請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99541完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何珮綺 | zh_TW |
| dc.contributor.advisor | Pei-Chi Ho | en |
| dc.contributor.author | 陳 韡 | zh_TW |
| dc.contributor.author | Wei Chen | en |
| dc.date.accessioned | 2025-09-10T16:36:27Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-15 | - |
| dc.identifier.citation | Angel, M. V. (1970). Observations on the behaviour of Conchoecia Spinirostris. Journal of the Marine Biological Association of the United Kingdom, 50(3), 731-736. https://doi.org/10.1017/S0025315400004999
Boxshall, G. A., & Defaye, D. (2008). Global diversity of copepods (Crustacea: Copepoda) in freshwater. In E. V. Balian, C. Lévêque, H. Segers, & K. Martens (Eds.), Freshwater Animal Diversity Assessment (pp. 195-207). Springer Netherlands. https://doi.org/10.1007/978-1-4020-8259-7_21 Chen, C. T., Carlotti, F., Harmelin-Vivien, M., Letourneur, Y., Savoye, N., Guillou, G., Lebreton, B., Tesan-Onrubia, J. A., Barani, A., Cornet, V., Guilloux, L., Esposito, A., Re, C., & Banaru, D. (2023). Isotopic and biochemical trophic markers reveal the complexity of interactions at the base of pelagic food webs (Mediterranean sea). Mar Environ Res, 190, 106123. https://doi.org/10.1016/j.marenvres.2023.106123 Chen, Q. C., Zhang, S. Z. (1965). On planktonic copepods of the Yellow Sea and the East China Sea. I. Calanoida. Stud Mar Sin, 7: 20-131, pls. 53 (in Chinese) DeMott, W. R., & Gulati, R. D. (1999). Phosphorus limitation in Daphnia: Evidence from a long term study of three hypereutrophic Dutch lakes. Limnology and Oceanography, 44(6), 1557-1564. https://doi.org/https://doi.org/10.4319/lo.1999.44.6.1557 Djeghri, N., Atkinson, A., Fileman, E. S., Harmer, R. A., Widdicombe, C. E., McEvoy, A. J., Cornwell, L., & Mayor, D. J. (2018). High prey-predator size ratios and unselective feeding in copepods: A seasonal comparison of five species with contrasting feeding modes. Progress in Oceanography, 165, 63-74. https://doi.org/10.1016/j.pocean.2018.04.013 Duró, A., & Saiz, E. (2000). Distribution and trophic ecology of chaetognaths in the western Mediterranean in relation to an inshore–offshore gradient. Journal of plankton research, 22(2), 339-361. https://doi.org/10.1093/plankt/22.2.339 Elrifi, I. R., & Turpin, D. H. (1985). Steady-state luxury consumption and the concept of optimum nutrient ratios: a study with phosphate and nitrate limited Selenastrum minutum (chlorophyta). Journal of Phycology, 21(4), 592-602. https://doi.org/https://doi.org/10.1111/j.0022-3646.1985.00592.x Elser, J., Kyle, M., Learned, J., McCrackin, M., Peace, A., & Steger, L. (2016). Life on the stoichiometric knife-edge: effects of high and low food C:P ratio on growth, feeding, and respiration in three Daphnia species. Inland Waters, 6(2), 136-146. https://doi.org/10.5268/iw-6.2.908 Elser, J. J., Acharya, K., Kyle, M., Cotner, J., Makino, W., Markow, T., Watts, T., Hobbie, S., Fagan, W., Schade, J., Hood, J., & Sterner, R. W. (2003). Growth rate–stoichiometry couplings in diverse biota. Ecology Letters, 6(10), 936-943. https://doi.org/https://doi.org/10.1046/j.1461-0248.2003.00518.x Elser, J. J., & Hassett, R. P. (1994). A stoichiometric analysis of the zooplankton–phytoplankton interaction in marine and freshwater ecosystems. Nature, 370(6486), 211-213. https://doi.org/10.1038/370211a0 Elser, J. J., Sterner, R. W., Gorokhova, E., Fagan, W. F., Markow, T. A., Cotner, J. B., Harrison, J. F., Hobbie, S. E., Odell, G. M., & Weider, L. W. (2000). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3(6), 540-550. https://doi.org/https://doi.org/10.1111/j.1461-0248.2000.00185.x Gismervik, I. (1997). Stoichiometry of some marine planktonic crustaceans. Journal of plankton research, 19(2), 279-285. https://doi.org/10.1093/plankt/19.2.279 Gong, G.-C., Lee Chen, Y.-L., & Liu, K.-K. (1996). Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrient dynamics. Continental Shelf Research, 16(12), 1561-1590. https://doi.org/https://doi.org/10.1016/0278-4343(96)00005-2 Gong, G.-C., Shiah, F.-K., Liu, K.-K., Wen, Y.-H., & Ming-Hsin, L. (2000). Spatial and temporal variation of chlorophyll a, primary productivity and chemical hydrography in the southern East China Sea. Continental Shelf Research, 20(4), 411-436. https://doi.org/https://doi.org/10.1016/S0278-4343(99)00079-5 Hansen, B., Bjornsen, P. K., & Hansen, P. J. (1994). The size ratio between planktonic predators and their prey. Limnology and Oceanography, 39(2), 395-403. https://doi.org/https://doi.org/10.4319/lo.1994.39.2.0395 Hassett, R. P., Cardinale, B., Stabler, L. B., & Elser, J. J. (1997). Ecological stoichiometry of N and P in pelagic ecosystems: Comparison of lakes and oceans with emphasis on the zooplankton-phytoplankton interaction. Limnology and Oceanography, 42(4), 648-662. https://doi.org/https://doi.org/10.4319/lo.1997.42.4.0648 He, X., Lei, M., Cheng, F., & Hu, S. (2023). In situ food compositions reveal niche partitioning in small marine cladocerans and copepods in Daya Bay, South China Sea. Marine Ecology Progress Series, 716, 47-61. https://www.int-res.com/abstracts/meps/v716/p47-61/ Herstoff, E. M., Meunier, C. L., Boersma, M., & Baines, S. (2023). Are all copepods the same? Variation in copepod stoichiometry with taxonomy, ontogeny, latitude, and habitat. Ecosphere, 14(12). https://doi.org/10.1002/ecs2.4705 Hessen, D. O., van Donk, E., & Gulati, R. (2005). Seasonal seston stoichiometry: effects on zooplankton in cyanobacteria-dominated lakes. Journal of plankton research, 27(5), 449-460. https://doi.org/10.1093/plankt/fbi018 Ho, P.-C., Wong, E., Lin, F.-S., Sastri, A. R., García-Comas, C., Okuda, N., Shiah, F.-K., Gong, G.-C., Yam, R. S. W., & Hsieh, C.-h. (2020). Prey stoichiometry and phytoplankton and zooplankton composition influence the production of marine crustacean zooplankton. Progress in Oceanography, 186. https://doi.org/10.1016/j.pocean.2020.102369 Hsieh, C.-h., & Chiu, T.-S. (2004). Summer spatial distribution of copepods and fish larvae in relation to hydrography in the northern Taiwan Strait. Zoological Studies, 41(1), 85-98. Hsieh, C.-h.., Chiu, T.-S., & Shih, C.-t. (2004). Copepod diversity and composition as indicators of intrusion of the Kuroshio Branch Current into the Northern Taiwan Strait in Spring 2000. Zoological Studies, 43(2), 393-403. Iwabuchi, T., & Urabe, J. (2012a). Competitive outcomes between herbivorous consumers can be predicted from their stoichiometric demands. Ecosphere, 3(1), 1-16. https://doi.org/10.1890/es11-00253.1 Iwabuchi, T., & Urabe, J. (2012b). Food quality and food threshold: implications of food stoichiometry to competitive ability of herbivore plankton. Ecosphere, 3(6), 1-17. https://doi.org/10.1890/es12-00098.1 Kassambara, A. (2023). ggpubr: 'ggplot2' Based Publication Ready Plots. In CRAN. https://CRAN.R-project.org/package=ggpubr Katechakis, A., & Stibor, H. (2004). Feeding selectivities of the marine cladocerans Penilia avirostris, Podon intermedius and Evadne nordmanni. Marine Biology, 145(3), 529-539. https://doi.org/10.1007/s00227-004-1347-1 Kim, S. W., Onbé, T., & Yoon, Y. H. (1989). Feeding habits of marine cladocerans in the Inland Sea of Japan. Marine Biology, 100(3), 313-318. https://doi.org/10.1007/BF00391145 Kiørboe, T. (2013). Zooplankton body composition. Limnology and Oceanography, 58(5), 1843-1850. https://doi.org/10.4319/lo.2013.58.5.1843 Laspoumaderes, C., Modenutti, B., Elser, J. J., & Balseiro, E. (2015). Does the stoichiometric carbon:phosphorus knife edge apply for predaceous copepods? Oecologia, 178(2), 557-569. https://doi.org/10.1007/s00442-014-3155-8 Lee Chen, Y.-L. (2000). Comparisons of primary productivity and phytoplankton size structure in the marginal regions of southern East China Sea. Continental Shelf Research, 20(4), 437-458. https://doi.org/https://doi.org/10.1016/S0278-4343(99)00080-1 Lee, W. Y., Omori, M., & Peck, R. W. (1992). Growth, reproduction and feeding behavior of the planktonic shrimp, Lucifer faxoni Borradaile, off the Texas coast. Journal of plankton research, 14(1), 61-69. https://doi.org/10.1093/plankt/14.1.61 Lin, Q., Liu, L., Gong, Z., & Peng, L. (2024). Does nutrient enrichment alleviate stoichiometric constraint on plankton trophic structure? Limnology and Oceanography, 69(6), 1390-1403. https://doi.org/10.1002/lno.12579 Loladze, I., Kuang, Y., Elser, J. J., & Fagan, W. F. (2004). Competition and stoichiometry: coexistence of two predators on one prey. Theor Popul Biol, 65(1), 1-15. https://doi.org/10.1016/s0040-5809(03)00105-9 Matsumoto, K., Tanioka, T., & Rickaby, R. (2020). Linkages between dynamic phytoplankton C:N:P and the ocean carbon cycle under climate change. Oceanography, 33(2). https://doi.org/10.5670/oceanog.2020.203 Mayzaud, P. (1997). Spatial and life-cycle changes in lipid and fatty acid structure of the Antarctic euphausiid Euphausia superba. Antarctic communities: species, structure and survival. Meunier, C. L., Boersma, M., Wiltshire, K. H., & Malzahn, A. M. (2015). Zooplankton eat what they need: copepod selective feeding and potential consequences for marine systems. Oikos, 125(1), 50-58. https://doi.org/10.1111/oik.02072 Motwani, N. H., & Gorokhova, E. (2013). Mesozooplankton grazing on picocyanobacteria in the Baltic Sea as inferred from molecular diet analysis. PLoS One, 8(11), e79230. https://doi.org/10.1371/journal.pone.0079230 Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36. https://doi.org/https://doi.org/10.1016/S0003-2670(00)88444-5 Nakajima, R., Yoshida, T., Othman, B. H. R., & Toda, T. (2015). Monsoonal changes in the planktonic copepod community structure in a tropical coral-reef at Tioman Island, Malaysia. Regional Studies in Marine Science, 2, 19-26. https://doi.org/10.1016/j.rsma.2015.08.016 Onbé, T. (1985). Seasonal fluctuations in the abundance of populations of marine cladocerans and their resting eggs in the Inland Sea of Japan. Marine Biology, 87(1), 83-88. https://doi.org/10.1007/BF00397009 Razouls C., D. N., Kouwenberg J. and de Bovée F. (2005-2025). Biodiversity of marine planktonic copepods (morphology, geographical distribution and biological data). Sorbonne University, CNRS. http://copepodes.obs-banyuls.fr/en Ren, Z., Yu, J., Lin, Z., Zhang, L., & Wang, M. (2024). Estimating nutrient stoichiometry and cascading influences on plankton in thermokarst lakes on the Qinghai-Tibet Plateau. Communications Earth & Environment, 5(1). https://doi.org/10.1038/s43247-024-01859-w Rezai, H., Yusoff, F., Arshad, A., Kawamura, A., Nishida, S., & Ross, O. B. H. (2004). Spatial and temporal distribution of copepods in the Straits of Malacca. Zoological Studies, 43(2), 486-497. https://doi.org/10.1007/s10750-004-2792-z Richard, F. L., Wilhelm, H., & Gerhard, K. (2006). Lipid storage in marine zooplankton. Marine Ecology Progress Series, 307, 273-306. https://www.int-res.com/abstracts/meps/v307/p273-306/ Saiz, E., Griffell, K., Isari, S., & Calbet, A. (2023). Ecophysiological response of marine copepods to dietary elemental imbalances. Mar Environ Res, 186, 105940. https://doi.org/10.1016/j.marenvres.2023.105940 Savineau, E. L.-R., Cook, K. B., Blackbird, S. J., Stowasser, G., Kiriakoulakis, K., Preece, C., Fielding, S., Belcher, A. C., Wolff, G. A., Tarling, G. A., & Mayor, D. J. (2024). Investigating the physiological ecology of mesopelagic zooplankton in the Scotia sea (Southern ocean) using lipid and stable isotope signatures. Deep Sea Research Part I: Oceanographic Research Papers, 208. https://doi.org/10.1016/j.dsr.2024.104317 Sheng, L., Wen-Xiong, W., & Liang-Min, H. (2006). Phosphorus dietary assimilation and efflux in the marine copepod Acartia erythraea. Marine Ecology Progress Series, 321, 193-202. https://www.int-res.com/abstracts/meps/v321/p193-202/ Shih, C-t; Chen, Q-C; Lan, Y-C; Hsiao, S-H; and Weng, C-Y (2022) "Calanoid Copepods Of China Seas," Journal of Marine Science and Technology: Vol. 30: Iss. 4, Article 2. DOI: 10.51400/2709-6998.2583 Available at: https://jmstt.ntou.edu.tw/journal/vol30/iss4/2 Sommer, U., Berninger, U. G., Böttger-Schnack, R., Cornils, A., Hagen, W., Hansen, T., Al-Najjar, T., Post, A. F., Schnack-Schiel, S. B., Stibor, H., Stübing, D., & Wickham, S. (2002). Grazing during early spring in the Gulf of Aqaba and the northern Red Sea. Marine Ecology Progress Series, 239, 251-261. http://www.jstor.org/stable/24866064 Sterner, R. W., Andersen, T., Elser, J. J., Hessen, D. O., Hood, J. M., McCauley, E., & Urabe, J. (2008). Scale‐dependent carbon:nitrogen:phosphorus seston stoichiometry in marine and freshwaters. Limnology and Oceanography, 53(3), 1169-1180. https://doi.org/10.4319/lo.2008.53.3.1169 Sterner, R. W., & Elser, J. J. (2002). Ecological Stoichiometry The Biology of Elements from Molecules to the Biosphere. Princeton University Press. http://www.jstor.org/stable/j.ctt1jktrp3 Sterner, R. W., & Schwalbach, M. S. (2001). Diel integration of food quality by Daphnia: Luxury consumption by a freshwater planktonic herbivore. Limnology and Oceanography, 46(2), 410-416. https://doi.org/https://doi.org/10.4319/lo.2001.46.2.0410 R Core Team (2023). R: A language and environment for statistical computing. In R Foundation for Statistical Computing. https://www.R-project.org/ Teurlincx, S., Velthuis, M., Seroka, D., Govaert, L., van Donk, E., Van de Waal, D. B., & Declerck, S. A. J. (2017). Species sorting and stoichiometric plasticity control community C:P ratio of first-order aquatic consumers. Ecol Lett, 20(6), 751-760. https://doi.org/10.1111/ele.12773 Tilman, D. (1982). Resource Competition and Community Structure. (MPB-17), Volume 17. Princeton University Press. https://doi.org/10.2307/j.ctvx5wb72 Tiselius, P., & Fransson, K. (2016). Daily changes in δ15N and δ13C stable isotopes in copepods: equilibrium dynamics and variations of trophic level in the field. Journal of plankton research, 38(3), 751-761. https://doi.org/10.1093/plankt/fbv048 Traboni, C., Calbet, A., & Saiz, E. (2021). Mixotrophy upgrades food quality for marine calanoid copepods. Limnology and Oceanography, 66(12), 4125-4139. https://doi.org/10.1002/lno.11948 van de Waal, D. B., Verschoor, A. M., Verspagen, J. M. H., van Donk, E., & Huisman, J. (2009). Climate‐driven changes in the ecological stoichiometry of aquatic ecosystems. Frontiers in Ecology and the Environment, 8(3), 145-152. https://doi.org/10.1890/080178 van der Meeren, T., Olsen, R. E., Hamre, K., & Fyhn, H. J. (2008). Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture, 274(2), 375-397. https://doi.org/https://doi.org/10.1016/j.aquaculture.2007.11.041 Villar-Argaiz, M., Medina-Sánchez, J. M., & Carrillo, P. (2002). Linking life history strategies and ontogeny in crustacean zooplankton: Implications for homeostasis. Ecology, 83(7), 1899-1914. https://doi.org/https://doi.org/10.1890/0012-9658(2002)083[1899:LLHSAO]2.0.CO;2 Wang, K. T. (2023). Zooplankton : wonderful world in small water droplets. National Environmental Research Academy. https://gpi.culture.tw/books/1011201939 (in Chinese) Zhou, L., & Declerck, S. A. J. (2019). Herbivore consumers face different challenges along opposite sides of the stoichiometric knife-edge. Ecol Lett, 22(12), 2018-2027. https://doi.org/10.1111/ele.13386 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99541 | - |
| dc.description.abstract | 消費者與食物間的元素比不平衡 (stoichiometric imbalance) 是影響消費者生長速率的重要因子。因為作為食物的浮游植物其碳、氮、磷比 (C:N:P) 變化較大,具有相對穩定元素比的浮游動物經常遇到元素比不平衡的情形。食物中元素含量過低或過高皆屬於元素比不平衡的範疇,而兩者皆會限制浮游動物的生長及生殖能力,進而降低其適存度與競爭力。浮游動物類群間對元素需求的差異會導致各類群與浮游植物間產生不同程度的元素比不平衡。理論上,受到較高程度不平衡的類群競爭力較差,因此不平衡程度較低的類群會成為優勢。過去研究關於元素比不平衡對浮游動物群聚的影響,多半為控制實驗或理論模型,且聚焦在淡水浮游動物,而針對海洋浮游動物的研究仍相當缺乏。本研究於東海南部採集植食性浮游動物及顆粒有機物 (POM) ,並測量其碳、氮、磷比,以探討元素比不平衡如何影響海洋浮游動物在科層級的類群組成。本研究旨為驗證三項假說:(1) 浮游動物的元素比在科內恆定;(2) 浮游動物的元素比有科間差異;(3) 浮游動物類群受到的計量不平衡越高,其相對豐度越低。結果證實浮游動物元素比在科內恆定,但科間存在顯著差異(尤其是C:P 與 N:P)。此外,磷的元素比不平衡對浮游動物群聚組成影響最大。其中缺磷會減少浮游動物相對豐度,而過量的磷則有正向影響,顯示浮游動物有儲存而利用過量磷的可能。本研究首次於野外研究中證實元素比不平衡為影響海洋浮游動物群聚組成的重要因子之一,並提出海洋浮游動物具有對過量磷適應能力之可能。 | zh_TW |
| dc.description.abstract | Stoichiometric imbalance between consumers and their food sources plays a crucial role in determining growth efficiency. Zooplankton often experience such imbalance due to their relatively stable internal C:N:P ratios compared to the more variable stoichiometry of their phytoplankton prey. The imbalance is bi-directional: both nutrient deficiency and excess can impair zooplankton growth and reproduction, thereby reducing fitness and competitive performance. Because zooplankton taxa differ in their elemental requirements, they experience differential degrees of stoichiometric mismatch with phytoplankton. Taxa experiencing stronger imbalance are likely to be less competitive, leading to community shifts favoring taxa with lower imbalance. Most research on the effects of stoichiometric imbalance on zooplankton competition has been conducted under laboratory conditions or using theoretical models, and primarily focuses on freshwater systems. In contrast, the role of stoichiometric imbalance in shaping marine zooplankton communities remains largely understudied. In this study, I conducted field sampling in the southern East China Sea and analyzed the carbon, nitrogen, and phosphorus ratios (C:N:P) of herbivorous zooplankton and particulate organic matter (POM). The objective was to examine how stoichiometric imbalance influences the family-level taxonomic composition of marine zooplankton. I tested the following hypotheses: (1) Zooplankton stoichiometry is homeostatic within families; (2) Zooplankton stoichiometry varies among families; and (3) A higher degree of stoichiometric imbalance reduces the relative abundance of a zooplankton family. My analyses revealed that while zooplankton exhibit stoichiometric homeostasis within families, significant inter-family differences were observed, especially in C:P and N:P ratios. Phosphorus imbalance, in particular, was found to influence zooplankton community composition: P deficiency negatively affected zooplankton relative abundance. Unexpectedly, excess P had a positive effect, suggesting the potential for luxury phosphorus uptake. This study provides novel field-based evidence that taxon-specific stoichiometric imbalance shapes marine zooplankton community composition. Furthermore, zooplankton might have the capacity to store and utilize excess phosphorus. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:36:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:36:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv Contents vi Introduction 1 Materials and Methods 6 Sampling area 6 Zooplankton taxonomic composition 7 Stoichiometry and stable isotope analysis of POM and zooplankton 7 Data analysis 12 Results 15 Homeostasis of zooplankton stoichiometry within taxonomic families 15 Variation of zooplankton stoichiometry among taxonomic families 15 Effect of stoichiometric imbalance on the relative abundance of zooplankton 16 Discussion 18 Homeostasis of zooplankton stoichiometry within taxonomic families 18 Variation of zooplankton stoichiometry among taxonomic families 18 Effect of stoichiometric imbalance on zooplankton taxonomic composition 19 Limitation of this study 22 Conclusion 24 Figure references 25 Table references 26 References 35 Appendix 44 | - |
| dc.language.iso | en | - |
| dc.subject | 浮游動物群聚組成 | zh_TW |
| dc.subject | 元素比生態學 | zh_TW |
| dc.subject | 元素比不平衡 | zh_TW |
| dc.subject | 競爭 | zh_TW |
| dc.subject | 特定類群元素比 | zh_TW |
| dc.subject | Ecological stoichiometry | en |
| dc.subject | Zooplankton community composition | en |
| dc.subject | Taxon-specific C:N:P | en |
| dc.subject | Competition | en |
| dc.subject | Stoichiometric imbalance | en |
| dc.title | 浮游動物及浮游植物間元素比不平衡影響海洋浮游動物群聚內之競爭優勢 | zh_TW |
| dc.title | Stoichiometric imbalance between zooplankton and phytoplankton affects competitive superiority in marine herbivorous zooplankton communities | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 謝志豪 | zh_TW |
| dc.contributor.coadvisor | Chih-Hao Hsieh | en |
| dc.contributor.oralexamcommittee | 張峰勲;王珮玲 | zh_TW |
| dc.contributor.oralexamcommittee | Feng-Hsun Chang;Pei-Ling Wang | en |
| dc.subject.keyword | 浮游動物群聚組成,元素比生態學,元素比不平衡,競爭,特定類群元素比, | zh_TW |
| dc.subject.keyword | Zooplankton community composition,Ecological stoichiometry,Stoichiometric imbalance,Competition,Taxon-specific C:N:P, | en |
| dc.relation.page | 52 | - |
| dc.identifier.doi | 10.6342/NTU202501760 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-17 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 海洋研究所 | - |
| dc.date.embargo-lift | 2028-08-11 | - |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2028-08-11 | 2.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
