請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99531完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李尉彰 | zh_TW |
| dc.contributor.advisor | Wei-Chang Li | en |
| dc.contributor.author | 林信喆 | zh_TW |
| dc.contributor.author | Hsin-Che Lin | en |
| dc.date.accessioned | 2025-09-10T16:34:35Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-24 | - |
| dc.identifier.citation | [1] Garcia Tobar, M.; Pinta Pesantez, K.; Jimenez Romero, P.; Contreras Urgiles, R.W. The Impact of Oil Viscosity and Fuel Quality on Internal Combustion Engine Performance and Emissions: An Experimental Approach. Lubricants 2025.
[2] Lee, K.-L.; Kowach, G.; Li, F.; Voiculescu, I. Liquid Viscosity Sensor Using a Surface Acoustic Wave Device for Medical Applications Including Blood and Plasma. Sensors 2023. [3] N. Ghiasi, "Modeling of QCM for thin layer immobilization in a liquid environment," University of South-Eastern Norway, 2022. [4] X. Huang, Q. Bai, Q. Zhou, and J. Hu, "The Resistance-Amplitude-Frequency Effect of In-Liquid Quartz Crystal Microbalance," (in eng), Sensors (Basel), vol. 17, no. 7, Jun 22 2017, doi: 10.3390/s17071476. [5] L. Rodriguez-Pardo, J. F. Rodriguez, C. Gabrielli, H. Perrot, and R. Brendel, "Sensitivity, noise, and resolution in QCM sensors in liquid media," IEEE Sensors Journal, vol. 5, no. 6, pp. 1251-1257, 2005, doi: 10.1109/JSEN.2005.859257. [6] A. M. Cao-Paz, L. Rodríguez-Pardo, J. Fariña, and J. Marcos-Acevedo, "Resolution in QCM sensors for the viscosity and density of liquids: application to lead acid batteries," (in eng), Sensors (Basel), vol. 12, no. 8, pp. 10604-20, 2012, doi: 10.3390/s120810604. [7] Y. Zhao, Z. Parlak, W. Yu, D. French, W. Aquino, and S. Zauscher, "Microfluidic QCM enables ultrahigh Q-factor: a new paradigm for in-liquid gravimetric sensing," Microsystems & Nanoengineering, vol. 10, no. 1, p. 116, 2024/08/26 2024, doi: 10.1038/s41378-024-00732-2. [8] N. S. Lynn, M. Forinová, M. Spasovová, H. Vaisocherová-Lísalová, and P. Yudin, "Radial flow enhances QCM biosensor sensitivity," Sensors and Actuators B: Chemical, vol. 401, p. 134949, 2024/02/15/ 2024, doi: https://doi.org/10.1016/j.snb.2023.134949. [9] M. Adel, A. Allam, A. E. Sayour, H. F. Ragai, S. Umezu, and A. M. R. Fath El-Bab, "A low-cost microfluidic flow stabilizer for enhancing QCM measurement stability in in-liquid bio-applications," Engineering Research Express, vol. 6, no. 1, p. 015501, 2024/02/08 2024, doi: 10.1088/2631-8695/ad248b. [10] J.-Y. Park and J.-W. Choi, "Review—Electronic Circuit Systems for Piezoelectric Resonance Sensors," Journal of The Electrochemical Society, vol. 167, no. 3, p. 037560, 2020/02/03 2020, doi: 10.1149/1945-7111/ab6cf7. [11] Y. Tsuchiya, H. Kukita, T. Shiobara, K. Yukumatsu and E. Miyazaki, "Temperature Controllable QCM Sensor with Accurate Temperature Measurement for Outgas and Contamination Assessment,” 2019. [12] Il Ryu Jang, Soon In Jung, Gunhee Lee, Inyong Park, Sang Bok Kim, Hoe Joon Kim, Quartz crystal microbalance with thermally-controlled surface adhesion for an efficient fine dust collection and sensing, Journal of Hazardous Materials, Volume 424, Part B, 2022. [13] Hui Jean Lim, Tridib Saha, Beng Ti Tey, Wen Siang Tan, Chien Wei Ooi, Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases, Biosensors and Bioelectronics, Volume 168, 2020. [14] Stuckenholz, Stefanie, et al. "A portable quartz micro balance for physical vapor deposition techniques." Review of Scientific Instruments 84.8 (2013). [15] Na Songkhla, S.; Nakamoto, T. Overview of Quartz Crystal Microbalance Behavior Analysis and Measurement. Chemosensors 2021. [16] Alassi, A.; Benammar, M.; Brett, D. Quartz Crystal Microbalance Electronic Interfacing Systems: A Review. Sensors 2017. [17] Vig, John R. "Introduction to quartz frequency standards." Army Research Laboratory Electronics and Power Sources Directorate, Tech. Rep. SLCETTR-92-1 (1992). [18] F. R. Lack, "Observations on Modes of Vibration and Temperature Coefficients of Quartz Crystal Plates," in Proceedings of the Institute of Radio Engineers, vol. 17, no. 7, pp. 1123-1141, July 1929. [19] Moure, M. J., et al. "An FPGA-based system for the measurement of frequency noise and resolution of QCM sensors." Latin American applied research 37.1 (2007) [20] Zhang, Jun-Lin, et al. "Research on trimming frequency-increasing technology for quartz crystal resonator using laser etching." Micromachines 12.8 (2021) [21] Usman Latif, Serpil Can, Oliver Hayden, Paul Grillberger, Franz L. Dickert, Sauerbrey and anti-Sauerbrey behavioral studies in QCM sensors—Detection of bioanalytes, Sensors and Actuators B: Chemical, Volume 176, 2013. [22] Rodriguez-Pardo, Loreto, et al. "Sensitivity, noise, and resolution in QCM sensors in liquid media." IEEE Sensors Journal 5.6 (2005) [23] Zainuddin, Ahmad Anwar, et al. "Verification of quartz crystal microbalance array using vector network analyzer and OpenQCM." Indones. J. Electr. Eng. Comput. Sci 10.1 (2018) [24] Henrik Anderson, Mats Jönsson, Lars Vestling, Ulf Lindberg, Teodor Aastrup, Quartz crystal microbalance sensor design: I. Experimental study of sensor response and performance, Sensors and Actuators B: Chemical, Volume 123, Issue 1, 2007. [25] M. B. Bloch, J. C. Ho, C. S. Stone, A. Syed and F. L. Walls, "Stability of high quality quartz crystal oscillators: an update," Proceedings of the 43rd Annual Symposium on Frequency Control, Denver, CO, USA, 1989. [26] Van Beek, J. T. M., P. G. Steeneken, and Ben Giesbers. "A 10MHz piezoresistive MEMS resonator with high Q." 2006 IEEE International Frequency Control Symposium and Exposition. IEEE, 2006. [27] Bai, Qingsong, and Xianhe Huang. "Using quartz crystal microbalance for field measurement of liquid viscosities." Journal of Sensors 2016. [28] Dixon, Matthew C. "Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions." Journal of biomolecular techniques: JBT 19.3 (2008) [29] Tan, Feng, et al. "Separate density and viscosity measurements of unknown liquid using quartz crystal microbalance." Aip Advances 6.9 (2016). [30] Adel, Mohamed, et al. "Design and development of a portable low-cost QCM-based system for liquid biosensing." Biomedical Microdevices 26.1 (2024) [31] Sujan Yenuganti, Chen Zhang, Haifeng Zhang, Quartz Crystal Microbalance for viscosity measurement with temperature self-compensation, Mechatronics, Volume 59, 2019. [32] Kazemi, Mohammad. Study, design, and characterization of anchor loss reduction and tuning the frequency of MEMS resonators for timing applications. Diss. École de technologie supérieure, 2023. [33] Acharya, Biplav, et al. "Quartz crystal microbalance apparatus for study of viscous liquids at high temperatures." Review of Scientific Instruments 88.2 (2017). [34] Adel, Mohamed, et al. “Design and development of a portable low-cost QCM-based system for liquid biosensing.” Biomedical Microdevices 26.1 (2024). [35] Magni, M.; Scaccabarozzi, D.; Saggin, B. Compensation of Thermal Gradients Effects on a Quartz Crystal Microbalance. Sensors 2023 [36] Alanazi, N., Almutairi, M. & Alodhayb, A. A Review of Quartz Crystal Microbalance for Chemical and Biological Sensing Applications. Sens Imaging 24, 10 (2023). [37] De Pastina, Annalisa, and Luis Guillermo Villanueva. "Suspended micro/nano channel resonators: a review." Journal of Micromechanics and Microengineering 30.4 (2020) [38] C. -P. Tsai and W. -C. Li, "Vibro-Impact Perturbation Based Attractor Exchanger for Open-Loop Nonlinear Resonators," 2023 22nd International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Kyoto, Japan, 2023. [39] I. -C. Hsieh, H. -S. Zheng, C. -P. Tsai, T. -Y. Chen and W. -C. Li, "Generic Temperature Compensation Scheme for CMOS-MEMS Resonators Based on ARC-Beam Derived Electrical Stiffness Frequency Pulling," 2023. [40] C. -Y. Hsu et al., "Performance Evaluation of MEMS Vibration Sensors for Throat Microphones," 2024 [41] Chung, I-Fei, et al. "CMOS-MEMS Tuned-Mass-Damper Based Physical Unclonable Function (PUF)." 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2024. [42] Lee, Cheng-Ming, et al. "Toward High-bit-rate CMOS-MEMS Resoswitches." 2024. [43] T. -Y. Chen, C. -P. Tsai and W. -C. Li, "Constructing Micromechanical Frequency Combs in Bifurcating Attractor Branches for Event Triggered Sensors," 2023 22nd International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Kyoto, Japan, 2023. [44] K. -W. Lan, I. -F. Chung, C. -P. Tsai, T. -Y. Chen and W. -C. Li, "TCF-Tailoring Vertically Stepped Structures for Temperature Insensitive CMOS-MEMS Resonators," 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS), Austin, TX, USA, 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99531 | - |
| dc.description.abstract | 液體的黏度和密度在工業、生醫和化學領域都扮演很重要的角色。舉例來說,機油的黏度會影響引擎的性能;而血液的黏度則和心血管疾病、糖尿病、腎臟病等健康問題有關。密度方面,像在化學蝕刻製程中,液體的密度也會影響反應速率,是非常關鍵的參數。
石英晶體振盪器具有壓電特性,可以在高穩定、高頻率的剪切模態下運作,因此常被用來當作檢測液體黏度與密度的元件。根據日本工業標準(JIS),黏度計主要分為旋轉式、落球式和振動式三類,而石英晶體振盪器屬於振動式。跟其他類型相比,振動式黏度計靈敏度高、樣量少,成本也較低,特別適合應用在生醫領域。 不過在振動式黏度計中,石英晶體微量天平(QCM)的靈敏度通常會比表面聲波(SAW)感測器略低。因此,我們在本研究中參考文獻的做法,透過優化流動池設計,來提升 QCM 對液體黏度與密度的感測能力。我們選用了甘油這種常見的小分子液體作為測試對象,並結合有限元素模擬和 3D 列印技術,開發出一款具備高穩定性、高靈敏度和高精確度的液體黏度-密度感測器。最終實驗結果,基於石英晶體微量天平低成本黏度密度感測器對甘油靈敏度(Sensitivity)可達 593.6 [Hz/(mPa·s·g/cm³)]、精確度(Resolution)為 2.24[μPa·s·g/cm³]。 | zh_TW |
| dc.description.abstract | Liquid viscosity and density are critical parameters in industrial, biomedical, and chemical applications. For example, engine oil viscosity affects performance and protection, while blood viscosity is linked to cardiovascular and metabolic diseases. In chemical processes, liquid density influences properties such as etching rates.
Quartz crystal oscillators, due to their piezoelectric properties and high-frequency shear mode operation, are well-suited for viscosity and density sensing. According to JIS classification, quartz crystal-based sensors are vibrational viscometers, offering higher sensitivity, lower sample consumption, and lower cost compared to rotational and falling-ball types, particularly benefiting biomedical use. This study enhances the sensitivity of quartz crystal microbalance (QCM) sensors—typically less sensitive than surface acoustic wave (SAW) sensors—by optimizing the flow cell design from paper. Using glycerol as a test liquid, finite element simulations and 3D printing are employed to develop a high-sensitivity, high-accuracy viscosity-density sensor. As a result, the low-cost viscosity-density sensor based on a quartz crystal microbalance (QCM) achieves a sensitivity of 593.6 [Hz/(mPa·s·g/cm³)] and a resolution of 2.24 [μPa·s·g/cm³] in detecting the viscosity-density product of glycerol. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:34:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:34:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目次 v 圖次 ix 表次 xiii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 石英晶體微量天平液體感測器 3 2.1.1 石英晶體微量天平在液體環境中的模型 3 2.1.2 石英晶體微量天平在液體中的電阻-幅度-頻率效應 5 2.1.3 石英晶體微量天平在液體介質中的靈敏度、噪聲與解析度 5 2.1.4 石英晶體微量天平在液體黏度和密度測量中的解析度 7 2.2 提升石英晶體微量天平液體感測性能方法 8 2.2.1 微流控石英晶體微量天平實現超高品質因子 8 2.2.2 徑向流動提升石英晶體微量天平對生物感測器的靈敏度 10 2.2.3 低成本微流控流量穩定器用於提升石英晶體微量天平在液體生物應用中的測量穩定性 11 2.2.4 壓電共振感測器的電路系統 12 2.2.5 精確溫度測量功能QCM感測器用於脫氣與污染評估 13 2.2.6 熱控表面黏附功能石英晶體微量天平用於高效細懸浮微粒收集與感測 14 第三章 石英微量天秤液體量測性能之研究 15 3.1 石英晶體微量天平系統 15 3.1.1 石英晶體微量天平 15 3.1.2 振盪電路 15 3.1.3 3DP機械結構 18 3.2 石英晶體振盪器頻率 19 3.2.1 頻率對於石英晶體厚度 19 3.2.2 頻率對於石英晶體模態 20 3.2.3 頻率對於感測器靈敏度、精確度 20 3.2.4 頻率感測Sauerbrey Equation 22 3.2.5 液體量測下頻率感測 23 3.3 石英振盪器等效電路 24 3.3.1 BVD等效電路與阻抗推倒 24 3.3.2 MBVD等效電路與阻抗推倒 27 3.3.3 液體量測下MBVD等效電路 29 3.4 石英振盪器品質因子 31 3.4.1 BVD與MBVD串聯諧振品質因子 32 3.4.2 BVD與MBVD並聯諧振品質因子 34 3.4.3 品質因子對於感測器艾倫偏差、靈敏度、精確度 35 3.4.4 串聯品質因子與並聯品質因子 36 3.4.5 液體量測下品質因子 38 3.5 石英晶體微量天平流動池 39 3.5.1 3D列印流動池 39 3.5.2 剪切模態振幅 40 3.5.3 擴散層、質傳系數 41 3.6 COMSOL擴散層模擬 42 3.6.1 幾何設定、層流、稀釋物傳輸、網格收斂、加設擋板模擬比較 42 3.6.2 剪切模態振幅與質傳系數模擬乘積模擬結果 44 第四章 實驗結果 48 4.1 靜、動態量測實驗設備 48 4.2 靜態量測架設圖 49 4.3 靜態黏度-密度靈敏度與重複性 50 4.4 動態量測架設圖 52 4.5 動態流速對於頻率穩定性量測 53 4.6 動態黏度-密度精確度 54 4.7 流動池對動態靈敏度影響 56 4.8 動態靈敏度優化結果比較與重複性 58 第五章 結論與未來展望 60 5.1 結論 60 5.2 未來展望 62 5.2.1 石英晶體微量天平溫度補償系統 62 5.2.2 石英晶體微量天平在生醫、化學領域之應用 62 5.2.3 CMOS MEMS懸浮微通道振盪器 64 參考文獻 65 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 石英晶體振盪器 | zh_TW |
| dc.subject | 石英晶體微量天平 | zh_TW |
| dc.subject | 液體黏度-密度感測器 | zh_TW |
| dc.subject | 3D 列印 | zh_TW |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | quartz oscillator | en |
| dc.subject | Quartz crystal microbalance | en |
| dc.subject | FEA simulation | en |
| dc.subject | 3DP | en |
| dc.subject | viscosity-density sensor | en |
| dc.title | 基於石英晶體微量天平低成本黏度密度感測器之參數研究 | zh_TW |
| dc.title | Parametric Study of Low-Cost Viscosity-Density Sensor based on Quartz Crystal Microbalance | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張培仁;劉建豪 | zh_TW |
| dc.contributor.oralexamcommittee | Pei-Zen Chang;Chien-Hao Liu | en |
| dc.subject.keyword | 石英晶體振盪器,石英晶體微量天平,液體黏度-密度感測器,3D 列印,有限元素分析, | zh_TW |
| dc.subject.keyword | Quartz crystal microbalance,quartz oscillator,viscosity-density sensor,3DP,FEA simulation, | en |
| dc.relation.page | 67 | - |
| dc.identifier.doi | 10.6342/NTU202502433 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-25 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 4.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
