Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99527Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林峯輝 | zh_TW |
| dc.contributor.advisor | Feng-Huei Lin | en |
| dc.contributor.author | 林智妮 | zh_TW |
| dc.contributor.author | Jhih-Ni Lin | en |
| dc.date.accessioned | 2025-09-10T16:33:53Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-22 | - |
| dc.identifier.citation | [1] Willis J, Todorov A. First impressions: making up your mind after a 100-ms exposure to a face. Psychological Science. 2006;17(7):592–598. doi:10.1111/j.1467-9280.2006.01750.x
[2] Morley J, Eubank J. Macroesthetic elements of smile design. The Journal of the American Dental Association. 2001;132(1):39–45. doi:10.14219/jada.archive.2001.0023 [3] Teeth Whitening Market Size, Share & Trends Analysis Report By Product (Whitening Toothpaste, Whitening Gels & Strips), By Distribution Channel (Offline, Online), By Region, And Segment Forecasts, 2024 - 2030. Grand View Research.; 2024. Report No.: GVR-1-680-38-0. [4] Teeth Whitening Market Size, Share, Growth & Forecast [2032]. Fortune Business Insights.; 2025. Report No.: FBI110349. [5] Carey CM. Tooth Whitening: What We Now Know. Journal of Evidence Based Dental Practice. 2014;14:70–76. doi:10.1016/j.jebdp.2014.02.006 [6] Joiner A. The bleaching of teeth: A review of the literature. Journal of Dentistry. 2006;34(7):412–419. doi:10.1016/j.jdent.2006.02.002 [7] Alqahtani MQ. Tooth-bleaching procedures and their controversial effects: A literature review. The Saudi Dental Journal. 2014;26(2):33–46. doi:10.1016/j.sdentj.2014.02.002 [8] Dahl JE, Pallesen U. Tooth bleaching – a critical review of the biological aspects. Critical Reviews in Oral Biology & Medicine. 2003;14(4):292–304. doi:10.1177/154411130301400405 [9] Torres CRG, Borges AB, Torres LM. Effect of hydrogen peroxide and peroxymonosulfate-based gels on enamel microhardness and morphology. Journal of Applied Oral Science. 2019;27:e20180341. doi:10.1590/1678-7757-2018-0341 [10] Wang J, Wang S. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chemical Engineering Journal. 2020;401:126158. doi:10.1016/j.cej.2020.126158 [11] Almeida LC, others. Comparative evaluation of low-concentration hydrogen peroxide bleaching agents: efficacy and post-treatment sensitivity. Journal of Esthetic and Restorative Dentistry. 2021;33(1):75–82. doi:10.1111/jerd.12648 [12] Kahler B, Swain MV, Moule A. Fracture-toughening mechanisms responsible for differences in work to fracture of hydrated and dehydrated dentine. Journal of Biomechanics. 2003;36(2):229–237. doi:10.1016/S0021-9290(02)00327-5 [13] Nanci A, editor. Chapter 5 - Development of the Tooth and Its Supporting Tissues. In: Ten Cate’s Oral Histology (Eighth Edition). St. Louis (MO): Mosby; 2013. p. 70–94. https://www.sciencedirect.com/science/article/pii/B9780323078467000057. doi:10.1016/B978-0-323-07846-7.00005-7 [14] Shahmoradi M, Bertassoni LE, Elfallah HM, Swain M. Fundamental Structure and Properties of Enamel, Dentin and Cementum. In: Ben-Nissan B, editor. Advances in Calcium Phosphate Biomaterials. Berlin, Heidelberg: Springer; 2014. p. 511–547. https://doi.org/10.1007/978-3-642-53980-0_17. doi:10.1007/978-3-642-53980-0_17 [15] Tooth decay. GOSH Hospital site. [accessed 2025 Jun 8]. https://www.gosh.nhs.uk/conditions-and-treatments/general-medical-conditions/tooth-decay/ [16] Enax J, Epple M. Synthetic Hydroxyapatite as a Biomimetic Oral Care Agent. Oral Health & Preventive Dentistry. 2018;16(1):7–19. doi:10.3290/j.ohpd.a39690 [17] Meyer F, Amaechi BT, Fabritius H-O, Enax J. Overview of Calcium Phosphates used in Biomimetic Oral Care. [accessed 2025 May 20]. https://opendentistryjournal.com/VOLUME/12/PAGE/406/. doi:10.2174/1874210601812010406 [18] Dorozhkin SV, Epple M. Biological and Medical Significance of Calcium Phosphates. Angewandte Chemie International Edition. 2002;41(17):3130–3146. doi:10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1 [19] Nanci A, Cate ART. Ten Cate’s Oral Histology: Development, Structure, and Function. Mosby Elsevier; 2008. (Ten Cate’s Oral Histology Series). https://books.google.com.tw/books?id=nLW3Ts_TDpEC [20] Forien J-B, Fleck C, Cloetens P, Duda G, Fratzl P, Zolotoyabko E, Zaslansky P. Compressive Residual Strains in Mineral Nanoparticles as a Possible Origin of Enhanced Crack Resistance in Human Tooth Dentin. Nano Letters. 2015;15(6):3729–3734. doi:10.1021/acs.nanolett.5b00143 [21] Forien J-B, Zizak I, Fleck C, Petersen A, Fratzl P, Zolotoyabko E, Zaslansky P. Water-Mediated Collagen and Mineral Nanoparticle Interactions Guide Functional Deformation of Human Tooth Dentin. Chemistry of Materials. 2016;28(10):3416–3427. doi:10.1021/acs.chemmater.6b00811 [22] Berg C, Unosson E, Engqvist H, Xia W. Comparative Study of Technologies for Tubule Occlusion and Treatment of Dentin Hypersensitivity. Journal of Functional Biomaterials. 2021;12(2):27. doi:10.3390/jfb12020027 [23] LeGeros RZ. Apatites in biological systems. Progress in Crystal Growth and Characterization. 1981;4(1):1–45. doi:https://doi.org/10.1016/0146-3535(81)90046-0 [24] Deutsch D, Dafni L, Palmon A, Hekmati M, Young MF, Fisher LW. Tuftelin: Enamel Mineralization and Amelogenesis Imperfecta. In: Ciba Foundation Symposium 205 - Dental Enamel. John Wiley & Sons, Ltd; p. 135–155. https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470515303.ch10. doi:10.1002/9780470515303.ch10 [25] Moffatt P, Wazen RM, Dos Santos Neves J, Nanci A. Characterisation of secretory calcium-binding phosphoprotein-proline-glutamine-rich 1: a novel basal lamina component expressed at cell-tooth interfaces. Cell and Tissue Research. 2014;358(3):843–855. doi:10.1007/s00441-014-1989-3 [26] Bartlett JD, Simmer JP. New Perspectives on Amelotin and Amelogenesis. Journal of Dental Research. 2015;94(5):642–644. doi:10.1177/0022034515572442 [27] Yu M, Wang L, Zhang W, Ganss B. An Evolutionarily Conserved Subdomain in Amelotin Promotes Amorphous Calcium Phosphate-to-Hydroxyapatite Phase Transition. Crystal Growth & Design. 2019;19(4):2104–2113. doi:10.1021/acs.cgd.8b01680 [28] Ritchie H. The functional significance of dentin sialoprotein-phosphophoryn and dentin sialoprotein. International Journal of Oral Science. 2018;10(4):1–6. doi:10.1038/s41368-018-0035-9 [29] Moradian-Oldak J. Protein- mediated enamel mineralization. Frontiers in bioscience : a journal and virtual library. 2012;17:1996–2023. doi:10.2741/4034 [30] Smith CEL, Poulter JA, Antanaviciute A, Kirkham J, Brookes SJ, Inglehearn CF, Mighell AJ. Amelogenesis Imperfecta; Genes, Proteins, and Pathways. Frontiers in Physiology. 2017 [accessed 2025 May 26];8. https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2017.00435/full. doi:10.3389/fphys.2017.00435 [31] Jowett AK, Marlow I, Rawlinson A. A double blind randomised controlled clinical trial comparing a novel anti-stain and calculus reducing dentifrice with a standard fluoride dentifrice. Journal of Dentistry. 2013;41(4):313–320. doi:https://doi.org/10.1016/j.jdent.2012.12.005 [32] He LH, Swain MV. Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. Journal of the Mechanical Behavior of Biomedical Materials. 2008;1(1):18–29. doi:10.1016/j.jmbbm.2007.05.001 [33] Nassau K. Color for Science, Art and Technology. Elsevier; 1997. [34] Hunt RWG, Pointer MR. Measuring Colour. John Wiley & Sons; 2011. [35] Bazos P, Magne P. Bio-emulation: biomimetically emulating nature utilizing a histo-anatomic approach; structural analysis. The European Journal of Esthetic Dentistry: Official Journal of the European Academy of Esthetic Dentistry. 2011;6(1):8–19. [36] Algarni AA, Ungar PS, Lippert F, Martínez-Mier EA, Eckert GJ, González-Cabezas C, Hara AT. Trend-analysis of dental hard-tissue conditions as function of tooth age. Journal of Dentistry. 2018;74:107–112. doi:https://doi.org/10.1016/j.jdent.2018.05.011 [37] Sulieman M. An Overview of Tooth Discoloration: Extrinsic, Intrinsic and Internalized Stains. Dental Update. 2005;32(8):463–471. doi:10.12968/denu.2005.32.8.463 [38] Nathoo SA. THE CHEMISTRY AND MECHANISMS OF EXTRINSIC AND INTRINSIC DISCOLORATION. The Journal of the American Dental Association. 1997;128:6S-10S. doi:10.14219/jada.archive.1997.0428 [39] A.M. Sulieman M. An overview of tooth-bleaching techniques: chemistry, safety and efficacy. Periodontology 2000. 2008;48(1):148–169. doi:10.1111/j.1600-0757.2008.00258.x [40] Jha SK, Mishra VK, Sharma DK, Damodaran T. Fluoride in the environment and its metabolism in humans. Reviews of Environmental Contamination and Toxicology. 2011;211:121–142. doi:10.1007/978-1-4419-8011-3_4 [41] Watts A, Addy M. Tooth discolouration and staining: a review of the literature. British Dental Journal. 2001;190(6):309–316. doi:10.1038/sj.bdj.4800959 [42] Li K, Chen S, Wang J, Xiao X, Song Z, Liu S. Tooth whitening: current status and prospects. Odontology. 2024;112(3):700–710. doi:10.1007/s10266-024-00914-4 [43] Bartlett D w. Bleaching Discoloured Teeth. Dental Update. 2001;28(1):14–18. doi:10.12968/denu.2001.28.1.14 [44] Westlake A. Bleaching Teeth by Electricity. The American Journal of Dental Science. 1895;29(3):101–102. [45] Ames JW. Removing Stains from Mottled Enamel. The Journal of the American Dental Association and The Dental Cosmos. 1937;24(10):1674–1677. doi:10.14219/jada.archive.1937.0304 [46] Bailey RW, Christen AG. Bleaching of vital teeth stained with endemic dental fluorosis. Oral Surgery, Oral Medicine, Oral Pathology. 1968;26(6):871–878. doi:10.1016/0030-4220(68)90362-9 [47] Li Y. Biological properties of peroxide-containing tooth whiteners. Food and Chemical Toxicology. 1996;34(9):887–904. doi:10.1016/S0278-6915(96)00044-0 [48] Haywood VB. NIGHTGUARD VITAL BLEACHING: CURRENT CONCEPTS AND RESEARCH. The Journal of the American Dental Association. 1997;128:19S-25S. doi:10.14219/jada.archive.1997.0416 [49] Joiner A, Luo W. Tooth colour and whiteness: A review. Journal of Dentistry. 2017;67:S3–S10. (Advances in tooth whitening: Perception, measurement and technology). doi:10.1016/j.jdent.2017.09.006 [50] Kwon SR, Wertz PW. Review of the Mechanism of Tooth Whitening. Journal of Esthetic and Restorative Dentistry. 2015;27(5):240–257. doi:10.1111/jerd.12152 [51] Zimmerli B, Jeger F, Lussi A. Bleaching of nonvital teeth. A clinically relevant literature review. Schweizer Monatsschrift Fur Zahnmedizin = Revue Mensuelle Suisse D’odonto-Stomatologie = Rivista Mensile Svizzera Di Odontologia E Stomatologia. 2010;120(4):306–320. [52] Rossi B, Morimoto S, Tedesco TK, Cunha SR, Horliana ACRT, Ramalho KM. Effectiveness of Violet LED alone or in association with bleaching gel during dental photobleaching: A Systematic Review. Photodiagnosis and Photodynamic Therapy. 2022;38:102813. doi:10.1016/j.pdpdt.2022.102813 [53] Aschheim K. Bleaching and related agents. 2015. p. 252–280. doi:10.1016/B978-0-323-09176-3.00022-X [54] Bonsor SJ, Pearson G. A Clinical Guide to Applied Dental Materials E-Book: A Clinical Guide to Applied Dental Materials E-Book. Churchill Livingstone; 2012. https://books.google.com.tw/books?id=DbfRAQAAQBAJ [55] Farawati FAL, Hsu S-M, O’Neill E, Neal D, Clark A, Esquivel-Upshaw J. Effect of carbamide peroxide bleaching on enamel characteristics and susceptibility to further discoloration. The Journal of Prosthetic Dentistry. 2019;121(2):340–346. doi:10.1016/j.prosdent.2018.03.006 [56] Wang W, Zhu Y, Li J, Liao S, Ai H. Efficacy of cold light bleaching using different bleaching times and their effects on human enamel. Dental Materials Journal. 2013;32(5):761–766. doi:10.4012/dmj.2013-109 [57] Camps J, de Franceschi H, Idir F, Roland C, About I. Time-Course Diffusion of Hydrogen Peroxide Through Human Dentin: Clinical Significance for Young Tooth Internal Bleaching. Journal of Endodontics. 2007;33(4):455–459. doi:10.1016/j.joen.2006.12.006 [58] Camargo SEA, Valera MC, Camargo CHR, Gasparoto Mancini MN, Menezes MM. Penetration of 38% Hydrogen Peroxide into the Pulp Chamber in Bovine and Human Teeth Submitted to Office Bleach Technique. Journal of Endodontics. 2007;33(9):1074–1077. doi:10.1016/j.joen.2007.04.014 [59] Camargo SEA, Cardoso PE, Valera MC, de Araújo MAM, Kojima AN. Penetration of 35% hydrogen peroxide into the pulp chamber in bovine teeth after LED or Nd:YAG laser activation. The European Journal of Esthetic Dentistry: Official Journal of the European Academy of Esthetic Dentistry. 2009;4(1):82–88. [60] Rodrigues JL, Rocha PS, Pardim SL de S, Machado ACV, Faria-E-Silva AL, Seraidarian PI. Association Between In-Office And At-Home Tooth Bleaching: A Single Blind Randomized Clinical Trial. Brazilian Dental Journal. 2018;29(2):133–139. doi:10.1590/0103-6440201801726 [61] Li Y. Safety controversies in tooth bleaching. Dental Clinics of North America. 2011;55(2):255–263, viii. doi:10.1016/j.cden.2011.01.003 [62] Albanai SR, Gillam DG, Taylor PD. An overview on the Effects of 10% and 15% Carbamide Peroxide and its Relationship to Dentine Sensitivity. The European Journal of Prosthodontics and Restorative Dentistry. 2015;23(2):50–55. [63] Li Y, Greenwall L. Safety issues of tooth whitening using peroxide-based materials. British Dental Journal. 2013;215(1):29–34. doi:10.1038/sj.bdj.2013.629 [64] Rezende M, Kapuchczinski AC, Vochikovski L, Demiate IM, Loguercio AD, Kossatz S. Staining Power of Natural and Artificial Dyes after At-home Dental Bleaching. The Journal of Contemporary Dental Practice. 2019;20(4):424–427. [65] Suryanarayanan V, Pattanayak DK, Senthil Kumar R, Kilpatrick L, Chopra S, Xu G, Fei L, Dogo-Isonagie C, Johansson P. Electrochemical mineralization of iron-tannate stain on HAp and bovine enamel-A non-peroxide approach. Heliyon. 2021;7(6):e07296. doi:10.1016/j.heliyon.2021.e07296 [66] Joiner A. Review of the effects of peroxide on enamel and dentine properties. Journal of Dentistry. 2007;35(12):889–896. doi:10.1016/j.jdent.2007.09.008 [67] Brännström M. Sensitivity of dentine. Oral Surgery, Oral Medicine, Oral Pathology. 1966;21(4):517–526. doi:10.1016/0030-4220(66)90411-7 [68] Dowell P, Addy M. Dentine hypersensitivity‐A review: Aetiology, symptoms and theories of pain production. Journal of clinical periodontology. 1983;10(4):341–350. [69] Ubaldini ALM, Baesso ML, Medina Neto A, Sato F, Bento AC, Pascotto RC. Hydrogen Peroxide Diffusion Dynamics in Dental Tissues. Journal of Dental Research. 2013;92(7):661–665. doi:10.1177/0022034513488893 [70] Rakhi PK, Mishra K, Scaria J, Suresh Kumar M, Nidheesh PV. Advanced Oxidation Processes. In: Jlassi K, Oturan MA, Ismail AF, Chehimi MM, editors. Clean Water: Next Generation Technologies. Cham: Springer International Publishing; 2024. p. 107–116. https://doi.org/10.1007/978-3-031-48228-1_8. doi:10.1007/978-3-031-48228-1_8 [71] Pera-Titus M, Garcı́a-Molina V, Baños MA, Giménez J, Esplugas S. Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental. 2004;47(4):219–256. doi:10.1016/j.apcatb.2003.09.010 [72] Cuerda-Correa EM, Alexandre-Franco MF, Fernández-González C. Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water. 2020;12(1):102. doi:10.3390/w12010102 [73] Neyens E, Baeyens J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials. 2003;98(1):33–50. doi:10.1016/S0304-3894(02)00282-0 [74] Guo B, Tao Y, Yang T, Su X, Tan X, Tian W, Xie L. Biomaterials based on advanced oxidation processes in tooth whitening: fundamentals, progress, and models. Journal of Materials Chemistry B. 2024;12(38):9459–9477. doi:10.1039/D4TB01311E [75] Wang R, Wang Y, Chen J, Yin Y, Zheng N, Li M, Zhao S, Han X, Li Q, Niu Y, et al. Photocatalytic TiO2/HAP nanocomposite for antimicrobial treatment, promineralization, and tooth whitening. RSC Advances. 2025;15(17):13453–13467. doi:10.1039/D5RA00792E [76] Oliveira MC, Fonseca VS, Andrade Neto NF, Ribeiro RAP, Longo E, de Lazaro SR, Motta FV, Bomio MRD. Connecting theory with experiment to understand the photocatalytic activity of CuO–ZnO heterostructure. Ceramics International. 2020;46(7):9446–9454. doi:10.1016/j.ceramint.2019.12.205 [77] Innocenzi P, Malfatti L. Mesoporous ordered titania films: An advanced platform for photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2024;58:100646. doi:10.1016/j.jphotochemrev.2023.100646 [78] Saravanan R, Karthikeyan S, Gupta V, Sekaran G, Narayanan V, Stephen A. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Materials Science and Engineering: C. 2013;33(1):91–98. [79] Moritz DC, Calvet W, Zare Pour MA, Paszuk A, Mayer T, Hannappel T, Hofmann JP, Jaegermann W. Dangling Bond Defects on Si Surfaces and Their Consequences on Energy Band Diagrams: From a Photoelectrochemical Perspective. Solar RRL. 2023;7(9):2201063. doi:10.1002/solr.202201063 [80] Li L, Zhao H, Wang X, Guo L. Recent Advances of Amorphous Nanomaterials: Synthesis and Applications. Chinese Journal of Chemistry. 2024;42(22):2853–2876. doi:10.1002/cjoc.202400388 [81] Takahashi N, Yamasaki T, Kaneta C. Molecular dynamics simulations on the oxidation of Si(100)/SiO2 interface: Emissions and incorporations of Si‐related species into the SiO2 and substrate. physica status solidi (b). 2014;251(11):2169–2178. doi:10.1002/pssb.201400068 [82] Ma J, Gao C, Low J, Liu D, Lian X, Zhang H, Jin H, Zheng X, Wang C, Long R, et al. Fundamental Insights into Surface Modification of Silicon Material toward Improved Activity and Durability in Photocatalytic Hydrogen Production: A Case Study of Pre-Lithiation. The Journal of Physical Chemistry C. 2021;125(10):5542–5548. doi:10.1021/acs.jpcc.1c00700 [83] Saengdee P, Chaisriratanakul W, Bunjongpru W, Sripumkhai W, Srisuwan A, Jeamsaksiri W, Hruanun C, Poyai A, Promptmas C. Surface modification of silicon dioxide, silicon nitride and titanium oxynitride for lactate dehydrogenase immobilization. Biosensors and Bioelectronics. 2015;67:134–138. (Special Issue: BIOSENSORS 2014). doi:10.1016/j.bios.2014.07.057 [84] Salisu Nasir, Mohd Zobir Hussein, Zulkarnain Zainal, Nor azah Yusof, Syazwan Afif Mohd Zobir, Ibrahim Mustapha Alibe. Potential valorization of by-product materials from oil palm: A review of alternative and sustainable carbon sources for carbon-based nanomaterials synthesis :: BioResources. BioResources. 2019;14(1):2352–2388. doi:10.15376/biores.14.1.Nasir [85] Cullity BD, Stock SR. Elements of X-ray Diffraction. Prentice Hall; 2001. (Addison-Wesley series in metallurgy and materials). https://books.google.com.tw/books?id=IiXwAAAAMAAJ [86] Ferraro JR. Introductory Raman Spectroscopy. Elsevier; 2003. [87] Sze SM, Ng KK. Physics of Semiconductor Devices. John Wiley & Sons; 2006. [88] Egerton RF. Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM. Springer US; 2006. https://books.google.com.tw/books?id=8Z1a1IF2_OQC [89] Williams DB, Carter CB. Transmission Electron Microscopy: A Textbook for Materials Science. Springer; 2009. (Cambridge library collection). https://books.google.com.tw/books?id=dXdrG39VtUoC [90] Reimer L. Transmission Electron Microscopy: Physics of Image Formation and Microanalysis. Springer Berlin Heidelberg; 2013. (Springer Series in Optical Sciences). https://books.google.com.tw/books?id=CUfsCAAAQBAJ [91] Goldstein J. Scanning Electron Microscopy and X-Ray Microanalysis: Third Edition. Springer US; 2003. (Scanning Electron Microscopy and X-ray Microanalysis). https://books.google.com.tw/books?id=ruF9DQxCDLQC [92] De Almeida ACP, Barros KS, Ribeiro MES, Baia JCP, Silva E Sousa Júnior MH, Loretto SC. Influence of Different Time Intervals among the in-Office Bleaching Sessions on the Tooth Enamel Mass Variation. Journal of Health Sciences. 2019;21(4):342–347. doi:10.17921/2447-8938.2019v21n4p342-7 [93] Ito Y, Otsuki M, Tagami J. Effect of pH conditioners on tooth bleaching. Clinical and Experimental Dental Research. 2019;5(3):212–218. doi:10.1002/cre2.172 [94] Zahnfabrik V. VITA shade guides. VITA Zahnfabrik. [accessed 2025 Jun 8]. https://www.vita-zahnfabrik.com/en/VITA-shade-guides-31233.html [95] Khashayar G, Bain PA, Salari S, Dozic A, Kleverlaan CJ, Feilzer AJ. Perceptibility and acceptability thresholds for colour differences in dentistry. Journal of Dentistry. 2014;42(6):637–644. doi:10.1016/j.jdent.2013.11.017 [96] Möhring S, Cieplik F, Hiller K-A, Ebensberger H, Ferstl G, Hermens J, Zaparty M, Witzgall R, Mansfeld U, Buchalla W, et al. Elemental Compositions of Enamel or Dentin in Human and Bovine Teeth Differ from Murine Teeth. Materials. 2023;16(4):1514. doi:10.3390/ma16041514 [97] Ortiz-Ruiz AJ, Teruel-Fernández J de D, Alcolea-Rubio LA, Hernández-Fernández A, Martínez-Beneyto Y, Gispert-Guirado F. Structural differences in enamel and dentin in human, bovine, porcine, and ovine teeth. Annals of Anatomy - Anatomischer Anzeiger. 2018;218:7–17. doi:10.1016/j.aanat.2017.12.012 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99527 | - |
| dc.description.abstract | 近年來對於牙齒美學的追求日益精緻化,擁有一口亮麗白牙普遍認為有助於提升自信和個人形象。由於需求者眾,市場上牙科美白相關產品琳瑯滿目。常見之牙科診間美白與居家美白多依賴高濃度過氧化物以氧化色基,但此類治療常伴隨牙本質敏感、牙釉質去礦化及牙齦刺激等副作用。為兼顧效果與生物相容性,利用催化材料在降低過氧化物濃度下提升活性氧產生已成為美白研究焦點。
本研究旨在合成富含亞氧化態與氧空缺的非晶雙相矽/二氧化矽奈米顆粒,並將其加入過氧化脲漂白劑中,評估其材料特性、牙齒漂白功效、生物相容性與術後牙釉質完整度。首先透過金屬鈉還原法製備 Si/SiOx 奈米顆粒,再以X射線繞射與拉曼光譜確認其非晶結構,並從X 射線光電子能譜分析材料含大量氧缺陷位,可介導氧化還原反應。本研究所開發之美白劑(Si-8CP-CMC)配方為 8 wt% 過氧化脲、5 wt% 羧甲基纖維素與 1 wt% Si/SiOx,並以常見之16 wt% 過氧化脲為對照。將以紅茶與咖啡染色之牛前牙進行美白效果測試, 由CIELAB 色差(ΔE)評估其漂白效能,再以掃描電子顯微鏡與維氏顯微硬度測試檢驗術後牙釉質完整性。並利用人牙齦纖維母細胞進行細胞毒性測試,以評估其生物安全性。 結果顯示Si-8CP-CMC在 15 分鐘內即達臨床可視美白(ΔE ≥ 3.7),並在 60 分鐘內於茶漬與咖啡漬樣本分別達 ΔE 15.3 ± 0.8 與 14.7 ± 0.9,顯著高於對照組。與細胞共培養 24 小時後,存活率維持在 95% 以上,顯示具生物安全性。透過電子顯微鏡觀察,Si-8CP-CMC美白術後仍可維持牙釉質棱柱結構,其維氏硬度為 332 ± 20 kgf/mm2,與健康牙釉質無顯著差異。 綜上所述,本研究開發之Si/SiOx奈米顆粒可有效催化過氧化物,並在顯著提升美白效果的同時,亦具備良好生物相容性且能維持釉質結構,可望為牙科美白提供更安全且有效的替代方案。 | zh_TW |
| dc.description.abstract | Tooth discoloration, arising from dietary chromogens, aging, medications, or trauma, remains a prevalent aesthetic concern. Conventional in-office and at-home bleaching systems typically rely on concentrated peroxides to oxidize chromophores; however, these treatments frequently lead to dentinal hypersensitivity, enamel demineralization, and gingival irritation. To balance efficacy and biocompatibility, catalytic materials that enhance reactive oxygen species (ROS) generation at reduced peroxide concentrations have become a focal point in bleaching research.
This study aimed to synthesize amorphous dual-phase silicon/silicon oxide (Si/SiOx) nanoparticles enriched with suboxide states and oxygen vacancies, incorporate them into a low-peroxide bleaching gel, and evaluate their physicochemical characteristics, whitening efficacy, biocompatibility, and enamel safety. Si/SiOx nanoparticles were synthesized via sodium-assisted thermal reduction. X-ray diffraction and Raman spectroscopy confirmed their amorphous structure, while X-ray photoelectron spectroscopy revealed abundant oxygen-deficient domains capable of redox mediation. A bleaching gel containing 8 wt% carbamide peroxide (CP), 5 wt% carboxymethyl cellulose (CMC), and 1 wt% Si/SiOx (Si-8CP-CMC) was formulated, with a conventional 16 wt% CP gel serving as the control. Bovine incisors stained with black tea and coffee were treated for up to 60 minutes. Whitening efficacy was assessed using total color change (ΔE) in the CIELAB system, while enamel integrity was evaluated via field-emission scanning electron microscopy (FE-SEM) and Vickers microhardness testing. Human gingival fibroblasts (HGF-1) were used for cytotoxicity assessment via WST-1 and Live/Dead assays. The Si-8CP-CMC gel produced clinically perceptible whitening (ΔE ≥ 3.7) within 15 minutes and achieved ΔE values of 15.3 ± 0.8 (tea) and 14.7 ± 0.9 (coffee) after 60 minutes, approximately 73% and 39% higher, respectively, than the CP gel, despite halving the peroxide content. HGF-1 viability remained above 95% after 24-hour exposure to Si-8CP-CMC eluates, whereas CP gel exposure reduced viability below 60% and caused membrane damage. FE-SEM revealed that Si-8CP-CMC preserved enamel architecture, while CP gel induced interprismatic dissolution. Vickers hardness in the Si-8CP-CMC group (332 ± 20 kgf/mm2) was comparable to sound enamel, in contrast to the CP group (255 ± 27 kgf/mm2, p < 0.001). These findings demonstrate that oxygen-vacancy-rich Si/SiOx nanoparticles serve as effective peroxide activators, enabling enhanced whitening efficacy with significantly improved biocompatibility and enamel preservation. This strategy presents a promising, safer alternative for future dental bleaching applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:33:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:33:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III ABSTRACT V CONTENTS VII LIST OF FIGURES XI LIST OF TABLES XIII LIST OF EQUATIONS XIV LIST OF ABBREVIATIONS XV CHAPTER 1. INTRODUCTION 1 1.1 Background and significance. 1 1.2 Structure and properties of teeth 3 1.2.1 Components of tooth structure 4 1.2.2 Color of tooth 9 1.3 Causes of tooth discoloration 11 1.4 Advances in Dental Bleaching Technologies 16 1.4.1 Dental bleaching product development 16 1.4.2 Peroxide bleaching mechanisms 17 1.4.3 Types of dental bleaching systems 21 1.5 Side effects of dental bleaching 22 1.6 Mechanisms of post-treatment sensitivity 23 CHAPTER 2. RATIONALE 25 2.1 Advance oxidation process (AOPs) 25 2.2 Fenton-like catalyst 30 2.2.1 Silicon materials 30 2.2.2 Oxidation of silicon 31 CHAPTER 3. MATERIALS AND METHODS 34 3.1 Chemicals and reagents 34 3.2 Instrumentals and equipment 35 3.3 Materials synthesis and characteristics 36 3.3.1 Si/SiOx nanoparticles synthesis 36 3.3.2 X-ray diffraction (XRD) 37 3.3.3 Raman spectroscopy 39 3.3.4 X-ray photoelectron spectroscopy (XPS) 40 3.3.5 Field-emission transmission electron microscopy (FE-TEM) 42 3.3.6 Field-emission scanning electron microscopy (FE-SEM) 43 3.3.7 Bleaching reagent preparation 45 3.4 Cell culture and biocompatibility evaluation 46 3.4.1 Cell culture method 47 3.4.2 Cell viability test: WST-1 assay 47 3.4.3 Live and Dead cell staining 48 3.5 Preparation and staining protocol of bovine teeth 49 3.6 Bovine teeth bleaching test 50 3.7 Dental color analysis 51 3.8 Post-treatment enamel surface examination 52 3.8.1 Surface observation: FE-SEM 52 3.8.2 Microhardness test 53 CHAPTER 4. RESULTS 54 4.1 Crystal structures analysis 54 4.2 Chemical state and composition 55 4.3 Grain size and surface morphology observation 56 4.4 Cytocompatibility 58 4.5 Effectiveness of tooth whitening 60 4.6 Changes of enamel surface 63 4.7 Microhardness analysis of enamel 64 CHAPTER 5. DISCUSSION 66 5.1 The enhanced bleaching efficiency by Si/SiOx material 66 5.2 Biocompatibility and safety improvements 68 5.3 Limitations and future perspectives 69 CHAPTER 6. CONCLUSION 71 REFERENCES 72 | - |
| dc.language.iso | en | - |
| dc.subject | 矽/二氧化矽 | zh_TW |
| dc.subject | 奈米顆粒 | zh_TW |
| dc.subject | 牙齒美白 | zh_TW |
| dc.subject | 過氧化脲 | zh_TW |
| dc.subject | 氧空缺 | zh_TW |
| dc.subject | 琺瑯質 | zh_TW |
| dc.subject | enamel safety | en |
| dc.subject | silicon/silicon oxide | en |
| dc.subject | nanoparticles | en |
| dc.subject | dental bleaching | en |
| dc.subject | carbamide peroxide | en |
| dc.subject | oxygen vacancies | en |
| dc.title | 矽/二氧化矽應用於牙科美白之評估 | zh_TW |
| dc.title | Evaluation of Silicon/Silicon Dioxide for Dental Bleaching | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 林俊彬;黃義侑 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Pin Lin;Yi-You Huang | en |
| dc.subject.keyword | 矽/二氧化矽,奈米顆粒,牙齒美白,過氧化脲,氧空缺,琺瑯質, | zh_TW |
| dc.subject.keyword | silicon/silicon oxide,nanoparticles,dental bleaching,carbamide peroxide,oxygen vacancies,enamel safety, | en |
| dc.relation.page | 81 | - |
| dc.identifier.doi | 10.6342/NTU202502242 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-23 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| Appears in Collections: | 醫學工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 7.95 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
