Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99535
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何耕宇zh_TW
dc.contributor.advisorKeng-Yu Hoen
dc.contributor.author陳品良zh_TW
dc.contributor.authorPin-Liang Chenen
dc.date.accessioned2025-09-10T16:35:21Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-14-
dc.identifier.citation1 Bawa, V. S. (1975). Optimal rules for ordering uncertain prospects. Journal of financial Economics, 2(1), 95-121.
2 Beare, B. K., Seo, J., & Zheng, Z. (2025). Stochastic arbitrage with market index options. Journal of Banking & Finance, 107395.
3 Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of political economy, 81(3), 637-654.
4 Bondarenko, O. (2014). Why are put options so expensive? The Quarterly Journal of Finance, 4(03), 1450015.
5 Constantinides, G. M., Czerwonko, M., Carsten Jackwerth, J., & Perrakis, S. (2011). Are options on index futures profitable for risk‐averse investors? Empirical evidence. The Journal of Finance, 66(4), 1407-1437.
6 Constantinides, G. M., Czerwonko, M., & Perrakis, S. (2020). Mispriced index option portfolios. Financial Management, 49(2), 297-330.
7 Constantinides, G. M., Jackwerth, J. C., & Perrakis, S. (2009). Mispricing of S&P 500 index options. The Review of Financial Studies, 22(3), 1247-1277.
8 Constantinides, G. M., & Perrakis, S. (2002). Stochastic dominance bounds on derivatives prices in a multiperiod economy with proportional transaction costs. Journal of Economic Dynamics and Control, 26(7-8), 1323-1352.
9 Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of financial Economics, 7(3), 229-263.
10 Fishburn, P. C. (1977). Mean-risk analysis with risk associated with below-target returns. The American Economic Review, 67(2), 116-126.
11 Hadar, J., & Russell, W. R. (1969). Rules for ordering uncertain prospects. The American Economic Review, 59(1), 25-34.
12 Hanoch, G., & Levy, H. (1969). The efficiency analysis of choices involving risk. The review of economic studies, 36(3), 335-346.
13 Huang, R. J., Tzeng, L. Y., & Zhao, L. (2020). Fractional degree stochastic dominance. Management Science, 66(10), 4630-4647.
14 Kopa, M., & Post, T. (2015). A general test for SSD portfolio efficiency. OR spectrum, 37, 703-734.
15 Levy, H. (1985). Upper and lower bounds of put and call option value: Stochastic dominance approach. The Journal of Finance, 40(4), 1197-1217.
16 Merton, R. C. (1971). Theory of rational option pricing.
17 Müller, A., Scarsini, M., Tsetlin, I., & Winkler, R. L. (2017). Between first-and second-order stochastic dominance. Management Science, 63(9), 2933-2947.
18 Newey, W. K., & West, K. D. (1994). Automatic lag selection in covariance matrix estimation. The review of economic studies, 61(4), 631-653.
19 Patel, P., Raquel, A., & Chadwick, S. (2024). The cash-secured put-write strategy and the variance risk premium. Journal of Asset Management, 25(1), 31-50.
20 Perrakis, S. (2019). Stochastic dominance option pricing. Springer Books.
21 Perrakis, S., & Ryan, P. J. (1984). Option pricing bounds in discrete time. The Journal of Finance, 39(2), 519-525.
22 Post, T., & Longarela, I. R. (2021). Risk arbitrage opportunities for stock index options. Operations Research, 69(1), 100-113.
23 Ritchken, P. H. (1985). On option pricing bounds. The Journal of Finance, 40(4), 1219-1233.
24 Santa-Clara, P., & Saretto, A. (2009). Option strategies: Good deals and margin calls. Journal of Financial Markets, 12(3), 391-417.
25 Stiglitz, J. E., & Rothschild, M. (1970). Increasing risk: I. A definition. Journal of Economic Theory, 2(3), 225-243.
26 Stoll, H. R. (1969). The relationship between put and call option prices. The Journal of Finance, 24(5), 801-824.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99535-
dc.description.abstract此篇論文延伸Post and Longarela (2021) 建立的二階隨機優越套利的指數選擇權投資組合,納入交易指數期貨並考量交易成本。論文有三個主要貢獻:一、在理論和實證上皆證明套利投資組合確實有使用選擇權合成期貨。此現象不僅導致投資組合效率不彰,亦可能扭曲潛在的套利機會,而納入期貨市場交易則能有效解決此問題。二、小投資人傾向賣出深度價外賣權為主導的策略以進行套利,大投資人因流動性限制無法大規模的交易該策略而轉向保守的避險策略。此發現與先前文獻主流的買權上界違反較為普遍的觀點並不一致 ; 三、即便考慮期貨市場,在全樣本期間內,都沒有顯著證據證明套利投資組合有異常報酬。但在市場恐慌程度較低的時期,小規模投資人得以取得略具統計顯著性的超額報酬。zh_TW
dc.description.abstractThis paper extends the second-order stochastic dominance arbitrage index option portfolio framework established by Post and Longarela (2021) by incorporating index futures and explicit transaction costs. The thesis has three primary contributions.
First, it is demonstrated both theoretically and empirically that arbitrage portfolios indeed use options to replicate synthetic futures. This phenomenon causes portfolio inefficiency and the potential distortion of arbitrage opportunities, an issue that can be effectively mitigated by the inclusion of a futures market.
Second, small investors tend to favor strategies by selling deep out-of-the-money puts for arbitrage, while large investors, due to portfolio constraints, are unable to trade this strategy at scale and turn to a conservative hedging strategy. This finding contrasts with previous literature suggesting that violations of the call upper bound are more prevalent.
Third, even with the inclusion of the futures market, there is no significant evidence of abnormal returns from the arbitrage portfolios over the full sample period. However, during periods of low market volatility, the outperformance of small investors is weakly significant from a statistical standpoint.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:35:21Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:35:21Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents序言 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES v
LIST OF TABLES vi
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Literature Review 3
1.3 First-order and Second-order Stochastic Dominance 8
1.4 SSD Bounds of Index Futures 10
Chapter 2 Research Methodology 13
2.1 Preliminaries 13
2.2 SSD Arbitrage Opportunity 17
2.3 Portfolio Formation 19
2.4 SSD Bounds of Options with Index Futures 22
Chapter 3 Empirical Analysis 28
3.1 Data 28
3.2 Empirical Setup 30
3.3 The Substitution Effect of Index Futures 33
3.4 Overview of Arbitrage Portfolio Characteristics 41
3.5 Profitability of Arbitrage Portfolios 46
Chapter 4 Conclusion 51
REFERENCE 53
APPENDIX 55
-
dc.language.isoen-
dc.subject二階隨機優越zh_TW
dc.subject風險套利zh_TW
dc.subject選擇權策略zh_TW
dc.subject選擇權上下界zh_TW
dc.subject線性規劃zh_TW
dc.subjectRisk arbitrageen
dc.subjectSecond-order stochastic dominanceen
dc.subjectOptions strategiesen
dc.subjectOptions boundsen
dc.subjectLinear programmingen
dc.title指數選擇權與期貨之隨機優越套利投資組合zh_TW
dc.titleStochastic Dominance Arbitrage Portfolio with Index Options and Futuresen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor王之彥zh_TW
dc.contributor.coadvisorJr-Yan Wangen
dc.contributor.oralexamcommittee繆維中;曾郁仁;黃瑞卿zh_TW
dc.contributor.oralexamcommitteeWei-Chung Miao;Yu-Ren Tzeng;Jui-Ching Huangen
dc.subject.keyword風險套利,二階隨機優越,線性規劃,選擇權上下界,選擇權策略,zh_TW
dc.subject.keywordRisk arbitrage,Second-order stochastic dominance,Linear programming,Options bounds,Options strategies,en
dc.relation.page59-
dc.identifier.doi10.6342/NTU202501667-
dc.rights.note未授權-
dc.date.accepted2025-07-16-
dc.contributor.author-college管理學院-
dc.contributor.author-dept財務金融學系-
dc.date.embargo-liftN/A-
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
1.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved