽鋼片樣品的抗菌效果測試 23
5.8 不鏽鋼牙套樣品製備及表面性質分析 24
第六章 討論 25
第七章 結論 28
第八章 檢討與未來研究方向 31
8.1 實驗步驟之檢討 31
8.2 未來研究方向 31
參考文獻 33
附錄 37
-
dc.language.isozh_TW-
dc.subject不鏽鋼冠zh_TW
dc.subject電漿輔助化學氣相沉積zh_TW
dc.subject類陶瓷薄膜zh_TW
dc.subject生物相容性zh_TW
dc.subject抗菌性zh_TW
dc.subjectStainless steel crown (SSC)en
dc.subjectAntibacterial propertyen
dc.subjectBiocompatibilityen
dc.subjectCeramic-like thin filmen
dc.subjectPlasma-enhanced chemical vapor deposition (PECVD)en
dc.title類陶瓷薄膜技術應用於乳牙成型冠基材表面修飾之研究zh_TW
dc.titleApplications of ceramic-like film techniques on surface modification of primary tooth preformed crown materialsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林俊彬;廖淑娟zh_TW
dc.contributor.oralexamcommitteeChun-Pin Lin;Shu-Chuan Liaoen
dc.subject.keyword不鏽鋼冠,電漿輔助化學氣相沉積,類陶瓷薄膜,生物相容性,抗菌性,zh_TW
dc.subject.keywordStainless steel crown (SSC),Plasma-enhanced chemical vapor deposition (PECVD),Ceramic-like thin film,Biocompatibility,Antibacterial property,en
dc.relation.page48-
dc.identifier.doi10.6342/NTU202502118-
dc.rights.note未授權-
dc.date.accepted2025-07-24-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床牙醫學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
3.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved