Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99540
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫珍理zh_TW
dc.contributor.advisorChen-li Sunen
dc.contributor.author蔡承軒zh_TW
dc.contributor.authorCheng-Shiuan Tsaien
dc.date.accessioned2025-09-10T16:36:16Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-14-
dc.identifier.citation[1] R. C. Chu, R. E. Simons, M. J. Ellsworth, R. R. Schmidt, and V. Cozzolino, "Review of cooling technologies for computer products," IEEE Transactions on Device and Materials Reliability, vol. 4, pp. 568-585, 2004, doi: 10.1109/TDMR.2004.840855.
[2] V. Nair, A. Baby, M. Anoop, S. Indrajith, M. Murali, and M. B. Nair, "A comprehensive review of air-cooled heat sinks for thermal management of electronic devices," International Communications in Heat and Mass Transfer, vol. 159, p. 108055, 2024, doi: 10.1016/j.icheatmasstransfer.2024.108055.
[3] W. Zhou, K. Dong, Q. Sun, W. Luo, B. Zhang, S. Guan, and G. Wang, "Research progress of the liquid cold plate cooling technology for server electronic chips: a review," International Journal of Energy Research, vol. 46, pp. 11574-11595, 2022, doi: 10.1002/er.7979.
[4] M. T. North, A. Kulkarni, and D. Haley, "Effects of datacenter cooling subsystems performance on TUE: air vs. liquid vs. hybrid cooling," presented at the 2024 23rd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Denver, Colorado, USA, May 28-31, 2024, 2024.
[5] S. S. Murshed and C. N. De Castro, "A critical review of traditional and emerging techniques and fluids for electronics cooling," Renewable and Sustainable Energy Reviews, vol. 78, pp. 821-833, 2017, doi: 10.1016/j.rser.2017.04.112.
[6] W. Qu and I. Mudawar, "Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks," International Journal of Heat and Mass Transfer, vol. 47, pp. 2045-2059, 2004, doi: 10.1016/j.ijheatmasstransfer.2003.12.006.
[7] E. G. Colgan, B. Furman, M. Gaynes, W. S. Graham, N. C. LaBianca, J. H. Magerlein, R. J. Polastre, M. B. Rothwell, R. Bezama, and R. Choudhary, "A practical implementation of silicon microchannel coolers for high power chips," IEEE Transactions on Components and Packaging Technologies, vol. 30, pp. 218-225, 2007, doi: 10.1109/TCAPT.2007.897977.
[8] C. Wu, S. Hsiao, J. Wang, W. Lin, C. Chang, T. Shao, C. Tung, and C. Doug, "Ultra high power cooling solution for 3D-ICs," presented at the 2021 Symposium on VLSI Technology, Kyoto, Japan, June 13-19, 2021, 2021.
[9] Y.-J. Lien, C.-C. Hsieh, T. Ku, L. Wang, P.-J. Chen, K.-C. Yee, and C. D. Yu, "An energy-efficient Si-integrated micro-cooler for high power and power-density computing applications," presented at the 2024 IEEE 74th Electronic Components and Technology Conference (ECTC), Colorado, USA, May 28-31, 2024, 2024.
[10] H. Kwon, Q. Wu, D. Kong, S. Hazra, K. Jiang, S. Narumanchi, H. Lee, J. W. Palko, E. M. Dede, and M. Asheghi, "Capillary-enhanced two-phase micro-cooler using copper-inverse-opal wick with silicon microchannel manifold for high-heat-flux cooling application," International Communications in Heat and Mass Transfer, vol. 156, p. 107592, 2024, doi: 10.1016/j.icheatmasstransfer.2024.107592.
[11] H. Kwon, Q. Wu, D. Kong, S. Hazra, K. Jiang, C. Ahn, S. Narumanchi, H. Lee, J. Palko, and E. M. Dede, "Development of a Hybrid single/two-phase capillary-based micro-cooler using copper inverse opals wick with silicon 3D manifold for high-heat-flux cooling application," presented at the 2024 23rd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Denver, Colorado, USA, May 28-31, 2024, 2024.
[12] Y. Lin, H. Kwon, H. Chen, M. P. Gupta, M. Degner, M. Asheghi, H. A. Mantooth, and K. E. Goodson, "Development of a hybrid capillary-driven single-phase and two-phase micro-cooler for power electronics cooling," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 14, pp. 810-823, 2024, doi: 10.1109/TCPMT.2024.3369002.
[13] X. Tang, Q. Xu, J. Li, H. Yu, C. Pei, and L. Guo, "Experimental study on flow boiling heat transfer in open copper microchannel heat sinks with different aspect ratios," International Journal of Heat and Mass Transfer, vol. 231, p. 125879, 2024, doi: 10.1016/j.ijheatmasstransfer.2024.125879.
[14] H. J. Lee, D. Y. Liu, and S.-c. Yao, "Flow instability of evaporative micro-channels," International Journal of Heat and Mass Transfer, vol. 53, pp. 1740-1749, 2010, doi: 10.1016/j.ijheatmasstransfer.2010.01.016.
[15] S. G. Kandlikar, "Heat transfer mechanisms during flow boiling in microchannels," International Journal of Heat and Mass Transfer, vol. 126, pp. 8-16, 2004, doi: 10.1115/1.1643090.
[16] D. Cooke and S. G. Kandlikar, "Effect of open microchannel geometry on pool boiling enhancement," International Journal of Heat and Mass Transfer, vol. 55, pp. 1004-1013, 2012, doi: 10.1016/j.ijheatmasstransfer.2011.10.010.
[17] Q. Zhao, J. Qiu, J. Zhou, M. Lu, Q. Li, and X. Chen, "Visualization study of flow boiling characteristics in open microchannels with different wettability," International Journal of Heat and Mass Transfer, vol. 180, p. 121808, 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121808.
[18] S. G. Kandlikar, T. Widger, A. Kalani, and V. Mejia, "Enhanced flow boiling over open microchannels with uniform and tapered gap manifolds," International Journal of Heat and Mass Transfer, vol. 135, p. 061401, 2013, doi: 10.1115/1.4023574.
[19] S.-W. Chang, "Application of tapered manifolds for subcooled flow boiling on large-area microstructured surface," M.S. Thesis, National Taiwan University, Taipei, 2024.
[20] LabVIEW. (2014). National Instruments.
[21] M. C. Potter, D. C. Wiggert, and B. H. Ramadan, Mechanics of Fluids. Boston: Cengage Learning, 1995.
[22] A. H. Harvey, Thermodynamic properties of water: Tabulation from the IAPWS Formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Gaithersburg: US Department of Commerce, Technology Administration, National Institute of Standards and Technology, 1998.
[23] N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr, R. Rädle, C. Rolland, and L. Gustafson, "Sam 2: segment anything in images and videos," arXiv preprint arXiv:2408.00714, 2024, doi: 10.48550/arXiv.2408.00714.
[24] S. S. Kutateladze, "Boiling heat transfer," International Journal of Heat and Mass Transfer, vol. 4, pp. 31-45, 1961, doi: 10.1016/0017-9310(61)90059-X.
[25] X. Ji, Y. Wang, J. Xu, and Y. Huang, "Effects of oxidation processes and microstructures on the hydrophilicity of copper surface," Materials Letters, vol. 195, pp. 71-75, 2017, doi: 10.1016/j.matlet.2017.02.101.
[26] Y. Hsu, "On the size range of active nucleation cavities on a heating surface," International Journal of Heat and Mass Transfer, vol. 84, pp. 207-213, 1962, doi: 10.1115/1.3684339.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99540-
dc.description.abstract本研究旨在探討具有楔形上蓋的低壓兩相水冷板在搭配不同的鰭片結構設計時熱傳性能的表現。研究中共使用三種鰭片結構:全長型鰭片、短型鰭片、漸疏型鰭片,測試裝置的出口壓力設置於50 kPa,工作流體為去離子水,目標為在110°C的結溫以內盡可能提升熱通量。
測試裝置內的加熱過程可根據其氣泡以及熱傳狀態分成四個階段:第一階段為單相對流,表面尚未有氣泡產生,熱傳係數幾乎為定值;第二階段為局部過冷流沸騰,可觀察到局部成核,測試裝置內呈現氣泡流,熱傳係數開始隨加熱表面溫度上升而提升;第三階段為完全發展流沸騰,可觀察到大量成核點啟動,測試裝置內呈現氣泡流且開始出現氣泡合併,熱傳係數隨加熱表面溫度上升的幅度進一步增加;第四階段為飽和流沸騰,可觀察到大量氣泡合併,測試裝置內呈現塞狀流,此時熱傳係數開始隨加熱表面溫度上升而下降。
使用PEEK下蓋與水冷式冷凝器所獲得的實驗結果顯示,在四個階段中,相同熱通量下,短型鰭片的加熱表面中心溫度皆最低,漸疏型鰭片次之,全長型鰭片最高。在第一與第二階段中,短型鰭片與漸疏型鰭片因為下游的截面積改變,流體擾動增加而在下游形成紊流,因此擁有更好的強制對流熱傳表現。第三階段中,大量增加的氣泡會導致排除不順而產生震盪,而下游壓力震盪的頻率會稍微低於氣泡面積震盪的頻率,這是因為氣泡流至下游時體積增加,使得下游氣泡通過頻率降低。根據氣泡流動分析,氣泡面積震盪有助於氣泡排除,在沒有出現氣泡回流的情況下,氣泡面積震盪皆為向下游推送,氣泡面積震盪幅度越大,其單位深度的氣泡移除率越大。在第三階段中,短型鰭片的氣泡面積震盪幅度最大,漸疏型鰭片次之,全長型鰭片最小,因此短型鰭片的熱傳效果最好。第四階段中,所有鰭片結構的氣泡面積震盪幅度與氣泡移除率開始下降,由於下游空間較大的短型鰭片與漸疏型鰭片具更強的氣泡排除能力,因此在大量氣泡堆積的情況下,熱傳性能變差的幅度也較低。故熱傳性能最佳的組合為使用PEEK下蓋與水冷式冷凝器的短型鰭片,其最大熱通量為6.33 W mm-2,所對應的加熱表面中心溫度為106.3°C,總散熱功率可達4906 W,相較於漸疏型鰭片與全長型鰭片,短型鰭片的熱傳係數分別高出5.4%與21.5%。
zh_TW
dc.description.abstractThis study focuses on the performance of a low-pressure two-phase cold plate with a wedge lid. The aim is to maximize the cooling capacity while maintaining a surface temperature below 110°C. Three fin designs are tested: full fins, short fins and divergent fins. Deionized water is used as the working fluid, and the outlet pressure is fixed at 50 kPa.
The boiling process in the 2-phase cold plate can be divided into four regimes. Regime I only has single-phase convection and no bubble is found. The heat transfer coefficient remains constant. Regime II is subcooled flow boiling. Bubble nucleation occurs and bubbly flow is presented. The heat transfer coefficient increases with increasing heat flux. Regime III is fully developed flow boiling. More nucleation sites become active and bubble coalescence is observed. The heat transfer coefficient experiences a rapid increase. Regime IV is saturated flow boiling. Extensive bubble coalescence leads to the formation of slug flow and the heat transfer coefficient decreases with a further increase in heat flux.
The results show that the short fins consistently yield the lowest surface temperatures and the highest heat transfer coefficient across all regimes. In regimes I and II, the downstream expansion in the designs of short and divergent fins triggers turbulence, improving convective heat transfer. As bubble incipience results in flow-oscillation, the outlet pressure fluctuates slightly more slowly than the variation of bubble area. This is ascribed to bubble growth as it travels downstream. Because reverse flow is not observed, the amplitude of bubble oscillation is directly linked to vapor removal rate per unit depth. The design of short fins leads to the most vigorous bubble oscillation and the best thermal performance. A maximum heat flux of 6.33 W mm-2 is achieved with a surface temperature of 106.3°C by using the short fins design. The corresponding power is 4906 W.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:36:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:36:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
摘要 ii
Abstract iv
目次 vi
符號索引 ix
圖次 xi
表次 xvii
第一章 導論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 高功率散熱 2
1.2.2 兩相冷卻器的潛力 3
1.2.3 鰭片設計的影響 4
1.2.4 流道設計的影響 5
1.3 研究目的 6
第二章 實驗架構與不確定性分析 7
2.1 實驗裝置 7
2.1.1 測試裝置 8
2.1.2 加熱裝置 9
2.1.3 流體循環與冷凝裝置 12
2.1.4 壓力控制裝置 13
2.1.5 影像擷取裝置 14
2.1.6 資料擷取裝置 15
2.2 實驗流程 16
2.3 實驗數據分析 17
2.3.1 熱通量與加熱表面中心溫度計算 17
2.3.2 工作流體飽和溫度計算 18
2.3.3 流量計校正曲線計算 20
2.3.4 影像處理 21
2.4 不確定性分析 21
2.4.1 溫度量測不確定性 23
2.4.2 熱通量不確定性 23
2.4.3 加熱表面中心溫度不確定性 24
2.4.4 壓力量測不確定性 24
2.4.5 質量流率不確定性 25
2.4.6 測試裝置壓力不確定性 26
2.4.7 工作流體飽和溫度不確定性 27
2.4.8 加熱表面過熱度不確定性 28
2.4.9 熱對流係數不確定性 28
第三章 實驗結果與討論 29
3.1 沸騰階段 29
3.2 使用ULTEM下蓋與風冷式冷凝器 30
3.2.1 FF鰭片結構 30
3.2.2 SF鰭片結構 31
3.2.3 鰭片結構的影響 32
3.2.4 實驗限制與改進 34
3.3 使用ULTEM下蓋與水冷式冷凝器 35
3.3.1 FF鰭片結構 35
3.3.2 SF鰭片結構 36
3.3.3 DF鰭片結構 37
3.3.4 鰭片結構的影響 38
3.3.5 實驗限制與改進 40
3.4 使用PEEK下蓋與水冷式冷凝器 41
3.4.1 FF鰭片結構 41
3.4.2 SF鰭片結構 44
3.4.3 DF鰭片結構 46
3.4.4 鰭片結構的影響 48
3.4.5 實驗改進 50
第四章 結論與建議 52
4.1 結論 52
4.2 建議 53
參考文獻 55
附錄 59
-
dc.language.isozh_TW-
dc.subject低壓兩相水冷板zh_TW
dc.subject高功率冷卻zh_TW
dc.subject過冷流沸騰zh_TW
dc.subject鰭片微結構zh_TW
dc.subject楔形通道zh_TW
dc.subjectsubcooled flow boilingen
dc.subjectfin designen
dc.subjecttwo-phase cold plateen
dc.subjectwedge liden
dc.title具有楔形通道與鰭片結構之低壓兩相冷板的熱傳性能分析與氣泡流動可視化研究zh_TW
dc.titleThermal analysis and bubble flow visualization of a two-phase cold plate with wedge-shaped channels and fin structures at low pressureen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃美嬌;黃振康zh_TW
dc.contributor.oralexamcommitteeMei-Jiau Huang;Chen-Kang Huangen
dc.subject.keyword低壓兩相水冷板,高功率冷卻,過冷流沸騰,鰭片微結構,楔形通道,zh_TW
dc.subject.keywordtwo-phase cold plate,subcooled flow boiling,fin design,wedge lid,en
dc.relation.page109-
dc.identifier.doi10.6342/NTU202501651-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-15-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2030-07-08-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
7.4 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved