請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99535完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何耕宇 | zh_TW |
| dc.contributor.advisor | Keng-Yu Ho | en |
| dc.contributor.author | 陳品良 | zh_TW |
| dc.contributor.author | Pin-Liang Chen | en |
| dc.date.accessioned | 2025-09-10T16:35:21Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-14 | - |
| dc.identifier.citation | 1 Bawa, V. S. (1975). Optimal rules for ordering uncertain prospects. Journal of financial Economics, 2(1), 95-121.
2 Beare, B. K., Seo, J., & Zheng, Z. (2025). Stochastic arbitrage with market index options. Journal of Banking & Finance, 107395. 3 Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of political economy, 81(3), 637-654. 4 Bondarenko, O. (2014). Why are put options so expensive? The Quarterly Journal of Finance, 4(03), 1450015. 5 Constantinides, G. M., Czerwonko, M., Carsten Jackwerth, J., & Perrakis, S. (2011). Are options on index futures profitable for risk‐averse investors? Empirical evidence. The Journal of Finance, 66(4), 1407-1437. 6 Constantinides, G. M., Czerwonko, M., & Perrakis, S. (2020). Mispriced index option portfolios. Financial Management, 49(2), 297-330. 7 Constantinides, G. M., Jackwerth, J. C., & Perrakis, S. (2009). Mispricing of S&P 500 index options. The Review of Financial Studies, 22(3), 1247-1277. 8 Constantinides, G. M., & Perrakis, S. (2002). Stochastic dominance bounds on derivatives prices in a multiperiod economy with proportional transaction costs. Journal of Economic Dynamics and Control, 26(7-8), 1323-1352. 9 Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of financial Economics, 7(3), 229-263. 10 Fishburn, P. C. (1977). Mean-risk analysis with risk associated with below-target returns. The American Economic Review, 67(2), 116-126. 11 Hadar, J., & Russell, W. R. (1969). Rules for ordering uncertain prospects. The American Economic Review, 59(1), 25-34. 12 Hanoch, G., & Levy, H. (1969). The efficiency analysis of choices involving risk. The review of economic studies, 36(3), 335-346. 13 Huang, R. J., Tzeng, L. Y., & Zhao, L. (2020). Fractional degree stochastic dominance. Management Science, 66(10), 4630-4647. 14 Kopa, M., & Post, T. (2015). A general test for SSD portfolio efficiency. OR spectrum, 37, 703-734. 15 Levy, H. (1985). Upper and lower bounds of put and call option value: Stochastic dominance approach. The Journal of Finance, 40(4), 1197-1217. 16 Merton, R. C. (1971). Theory of rational option pricing. 17 Müller, A., Scarsini, M., Tsetlin, I., & Winkler, R. L. (2017). Between first-and second-order stochastic dominance. Management Science, 63(9), 2933-2947. 18 Newey, W. K., & West, K. D. (1994). Automatic lag selection in covariance matrix estimation. The review of economic studies, 61(4), 631-653. 19 Patel, P., Raquel, A., & Chadwick, S. (2024). The cash-secured put-write strategy and the variance risk premium. Journal of Asset Management, 25(1), 31-50. 20 Perrakis, S. (2019). Stochastic dominance option pricing. Springer Books. 21 Perrakis, S., & Ryan, P. J. (1984). Option pricing bounds in discrete time. The Journal of Finance, 39(2), 519-525. 22 Post, T., & Longarela, I. R. (2021). Risk arbitrage opportunities for stock index options. Operations Research, 69(1), 100-113. 23 Ritchken, P. H. (1985). On option pricing bounds. The Journal of Finance, 40(4), 1219-1233. 24 Santa-Clara, P., & Saretto, A. (2009). Option strategies: Good deals and margin calls. Journal of Financial Markets, 12(3), 391-417. 25 Stiglitz, J. E., & Rothschild, M. (1970). Increasing risk: I. A definition. Journal of Economic Theory, 2(3), 225-243. 26 Stoll, H. R. (1969). The relationship between put and call option prices. The Journal of Finance, 24(5), 801-824. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99535 | - |
| dc.description.abstract | 此篇論文延伸Post and Longarela (2021) 建立的二階隨機優越套利的指數選擇權投資組合,納入交易指數期貨並考量交易成本。論文有三個主要貢獻:一、在理論和實證上皆證明套利投資組合確實有使用選擇權合成期貨。此現象不僅導致投資組合效率不彰,亦可能扭曲潛在的套利機會,而納入期貨市場交易則能有效解決此問題。二、小投資人傾向賣出深度價外賣權為主導的策略以進行套利,大投資人因流動性限制無法大規模的交易該策略而轉向保守的避險策略。此發現與先前文獻主流的買權上界違反較為普遍的觀點並不一致 ; 三、即便考慮期貨市場,在全樣本期間內,都沒有顯著證據證明套利投資組合有異常報酬。但在市場恐慌程度較低的時期,小規模投資人得以取得略具統計顯著性的超額報酬。 | zh_TW |
| dc.description.abstract | This paper extends the second-order stochastic dominance arbitrage index option portfolio framework established by Post and Longarela (2021) by incorporating index futures and explicit transaction costs. The thesis has three primary contributions.
First, it is demonstrated both theoretically and empirically that arbitrage portfolios indeed use options to replicate synthetic futures. This phenomenon causes portfolio inefficiency and the potential distortion of arbitrage opportunities, an issue that can be effectively mitigated by the inclusion of a futures market. Second, small investors tend to favor strategies by selling deep out-of-the-money puts for arbitrage, while large investors, due to portfolio constraints, are unable to trade this strategy at scale and turn to a conservative hedging strategy. This finding contrasts with previous literature suggesting that violations of the call upper bound are more prevalent. Third, even with the inclusion of the futures market, there is no significant evidence of abnormal returns from the arbitrage portfolios over the full sample period. However, during periods of low market volatility, the outperformance of small investors is weakly significant from a statistical standpoint. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:35:21Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:35:21Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 序言 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES v LIST OF TABLES vi Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Review 3 1.3 First-order and Second-order Stochastic Dominance 8 1.4 SSD Bounds of Index Futures 10 Chapter 2 Research Methodology 13 2.1 Preliminaries 13 2.2 SSD Arbitrage Opportunity 17 2.3 Portfolio Formation 19 2.4 SSD Bounds of Options with Index Futures 22 Chapter 3 Empirical Analysis 28 3.1 Data 28 3.2 Empirical Setup 30 3.3 The Substitution Effect of Index Futures 33 3.4 Overview of Arbitrage Portfolio Characteristics 41 3.5 Profitability of Arbitrage Portfolios 46 Chapter 4 Conclusion 51 REFERENCE 53 APPENDIX 55 | - |
| dc.language.iso | en | - |
| dc.subject | 二階隨機優越 | zh_TW |
| dc.subject | 風險套利 | zh_TW |
| dc.subject | 選擇權策略 | zh_TW |
| dc.subject | 選擇權上下界 | zh_TW |
| dc.subject | 線性規劃 | zh_TW |
| dc.subject | Risk arbitrage | en |
| dc.subject | Second-order stochastic dominance | en |
| dc.subject | Options strategies | en |
| dc.subject | Options bounds | en |
| dc.subject | Linear programming | en |
| dc.title | 指數選擇權與期貨之隨機優越套利投資組合 | zh_TW |
| dc.title | Stochastic Dominance Arbitrage Portfolio with Index Options and Futures | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 王之彥 | zh_TW |
| dc.contributor.coadvisor | Jr-Yan Wang | en |
| dc.contributor.oralexamcommittee | 繆維中;曾郁仁;黃瑞卿 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Chung Miao;Yu-Ren Tzeng;Jui-Ching Huang | en |
| dc.subject.keyword | 風險套利,二階隨機優越,線性規劃,選擇權上下界,選擇權策略, | zh_TW |
| dc.subject.keyword | Risk arbitrage,Second-order stochastic dominance,Linear programming,Options bounds,Options strategies, | en |
| dc.relation.page | 59 | - |
| dc.identifier.doi | 10.6342/NTU202501667 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-16 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 財務金融學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 財務金融學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 1.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
